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Immune system aging may be affected by HIV infection:
the mathematical model of immunosenescence

T. E. SANNIKOVA�, S. G. RUDNEV�, A. A. ROMANYUKHA �,
and A. I. YASHIN†

Abstract — In this paper, we analyse the structure of equations in the earlier proposed mathematical
model of the dynamics of age-related changes in population of peripheral T lymphocytes. To inves-
tigate behaviour of the model solutions in a wide range of values of variables we introduce a linear
relation between the rate constants of T lymphocytes proliferation and the values of the mean length of
telomeric chromosome fragments spent by naive and memory cells in the course of immune response,
as well as the dependence of these parameters on the value of the cell replicative potential. We ob-
tain sufficient conditions for existence, uniqueness, and positiveness of solutions over the whole time
interval. The results of numerical calculations illustrate the capabilities of the model for describing
accelerated aging mechanisms of the immune system using theexample of HIV infection.

In [16], there was proposed the mathematical model of the dynamics of age-related
changes in population of peripheral T lymphocytes. T lymphocytes account for most
(approximately 75%) of cells in the lymphatic nodes and are responsible for the rate
and amplitude of essentially all immune processes and especially antiviral immu-
nity. As compared to other components of the immune defense of an organism, the
changes in the T immunity system with age are most pronounced[2] and hence
responsible for the rate of the immune system aging as a whole. Thus, the math-
ematical model of age-related changes in the peripheral T lymphocyte population
can be regarded as a model of the immune system aging.

The model parameters in [16] were adjusted by the data obtained from healthy
donors of various ages. This allows one, in particular, to assume the constancy of
antigen load (the absence of prolonged and severe diseases)and the normal steady
functioning of various subsystems and organs of the immune system during lifetime.
The next logical step is an attempt to use this model for describing the immune
system aging in severe and chronic diseases.

The peripheral T lymphocyte population consists of cells oftwo types: naive T
lymphocytes and memory cells. T lymphocytes that do not participate in an immune
response are called naive T lymphocytes. In the course of immune response to an
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antigen, the specific naive T lymphocytes undergo clonal expansion and differenti-
ation which involves 15–20 cell divisions, the number of cells of given specificity
thus increases 105- to 106-fold. Upon removing the antigen, the main part of these
cells (90 –95%) die of apoptose during several days, the other cells form the pop-
ulation of memory cells. The memory cells concentration of given specificity is
generally much higher than the concentration of the initialpopulation of naive cells,
which ensures the higher rate and amplitude of the secondaryimmune response
[19].

The normal function of the immune system in a human over 20 is characterized
by a surplus of the produced T memory lymphocytes, which leads to a competition
among them and a decrease in the mean lifetime of these cells.With age, the thymus
lymphoid tissue contracts and the influx rate of naive T cellsdecreases, which leads
to a decrease in their concentration and causes them to gradually release the occu-
pied niche. Consequently, the excessively produced T memory cells can compete
not only for their niche but also for the released part of the naive cells’ niche. We
assume that the total number of lymphocytes in an organism depends on the vol-
ume of the peripheral immune system. If the total number of lymphocytes becomes
larger than the lymphatic nodes can accommodate, they are subject to accelerated
death. If the total number of lymphocytes becomes smaller, they and, first of all, the
memory cells proliferate until the released space is filled [8, 19].

Since the age of 18–20 and over the next 15–20 years there is ina human or-
ganism a fast (four- to five-fold) decrease in the amount of lymphoid tissue of the
thymus, with the process subsequently slowing down. The quantitative characteris-
tics of the age-related changes in the peripheral organs of the immune system are
discussed much more rarely. Analysis of the histological data shows that, with age,
the intact peripheral lymphoid tissue (IPLT) is replaced byconnective and fat tissues
[17].

The lymphocyte division process is accompanied by a gradualshortening of the
length of the end parts of chromosomes that are called telomeres. After the telom-
eres in a given cell contract to a certain length (4000–5000 pairs of bases per cell),
the cell loses its proliferative capacity [5]. This critical length is called the Hayflick
limit. The telomere length may serve as a measure of the replicative potential of cells
and hence is an important characteristic of their immunocompetence [14]. Note that
with age there is a decrease in the length of telomeres in hemopoietic stem cells as
well [21]. This also reduces the replicative potential of their progenies. A decrease
in the rate of the production of naive T lymphocytes and the supply of antigens in
an organism, which cause an immune response, result in an increase with age in the
fraction of memory cells with a low replicative potential. They force out the naive
cells with a higher replicative potential. Normally, the proliferative capacity of lym-
phocytes decreases gradually over 50–60 years and the critical decrease occurs at
the age of 80–90 [7]. The problems of influence of the immune system aging on
morbidity and mortality have been studied extensively in [1, 22].

Under the conditions of constant and relatively low antigenload, a decrease
in the proliferative capacity of lymphocytes only slightlyaffects the background
process of the cell population renewal. However, when the antigen load increases
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considerably as, for example, in the case of chronic relapsing infectious diseases,
this factor can substantially change the dynamics of the process described by the
model. An increased turnover of T and B lymphocytes caused bythe prolonged
presence of a pathogen often leads to a substantial impairment of the immune de-
fense and the development of secondary immunodeficiency. Moreover, as a result
of enhanced antigen stimulation, the division rate of lymphocytes can increase five-
to ten-fold as compared to the normal state [20]. If this process lasts for a long time,
the proliferative potential of peripheral T lymphocytes and, primarily, the memory
cells decreases and starts to limit the rate of their proliferation well before the be-
ginning of the old age. Finally, part of the memory cells thatreceive an activation
signal has only two or three division cycles, and the rest cells fail to divide at all [4].

This is the case with severe viral infections, HIV infectionis a dramatic ex-
ample. During HIV infection, the aging of the immune system is four-five times
faster than that in the norm [3]. It is interesting to study the mechanisms of the im-
mune homeostasis maintenance under these conditions. Therefore along with the
justification of the structure and the characteristic of theproperties of solutions to
the system of equations in the mathematical model of the dynamics of age-related
changes in the peripheral T lymphocyte population, we consider the possibilities of
the application of the model to the description of the mechanisms of the immune
system accelerated aging in HIV infection.

1. JUSTIFICATION OF THE STRUCTURE OF MODEL EQUATIONS

According to the described scheme of age-related changes inT cell immunity, we
assume that:
1. The population of naive cells in the IPLT is replenished with their influx from the
thymus.
2. The naive T lymphocytes participate in immune response tovarious antigens
whose total impact on the immune system is generalized by an antigen load notion.
3. As a result of primary immune response, the main part of theformed population
of specific lymphocytes dies, the rest part transforms into the memory cells.
4. The specific T memory cells that ultimately replenish their own population par-
ticipate in an immune response to an already known antigen.
5. The process of cell division is accompanied by a decline intheir replicative po-
tential and the replicative potential of their progeny.
6. The concentration of T lymphocytes in the IPLT is maintained by the regulation
of the lifetime of memory cells.
7. With age, there occurs a reduction in the IPLT volume, the production rate of
naive T lymphocytes in the thymus as well as in the length of telomere repeats in
stem cells.

We consider the following model variables:
N�t � is the concentration of naive T lymphocytes in the IPLT at time t [cell/ml];
PN �t � is the mean length of telomere repeats in the naive T lymphocyte popula-

tion at timet [b.p./cell];
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M �t � is the concentration of T memory cells in the IPLT at timet [cell/ml];
PM �t � is the mean length of telomere repeats in the population of T memory

cells at timet [b.p./cell];
N��t � is the rate of naive T lymphocytes influx into the IPLT at timet [cell/day];
V �t � is the IPLT volume at timet [ml];
P��t � is the length of telomere repeats in naive T cells produced attime t

[b.p./cell].
The mathematical model of the dynamics of age-related changes in the popula-

tion of peripheral T lymphocytes is constructed in the form of the system of ordinary
differential equations. We assume that the immune system cells and antigens in the
IPLT volume are distributed uniformly. We consider interactions between them by
the mass action law.

The formula for the finite increment inN�t �over the period
�
t; t �∆t� up to terms

of 2nd-order infinitesimal with respect to∆t has the form

∆N�t � � N�t �∆t ��N�t �� N��t �
V �t � ∆t �α1

L
V �t �N�t �∆t �µNN�t �∆t

�V �t �∆t ��V �t �
V �t � N�t �∆t �� (1.1)

The first term in the right-hand side of this equation describes an increase in time
∆t in the concentration of naive T lymphocytes in the IPLT as a result of their in-
flux from the thymus. The second term describes a decrease in the concentration of
naive T lymphocytes as a result of their antigenic stimulation and the multiplica-
tion/death processes with the formation of the population of T memory cells. We
assume that the transition rate is proportional toN�t � and the specific antigen load
L�V �t �, whereL is the total antigen load (this value is assumed to be constant).
The proportionality coefficientα1 characterizes the sensitivity of naive T lympho-
cytes to antigen stimulation. The third term describes the natural death of naive
T lymphocytes. The valueµN is inverse to the mean lifetime of these cells in the
absence of antigen stimulation. The last term describes changes inN�t � with the
volumeV �t �. Indeed, the conservation law of the number of cells can be written as
N�t �V �t ��N�t �∆t �V �t �∆t �, whence we obtain the desired expression for∆N�t �
upon obvious transformations. If we divide relation (1.1) by ∆t and pass to the limit
as∆t � 0, we obtain the equation for the dynamics of the concentration of naive T
lymphocytes in the IPLT:

dN
dt

� N�
V

�α1
L
V

N �µNN �dV
dt

N
V
� (1.2)

Analogously we construct the equation for the concentration of T memory cells
in the IPLT. In the final form it is written as

dM
dt

�ρ1α1
L
V

N�ρ2α2
L
V

M �µM �C� �N �M��dV
dt

M
V
� (1.3)
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The first term in the right-hand side of this equation describes an increase in the
memory cells concentration as a result of division and differentation of naive T
lymphocytes. The coefficientρ1 is equal to the mean number of memory cells pro-
duced by an immune response from a single naive T cell. The second term describes
the multiplication of T memory cells. The coefficientρ2 is equal to the number of
lymphocytes reduced by unity, which are produced by an immune response from a
single memory cell. The valueα2 characterizes the sensitivity of T memory cells to
antigen stimulation. We assume that the homeostatic regulation mechanism of the
immune system provides the maintenance of the constant concentration of T lym-
phocytes in the IPLT. This assumption is associated with thestructure of the third
term in the right-hand side of (1.3). HereC� is the lower bound of the normal T
lymphocyte concentration in the IPLT andµM is the specific rate of the death of
‘excessive’ memory cells. The last term takes into account changes in the memory
cells concentration as the IPLT volume changes.

We construct the dynamic equation for the mean length of telomere repeats of
naive T lymphocytes and memory cells. An increment in the total length of telomere
repeats in the naive T lymphocyte population over the period

�
t; t �∆t� has the form

PN �t � ∆t �N�t �∆t �V �t �∆t ��PN �t �N�t �V �t �
� N��t �P��t �∆t � �α1LN�t ��µNN�t �V �t ��PN �t �∆t (1.4)

where the first term to the right of the sign of equality characterizes an increase in the
total length of telomere repeats at time∆t as a result of the influx of T lymphocytes
from the thymus. The second term characterizes a decrease inthe total length of
telomere repeats as a result of the transition of naive T lymphocytes to the memory
cells and the natural death of the naive cells [see the first and third terms in the
right-hand side of (1.2)]. We rewrite relation (1.4) as

PN �t �∆t ��PN �t �
∆t

� PN �t �N�t �V �t ��PN �t �N�t �∆t �V �t �∆t �
N�t �∆t �V �t �∆t �∆t

�N��t �P��t �∆t � �α1LN�t ��µNN�t �V �t ��PN �t �∆t
N�t �∆t �V �t �∆t �∆t

� (1.5)

Passing to the limit as∆t � 0, we get

dPN

dt
� �PN

NV
d
dt

�NV��N�P�
NV

�α1
LPN

V
�µNPN � (1.6)

From (1.2) it follows that

d
dt

�NV�� dN
dt

V � dV
dt

N �N� �α1LN �µNNV� (1.7)

Thus,

dPN

dt
� �PN

NV
�N� �α1LN �µNNV��N�P�

NV
�α1LPN

V
�µNPN

� �P� �PN� N�
NV

� (1.8)
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Therefore the equation for the mean length of telomeres in naive T lymphocytes in
the ILPT has the form

dPN

dt
� �P� �PN� N�

NV
� (1.9)

The increment in the total length of telomeres in the population of T memory
cells over the period

�
t; t �∆t� is representable as

PM �t � ∆t �M �t �∆t �V �t �∆t ��PM �t �M �t �V �t �
� ρ1α1LN�t ��PN �t ��λN�∆t �ρ2α2LM �t ��PM �t ��λM �∆t

�α2LM �t �λM∆t �µMV �t ��C� �N�t ��M �t ��PM �t �∆t � (1.10)

The first term in the right-hand side of this equation describes an increase in the
total length of telomere repeats in the T memory cells population as a result of the
proliferation and differentiation of naive T lymphocytes;(PN �t ��λN) is the mean
length of telomeres in T memory cells, which are formed from naive T cells at timet
(λN is the mean number of the pairs of bases by which the length of the telomeres of
the naive T lymphocytes is reduced as a result of an immune response). The second
term describes the change in the total length of telomeres inT memory cells as a
result of their own division, where (PM �t ��λM) is the mean length of telomeres in
the progeny of dividing memory cells, which were formed at timet. The third term
describes the shortening of the mean length of telomeres in dividing memory cells
as a result of an immune response. The fourth term in the right-hand side of (1.10)
describes the changes caused by the homeostatic regulationof the total number of
T memory cells in the ILPT [see equation (1.3)]. If we transform relation (1.10) and
pass to the limit as∆t �0, we get

dPM

dt
� � PM

MV
d
dt

�MV ��ρ1α1�PN �λN� LN
MV

�ρ2α2�PM �λM �L
V

�α2λM
L
V
�µM �C� �N �M�PM

M
� (1.11)

From (1.3) it follows that

d
dt

�MV �� dM
dt

V � dV
dt

M �ρ1α1LN�ρ2α2LM �µMV �C� �N �M�� (1.12)

Substituting this equation in (1.11) and simplifying the relation obtained, we arrive
at the equation for the dynamics of the mean length of telomeres in the T memory
cell population:

dPM

dt
� ρ1α1�PN �PM �λN�L

V
N
M

� �ρ2�1�α2λM
L
V
� (1.13)

The rate of the influx of naive T lymphocytes (N�) from the thymus as well
as the functions of age-related changes in the length of their telomeres (P�) and
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the ILPT volume (V) are represented as the linear functions of the exponents with
negative powers:

N��t � � N�0e�kT t (1.14)

P��t � � �P�0 �PH �e�kPt �PH (1.15)

V �t � � �V0 �Vmin�e�kV t �Vmin (1.16)

whereN�0, P�0 , andV0 are the initial values at the zero instant corresponding to the
age of 20,PH is the value of the Hayflick limit, which is taken to be constant, and
Vmin is the minimum IPLT volume. Combining (1.2), (1.3), (1.9), and (1.13), we
obtain the system of nonlinear ordinary differential equations for the dynamics of
age-related changes in the peripheral T lymphocyte population:

dN
dt

� N�
V

�α1
L
V

N �µNN �dV
dt

N
V

dM
dt

� ρ1α1
L
V

N�ρ2α2
L
V

M �µM �C� �N �M��dV
dt

M
V

dPN

dt
� �P� �PN� N�

NV
dPM

dt
� ρ1α1�PN �PM �λN�L

V
N
M

� �ρ2�1�α2λM
L
V

(1.17)

where the functionsN�, P�, andV are given by expressions (1.14)–(1.16). We add
to the system of equations (1.17) the initial conditions:

N�0��N0� M �0��M0� PN �0��P0
N � PM �0� �P0

M � (1.18)

Note that the equations for the dependent variablesN and M result from the
assumptions made at the beginning of this section and the conservation laws of the
number of cells, whereas the equations forPN andPM are derived from (1.2) and
(1.3) by the balance relations for the total length of telomeres. The derived system
of equations mostly coincides with that suggested in [16], except that in the second
term of the right-hand side of the equation forPM the valueρ2 (from the empirically
derived equation forPM in [16]) is replaced by�ρ2 �1�. Besides, by virtue of the
fact that the length of the telomeres of stem cells is boundedbelow by the Hayflick
limit, the formula forP��t � is changed. A similar change is introduced for the value
V �t � [see (1.16)], whereVmin

�0 is an arbitrarily chosen and small enough value.
The computational results show that these refinements do notintroduce appreciable
changes in the dynamics of solutions to the system of the model equations in the
age range of interest as compared to the results obtained in [16] (data is not shown).

When constructing the model equations we implicitly assumed that the values
of the parametersαi , i � 1�2, andλi , i � N �M, are constant and independent of
one another. However, this assumption is valid only for cellpopulations with high
proliferative potential. When this potential decreases, the valueαi decreases, which
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leads to a decrease inλi because the number of cell divisions reduces. Consequently,
in order to study the behaviour of the model solutions in a wide range of values of
the variables, it is necessary to take into account a dependence betweenαi andλi , for
example, in the formαi�λi �const. We further assume that this relation is valid and
when decreasing the proliferative cell potential the valueαi decreases in proportion
to �Pi �PH ���P0

i �PH �, wherePi andP0
l are the lengths of the telomeres in thei-th

type cells (i �N �M) at the instantt and the initial instant, respectively.

2. ANALYTIC TREATMENT

We assume that all the parameters and the initial conditionsin the Cauchy problem
(1.17)–(1.18) are positive. To prove the existence and uniqueness of its solutions we
take advantage of the following theorem [13].

Suppose that in the Cauchy problem

dX �t �
dt

� F �t �X �t �� (2.1)

X �t0� � X0 (2.2)

the functionF �t �X �t �� � �F1�t �X �t ��� � � � �Fn�t �X �t ���T is determined and continu-
ous on some open setΓ in the spaceR� �Rn with coordinates�t �x1�t �� � � � �xn�t ��,
together with all the functions of the form∂Fi �t �X �t ���∂x j �t �, i � j � 1� � � � �n. Then
for any point�t0 �X0� �Γ, there exists the solutionY�t � of the system (2.1), which is
defined over an interval�t0 ���t0���and satisfies the conditionY �t0��X0. This
solution is continuous and unique.

We consider the domainΓ � ��t �N �M �PN �PM � : t � 0� N � 0� M � 0� PN
�

0� PM
�0�. The hypotheses of the theorem are valid for our system if foranyt �0

we haveN�t � ��0 andM �t � ��0.
Transforming the first equation in the system (1.17), we get

dN
dt

� N�
V

� �α1
L
V
�µN � 1

V
dV
dt �N

� N�0e�kT t

�V0 �Vmin�e�kV t �Vmin
� �α1L �kV �V0 �Vmin�e�kV t

�V0 �Vmin�e�kV t �Vmin
�µN�N � (2.3)

Let

A�t �� N�0e�kT t

�V0 �Vmin�e�kV t �Vmin
� B�t �� α1L �kV �V0 �Vmin�e�kV t

�V0 �Vmin�e�kV t �Vmin
�µN �

Then we can write
dN
dt

�A�t ��B�t �N � (2.4)

The solution of this equation has the form

N�t ��e�
t	

0
B
τ �dτ �
 t�

0

A�τ �e
τ	
0

B
ζ �dζ
dτ �N0�� � (2.5)
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Since all the parameters in the system of equations and the initial conditions are
positive, for allt �0 we haveA�t � �0. Taking into account thatN0 �0, we obtain
N�t � �0 for anyt �0.

Let us consider the second equation in the system (1.17):

dM
dt

� ρ1α1
L
V

N�ρ2α2
L
V

M �µM �C� �N �M��dV
dt

M
V

� ρ1α1LN
�V0 �Vmin�e�kV t �Vmin

�µM �C� �N�

� �ρ2α2L�kV �V0 �Vmin�e�kV t

�V0 �Vmin�e�kV t �Vmin
�µM�M � (2.6)

Whence,
dM
dt

�E �t ��G�t �M
where

E �t �� ρ1α1LN
�V0 �Vmin�e�kV t �Vmin

�µM �C� �N�

G�t �� ρ2α2L�kV �V0 �Vmin�e�kV t

�V0 �Vmin�e�kV t �Vmin
�µM �

The solution of equation (2.6) has the form

M �t ��e

t	
0

G
τ �dτ �
 t�
0

E �τ �e�
τ	
0

G
ζ �dζ
dτ �M0�� � (2.7)

SinceM0 �0, forM �t � to be positive, it is sufficient to satisfy the conditionE �t ��0
for anyt �0. This relation is valid if for anyt �0 we haveN�t � �C�.

We consider equation (1.7). If we solve the linear differential equation dx�dt �
N��t ��µNx, whereN��t ��N�0 exp��kTt �, and use the majorization theorem [11],
we thus get

N�t �V �t � � N�0
µN �kT

e�kT t � �N0V0 � N�0
µN �kT �e�µNt �

Taking into account the equalityV �t �� �V0 �Vmin�exp��kVt ��Vmin, we have

N�t � � 1��V0 �Vmin�e�kV t �Vmin�
� N�0
µN �kT

e�kT t � �N0V0 � N�0
µN �kT �e�µNt�

� 1
V0 �Vmin �VminekV t

� �N0V0e
kV�
µN �t � N�0

kT �µN
�e
kV�

µN �t �e
kV�
kT �t�� � (2.8)
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We denote the right-hand side of this inequality byf �t �, and f �0� �N0. It is not
difficult to see that the functionf �t �monotonously decreases with increasingt if the
conditionskV �µN andkV �kT are simultaneously satisfied (µN ��kT ). In this case,
for N�0� �C� we obtainN�t � �C� and henceM �t � �0 for anyt �0. A similar
proposition can be proved for the caseµN � kT , but the proof is cumbersome and
therefore is not presented here.

The positiveness ofPN andPM is established in the same way as in the investi-
gation of the basic mathematical model of infectious disease [12]. Let us show that,
given the conditionP�0 �PH

�0, the inequalityPN �t � �PH holds for anyt �0. Sup-
pose this is not the case. Then in view of the continuity ofPN, there exists the point
t0
� 0 : PN �t0� � PH , and dPN�dt �t�t0 � 0. From the third equation of the system

(1.17), with allowance for (1.15), we have

dPN

dt
�t0�� �P�0 �PH �e�kPt0 N��t0�

N�t0�V �t0�
�0� (2.9)

There is a contradiction. Consequently, given the above condition, we havePN �t � �
PH . Analogously, when the conditionP0

M �PH
�λN is satisfied, we obtainPM �t � �

PH for all t �0.
We can show that the right-hand side of (1.17) is majorized bythe system of

linear differential equations. Therefore the local solution can be extended to include
the whole time interval studied. We consider, as an example,the first equation in the
system (1.17):

dN
dt

� N�
V

�α1
L
V

N �µNN �dV
dt

N
V
� N�0

Vmin
�kVN � (2.10)

The procedure is analogous for the second equation. In addition, it can be easily
shown that the functionsPN �t � andPM �t � are bounded above. Thus, we have the
following assertion.

Proposition 2.1. In the case of the positive parameters and the initial condi-
tions, as well as the validity of the inequalities kV � µN � kV � kT � and N�0� �C�,
there exists a unique solution to the Cauchy problem(1.17)–(1.18), which is defined
over the whole interval t� 0, N�t � � 0 and M�t � � 0. If, besides, the conditions
P�0 �PH

�0 and P0
M �PH

�λN are satisfied, for all t�0 we have PN �t � �PH and
PM �t � �PH .

3. MODELLING THE ACCELERATED AGING
OF THE IMMUNE SYSTEM IN HIV INFECTION

The rates and the character of the processes responsible forthe dynamics of the
peripheral T lymphocyte population in the course of HIV infection substantially
differ from those of the processes responsible for the dynamics of the normal aging
of the immune system. Of major importance are the differences:
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Table 1.
Initial conditions and model parameters, which correspondto the normal aging of the immune system.

Parameter Physical meaning Dimension Value

α1 The rate constant of naive ml/g 1�5 �104

T lymphocytes proliferation
α2 The rate constant of T memory ml/g 1�5 �104

cells proliferation
µN The constant of the natural death rate of naive 1/day 1�8 �10�4

T lymphocytes
µM The constant of the death rate of T memory 1/day 0�05

cells as a result of competition for an IPLT site
ρ1 The mean number of T memory cells produced dimens- 100

during an immune response from a single naive T ionless
lymphocyte

ρ2 The mean number of T memory cells produced dimens- 1�1
during an immune response from a single T memory ionless
cell

λN The mean length of the telomeric fragment of a b.p./cell 1400
naive T lymphocyte, which is lost as a result
of an immune response

λM The mean length of the telomeric fragment of a b.p./cell 500
T memory cell, which is lost as a result of an
immune response

C
�

The lower bound of the normal concentration of cell/ml 2�5 �109

T lymphocytes in the IPLT
kT The constant of the reduction rate of the naive 1/day 1�1 �10�4

T lymphocyte production in the thymus
kV The constant of the contraction rate of the IPLT volume 1/day 2�7 �10�5

kP The constant of the shortening rate of the telomere b.p./day 1 �10�5

length in the precursors of naive T lymphocytes
L Antigen load g/day 1�25�10�6

N
�

0 The rate of production of naive T lymphocytes cell/day 4�108

in the thymus at the age of 20
V0 The IPLT volume at the age of 20 ml 1500

Vmin The ‘minimum’ IPLT volume ml 100

P
�

0 The mean length of telomeres in naive T lymphocytes b.p./cell 8�3 �103

produced at the age of 20
N0 The concentration of naive T lymphocytes in cell/ml 1�9 �109

the IPLT at the age of 20
M0 The concentration of T memory cells in the IPLT at cell/ml 6�45�108

the age of 20
P0

N The mean length of telomeres in naive T lymphocytes b.p./cell 8�8 �103

at the age of 20
P0

M The mean length of telomeres in T memory cells at b.p./cell 7�4 �103

the age of 20
PH The Hayflick limit b.p. 5�103
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Figure 1. Solution of the system of equations in the mathematical model of the dynamics of age-
related changes in the peripheral T lymphocyte population.Thin lines indicate the results of modelling
the normal aging, thick lines- the results of the accelerated aging in HIV infection. (a) The rate of
naive T lymphocytes influx from the thymus; (b) the dynamics of the telomere length in naive T
lymphocytes (solid lines) and in T memory cells (dotted lines); (c) the dynamics of the concentration
of naive T lymphocytes (solid lines) and T memory cells (dotted lines) in the IPLT; (d) the mean
specific replicative potential of T lymphocytes (the maximum number of divisions per cell).

–The influx rate of naive T lymphocytes from the thymus substantially de-
creases. The estimates in [9] show that at the terminal stageof HIV infection this
value decreases five and more times. The considerable part ofthe newly forming
cells can be infected by the virus and hence is not able to multiply.

–The mean lifetime of T lymphocytes decreases 3.6 times and is about 33 days,
which is due to a considerable increase in the proliferationand death rate of periph-
eral T lymphocytes [10].

–The intensive division of peripheral T lymphocytes leads to the exhaustion of
their replicative potential, which is manifested in a five-fold increase in the short-
ening rate of the telomere length. At the late stages of HIV infection (i.e. about 10
years after contamination) the length of the telomeres of mononuclear cells in pe-
ripheral blood becomes shorter, on average, by 1500 b.p. than that in the age norm
[3].
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Figure 2. The dynamics of the T lymphocyte concentration in the IPLT innormal aging (thin line)
and in HIV infection (thick line).

–As a result, the population of peripheral T lymphocytes proves incapable of
self-maintenance and their concentration decreases.

Figures 1 and 2 present the results of modelling the immune system aging in the
norm (the values of the parameters and the initial conditions for this case are given in
Table 1) and in HIV infection. In accordance with the above differences, to describe
the dynamics of the peripheral T lymphocyte population in HIV infection we added
to the right-hand side of the equation forM the term of the form�µM describing
the phenomenon of the accelerated death of T memory cells in HIV infection (µ �
0�02). It is easy to see that this addition does not affect the form of the equation
for PM. The constant of the reduction rate of naive T lymphocyte production in
the thymus (kT ) was five times as much as the norm (see Table 1), the antigen
load L was eight times as much, andρ2 � 50. We assume that the onset of HIV
infection corresponds to the age of 27. As seen, the model solutions with the above
set of the parameters adequately reproduce the available data on the accelerated
aging of the peripheral T lymphocyte population in HIV infection (see Figs. 1a–
1c). In addition, Fig. 1d illustrates a sharp decline in the mean specific replicative
potential of peripheral T lymphocytes [i.e. the value of theform �N�PN �PH ��
M �PM �PH ���λ �N �M� in HIV infection as compared to normal, whereλ is the
average length of T lymphocytes telomeric fragments lost per one division cycle;
in our numerical experiments we used the valueλ � 50]. Interpretation of the data
describing a decrease of the average lifetime of T cells in HIV infection will be
considered in the future works.

Figure 2 shows the dynamics of the total concentration of peripheral T lympho-
cytes in norm (thin line) and in HIV infection (thick line). On the background of the
steady maintenance of the constant cell concentration in normal conditions there is
a fast initial increase, which follows the pattern seen in anacute immune response,
and a subsequent progressive decrease in the cell concentration in HIV infection.
This pattern is in good agreement with the current concepts of AIDS development.
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4. DISCUSSION AND CONCLUSIONS

Using the balance relations, we constructed the mathematical model of the periph-
eral T lymphocyte population aging. As compared to the earlier published version
of the model, this model takes into account the effect of a decrease in the telomere
length on the cell proliferation rate. The constructed model quantitatively describes
the normal age-related changes in the peripheral T lymphocyte population in adults.
An example of the extensive study of the normal age-related changes in the telom-
ere length in a wider age range and with allowance for the inhomogeneity of the T
lymphocyte population, is given in [18].

Unlike the normal aging process, prolonged and severe diseases are character-
ized by an abrupt increase in the antigen load and the accelerated aging of the im-
mune system. To study the behaviour of the model solutions ina wide range of
values of the dependent variables, we introduced a linear relation between the rate
constants of the peripheral T lymphocytes proliferation and the mean length of the
telomeric fragments of chromosomes in naive and memory cells, which are spent in
the cell division process. The constructed model allows oneto semi-quantitatively
describe the main regularities of the immune system aging inHIV infection. In par-
ticular, the phenomenon of lymphoadenopathy (an increase in the lymphatic tissue
volume at the initial stage of infection) and a subsequent decrease in the peripheral T
lymphocyte concentration at later stages of infection are described. Since the model
describes the dynamics of the lymphocyte concentration in peripheral lymphoid tis-
sue rather than in blood, for an exact quantitative description it is necessary to know
the dynamics of the change in the volume of the peripheral lymphoid tissue, which
is beyond the scope of this study. The dynamics of the shortening of the telom-
ere length of peripheral memory lymphocytes qualitativelyreproduces the available
clinical data. Further analysis of the key mechanisms for the maintenance of the
peripheral lymphoid tissue homeostasis under pathological conditions is necessary
to establish a quantitative correspondence.

Moreover, it should be particularly emphasized that without resort to the de-
scription of the viral infection mechanisms (examples of modelling the HIV infec-
tion dynamics in blood, see [6, 15]) it was possible to reproduce the main features in
the pathological process of progressive immunodeficiency in HIV infection as the
responses of the system of homeostasis maintenance to an increased antigen load.
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