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Abstract 

We present an approach in this paper to the solution of parameter identification problem arising in immune 
response modelling. The models are formulated as stiff systems of nonlinear delay-differential equations (DDEs). 
The criteria for the best-fit solution are discussed, which are appropriate when the data to be fitted varies 
considerably in magnitude. The fitting procedures are based on a combination of crude but global methods of fitting 
the models to data and more accurate locally convergent techniques. An algorithm for sequential parameter 
identification is based on subdivision of the total fitting interval in order to reduce the complexity of an optimization 
problem. Poor initial estimates for some parameters are improved by short-cut procedures via adjusting the model 
with spline functions approximating the data on the whole observation time interval. The stiff DDEs are solved by a 
modification of the DIFSUB code. An example of the real-life parameter identification problem for the antiviral 
immune response model in the context of the modelling of hepatitis B virus infection is presented. 

Keywords: Delay-differential equations; Parameter identification; Sequential fitting; Data approximation; Optimiza- 
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1. Introduction 

The recent development of applied mathematics is characterized by increasing attempts to 
use mathematical modelling tools in biology and medicine. It is the integrated problem of 
dynamic response and optimization that brings into focus modern investigations in theoretical 
biology, operating with the concepts of adaptation and evolution of multilevel, multiparameter 
and multiloop biological systems. A particular interest to mathematical models has been 
established in theoretical studies of the immune system and infectious diseases. A number of 
mathematical models describing the immune response during infectious diseases are formu- 
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lated as systems of nonlinear delay-differential equations (DDEs) characterized by multiple 
constant delays, moderate size and stiffness [14,34,37,38,40,42,57]. We note also a growing 
interest in delay effects and the use of DDEs in chemical kinetics modelling [19]. Derivation of 
mathematical models that are consistent with both prior knowledge and observations implies 
the development of effective computational tools for parameter identification in stiff nonlinear 
systems of DDEs. Considerable attention has been paid to the development of efficient 
methods for parameter estimation in stiff ordinary differential equations arising in chemical 
reaction modelling. The important issues of numerical identification of rate constants in 
chemical kinetics models formulated as systems of ODES can be found in [1,8,10,17,26,47,54, 
60,661. These findings provide a solid basis for treating similar identification problems in 
immune response modelling. 

This paper deals with some of the practical aspects of parameter identification in systems of 
nonlinear DDEs, with particular reference to modelling the immune response to viral and 
bacterial infections. An outline for modelling by DDEs the immune response to infections is 
presented in Section 2. The “best-fit” criteria and the algorithmic approaches to solving 
numerically the parameter identification problems in stiff nonlinear DDEs are described in 
Section 3. Section 4 presents a real-life application example of parameter estimation for the 
hepatitis B virus infection model. This example is general enough to illustrate the major 
difficulties associated with parameter identification for immune response models. Concluding 
remarks are presented in Section 5. 

2. DDEs arising in immune response modelling 

One of the clearly established functions of an immune system is the protection of a host 
against various infectious agents. To describe mathematically an immune response to viruses or 
bacteria, a conceptual model of the basic immune processes during an infectious disease is first 
elaborated, in which the interactions between cells and molecules are described in terms of 
positive and negative influences. The principal characteristic of a normal immune response is 
the generation of new lymphocytes and antibodies to deal efficiently with an infectious agent 
which also replicates. The response of an immune system, as well as the reaction of specific cell 
clones to a certain infection cannot be represented correctly without hereditary phenomena 
being taken into account. These include cell division and cell differentiation effects, residence 
time of cells in various compartments of the immune system, previous antigenic experiences, 
etc. In a number of ODE models the hereditary effects are modelled by introducing an 
additional “gearing up” state variable [l&53]. We consider the use of DDEs as a natural 
mathematical technique for representing the dynamics of the immune response in infectious 
diseases. Most of the DDE models used in immunology have constant delays, except for the 
threshold model of antigen-stimulated antibody production with time- and state-dependent 
delay [61] and the integro-delay differential equations model for coccidial infection in chickens 
[51]. Therefore, we focus here on models with constant delays. 

Assuming that the kinetics of interactions between cells is governed by principles similar to 
the Law of Mass Action, and that durations of division processes of the immunocompetent cells 
are taken into account explicitly by introducing the time lags into corresponding equations, the 
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typical mathematical model of immune response during on infectious disease may be expressed 
as an N-dimensional system of DDEs with multiple constant delays: 

g =f( I, a, y(t), yyt - q), . *. 9 Y["'(f - ??J>~ 

(YEW, Y-5 y[il E [wN, 124 
Ni,<N, i=1,2 ,..., m, fE [to, t,+T], 

Y (kl) = & y[il(t) = &l(t), t E [t, - Ti, to], 

v$h y = [y(l), . . . , Y(‘~‘]~, y”] = [ y(“‘, y”?‘, . . . , y(j~,)]~ and assigned initial functions cp” and 
1 

This particular class of DDEs with several constant delays includes the mathematical models 
for antiviral and antibacterial immune responses developed during the last two decades by 
Marchuk [36,37] and the HIV infection model by Nelson and Perelson 11421. Another set of 
mathematical models formulated as linear multiple constant delay differential equations 
appears while studying the circulation of lymphocytes through the immune system [20,44]. The 
time delays appear in the transport of lymphocytes between certain compartments. These 
authors argue that the linear DDEs models are better approximations to the experimental data 
than the linear ODES. The qualitative behavior of an immune network is studied by a nonlinear 
system of DDEs in [6]. A time lag is introduced to make the dynamics of the model richer. 

The dimension of the state space (see (2.1)), N, is about 10, while L is about 10 to 50, and m 
ranges from 1 to 10. The right-hand side function f is usually k-linear, with k = 1, 2, 3, 4, with 
respect to the components of the state vector and linear in the parameter vector components LX. 
The kinetic parameter of the model (Y characterizes the rate of immune process realization. It 
occurs over a time scale ranging from seconds (molecular interactions) to days (cellular 
interactions), and an observation interval is about 100 days. Therefore, the initial value problem 
(IVP) for the system of DDEs (2.1) appearing in immune response modelling is typically a stiff 
one [15,38,42,57]. 

An important problem for real-life applications in clinical immunology is how to make the 
models quantitatively consistent with experimental and clinical knowledge. To this end effective 
tools for assimilating the available data into the models are required. These tools include the 
numerical identification of model parameters, time delays and initial functions. The theoretical 
framework for estimation of various parameters in functional equations was developed in [4,41]. 
Practical aspects of developing efficient techniques for numerical fitting of stiff DDEs, which 
are characterized by severe nonlinearities, moderate state space dimension and a large number 
of parameters with poor initial estimates, have received little coverage in the literature as yet. 
This paper focuses on estimation of parameters in immune response models by fitting the 
model predictions to observed data. 

The parameters of the models for immune response in infectious diseases may be subdivided 
into two groups: the first consists of the parameters for which sharp initial estimates are 
available from various experimental data. The second group consists of parameters, notably the 
kinetic rates of cell-to-cell interactions in lymphoid and pathogen-sensitive tissues, for which no 
experimental estimates are available. Their initial theoretical estimates range over several 
orders of magnitude. The parameters of the second group must be refined by seeking a 
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minimum difference between the model predictions and the observed data on the kinetics of 
the underlying processes. 

3. Numerical solution of the parameter identification problem 

3.1. Criteria for the best-fit solution 

The identification of model parameters is generally performed by minimization of an 
objective function which represents a selected fitting criterion. It is known that observations are 
inexact, i.e. contain an uncertainty related to the measurement errors, random effects, nonlin- 
ear effects, unknown process contribution, etc. If the data displays statistically regular features, 
then the standard criteria of optimal estimation can be applied for parameter identification: the 
maximum likelihood method, Bayesian analysis, etc. [5]. The essential points for a correct use 
of this approach are the availability of a sufficient amount of data and the ad hoc stochastic 
frame for the analysis of data to characterize the structure of the errors in the data (see 
Kalman [33]). An example of this approach to the kinetic parameter estimation for mathemati- 
cal models in immunology is presented in [7], with special experimental program developed to 
obtain the numerous and homogeneous sets of data. However, a number of immune response 
modelling problems are characterized by situations where, either the researchers have no 
reason to put forward the prior stochastic characterization of data, or the data itself are 
obtained by indirect estimates. In such cases the data is regarded as equally reliable. 

To identify the parameters of immune response models, homogeneous and consistent data 
sets are derived in the form of Generalized Pictures [14,37], which represent the typical kinetics 
of a particular infectious disease. These data sets are not numerous and have uncertainties in 
their values which cannot be attributed to a certain stochastic mechanism. Therefore, they are 
believed to possess an equal value or have the same weight as the characteristics of the 
modelled process. 

The problem of quantitative description of any data characterizing a process without a priori 
knowledge of their stochastic nature is usually solved by fitting of the model to data [5,33,65]. 
The objective function should be selected with due regard to the nature of particular 
observation data, the parametric nonlinearities of the model solutions, etc. 

The classical least squares (LS) criterion is commonly used for fitting a model and data. A 
difference between the model predictions y((“(t!, a) and the measured 
certain points (tj>, is expressed via the residuals, i.e., the fitness function 
form: 

@(a) = E 5 Wji[ ygsj -yytj, cr)]’ 
j=l i=l 

data yzzsj, specified at 
@(a> has the following 

(3.1) 

with the wji defined by the weighting procedure, and M being the total number of different 
observation times. For example, the parameters of the lymphocyte circulation model described 
by a system of linear DDEs were estimated by minimizing the residual LS criterion with 
reference to the experimental data [20]. 
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Some limitations of the LS approach have been observed in several applications. It is known 
that the nonlinear LS fitting leads to a number of local minima. In an attempt to confront this 
problem, a nonlinear Chebyshev fitting was suggested in [65] to increase the possibility of 
unique global fits. It was pointed out in curve fitting problems that the ordinary LS method 
unduly weights the data points with the largest magnitude [16]. The last aspect of the residual 
LS approach becomes critical in our case, where the typical data representing the real 
processes varies considerably in magnitude. Indeed, the Generalized Picture data correspond- 
ing to hepatitis B (see Table 1) are characterized by an up to the lo4 increase in concentration 
of cells and viruses in the course of the disease. The objective function (3.1) was modified to 
meet the following requirements: it should be equally sensitive to the same relative deviations 
of y(‘)(tj, a> from y$ij regardless of the magnitude of yzzsj and it should be equally sensitive 

(I) to the same relative deviations of y@‘(tj, cu> from yobsj (and vice versa) no matter if y”‘(tj, a) is 
higher or lower than Y$&~. To this end, we considered the relative distance least squares 
criterion, expressed in terms of the ratios ~S’d,~/y”)(t~, LY) and y”‘(t,, a>/~$$~, rather than the 
residuals (yz$ j - y(‘)(tj, cu)). The definition domain of the state vector is supposed to be Cwf. 

If we adopt the LS form for the fitting function 

then a number of opportunities exist to select a function of the ratios, F(. , . >, which should be 
summetric: F( ~$2~ j, y”Q,, a>> = F(y”‘(tj, a), y$\ j >. The following types of symmetric formu- 
las for F were chosen, leading to the objective functions @(a) given below, which have been 
used in our applications: 

F(x)=x+j 

and 

F(x) = log x 4 @(a) = 5 5 log 
j=*i=l 

y(i) 
obs j 

y”‘( tj, a) (3.3) 

The latter was proved to meet the distance requirements in (FBY [34]. Note that some 
weighting procedure defined by a positive-definite matrix wji may be used to generalize the 
objective functions (3.2) and (3.31, similar to (3.1) 

There is another important aspect of the identification procedure, which must be taken into 
account-the nonlinearity of the overall problem. Generally, only when regression models are 
linear in the parameter (Y, the residual LS approach generates a linear LS problem. Otherwise, 
one gets a nonlinear LS problem, especially in the case when the underlying mathematical 
model is a system of differential equations. Clearly, one should prefer those fitness functions 
@(a), for which the minimization problem is characterized by a lesser degree of nonlinearity. 



312 G.A. Bocharou, A.A. Romanyukha /Applied Numerical Mathematics I5 (1994) 307-326 

This results from a superposition of the quadratic function, the function F of the ratios of 
predictions and observations and the solution function y(t, a), characterized by the exponen- 
tial nonlinearities in f and LY. Simple reasoning (in the scalar case> may be used to prove that if 
the underlying ODE is linear then, selecting the LS criterion with the logarithmic function of 
the ratios (3.31, one gets a linear LS problem. 

It follows in turn that to treat efficiently the parameter fitting problem for nonlinear models 
the overall observation interval should be decomposed into a number of subintervals with clear 
exponential kinetics of the underlying processes. 

3.2. Sequential parameter identification procedure 

The formulate the parameter identification problem as follows. In the DDE model (2.1) 
some or all parameters appear to have poor initial estimates. Given the observed data we try to 
refine the parameters in (2.1) so that the residual LS fit-to-data criterion is minimized (the 
dimensions of the vectors and vector-valued functions are marked by the right upper indices): 

Find 

min @(a”), AL <(Y’ < BL (3.4) 
determined by the following model (the single-delay case is examined for notational 
simplicity): 

dy;;t) =f(&, y”(t), y”(t-T)), t,<tq+K 

Yyq = cp”(t>, t,-r<ttt(). 

The rather large dimension, complexity and nonlinearity of the DDE systems under consid- 
eration, the nonmonotonic initial functions @(t) of the initial value problems and the poor 
initial estimates for some of the model parameters (rk make it impossible to obtain a 
satisfactory fit of the model to the data just by searching for a minimum of an objective 
function @(aLI calculated over the full observation interval t, G t < t,. Besides, in this case it 
is difficult to select the optimized parameters and to coordinate the biological meaning of an 
identified parameter with the sensitivity of the objective function to this parameter. Indeed, 
some parameters appear to be active over a limited time interval as compared to the time scale 
of the overall process. (It is similar to stiff and nonstiff parameters in chemical kinetics: the first 
are active in the boundary layer and the second are active outside it [1,58].) We have 
decomposed the total optimization problem, using the idea of recursive parameter estimation 
[56], within the full observation interval 7’i M = (t: t 1 G t G tM}, into a sequence of manageable 
optimization subproblems in consecutive s&intervals Ti,Z, T1,3,. . . , T, M to reduce the computa- 
tional complexity of optimization problem (3.4). The decomposition had its bases in the 
observation data and the knowledge of biological processes which are active during a particular 
time subinterval. This makes it possible to associate the characteristics of observed data within 
the subintervals with the operation of a smaller number of processes from the whole set 
described by the models to make a grounded choice of optimized parameters. Information on 
the “natural history” for a particular infection [15,38] provides a natural biological guide for 
this subdivision and the choice of parameters to be fitted. It should be noted that fitting of a 
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model to data on larger time intervals may deteriorate the fitting quality for some variables as 
compared to smaller time intervals. Therefore, the coordination of fitting subproblems is 
required, which is performed for some of the state variables by introducing some linear 
relations to couple a number of model parameters. 

Another important aspect in the solution of the optimization problem (3.4) is the initial 
localization of the parameter vector CX,, ’ in rW$ with respect to the global minimum point(s). The 
classical minimization algorithms ensure local convergence for smooth convex functions, and 
the optimal solution is generally sensitive to a starting point in parameter space. Therefore, a 
computationally cheap procedure for improving the initial parameter estimates is to be involved 
in the solution process of problem (3.4). Short-cut iterative methods suggested in chemical 
kinetics modelling [26] and developed in [27,60,66] belong to this class of techniques. Now we 
formulate the algorithmic framework developed for solving the identification problem (3.4). 

Algorithm I. 
Step 1. Improve the starting estimates of the model parameters a; by adjusting the model to 

functions approximating the observed data globally on [tr, tM]. 

Step 2. Select the subinterval [tl, t,] and the subset (~‘“1 of components of the parameter 
vector aL E IwL, which is to be fitted to data: a’?* E l&m c IwL. 

Step 3. Find numerically a solution LY .+‘,I to the linearly constrained minimization problem 

a* ‘m = argamriD@(a*‘m), 

where @,(cr *‘m> = F,[~~l,,ml(~‘m), Y] is th e objective function for given observation data Y on 
the interval [tl, t,] and for the model solution 

~[I,,rJ(N~m) = [ yyt, a”m), . . .) yyt, Lyim)lT, t, < t < t,>*. 

Step 4. Update the model’s parameter vector: 

CX;+r = [c&/m, (Y*‘m]. 

Return to Step 2 until m <M. 

Let us consider the implementation of these steps in more detail. 

3.3. Adjusting the model to functions interpolating the data 

Simplified (short-cut) methods for the solution of inverse problems are based on globally 
adjusting over the observation interval any functions approximating continuously in time the 
observed data by a particular model written in the form of a differential equations system. 
Therefore, instead of a nonlinear programming problem for an objective function determined 
by an IVP for the differential system, a simpler LS problem is formulated for a linear or a 
non-linear algebraic system with respect to unknown parameters. Two extreme cases are to be 
analyzed. 

3.3.1. Sufficient data case 
An algorithm corresponding to the short-cut method may be formulated in the case of delay 

differential systems as follows. Let CX,” be an initial guess for the parameter value, which is to 
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be refined; let Y= {((y$Jsj}, j =Ji,, JJ, i = l,.. ., N} be an observed data for each of the N 
model state variables y”‘(t), i = 1,. . . , N, at times {tl)j=J,l,J,z’ t, <t, < tJ,, < tJiZ <t,,,, ,< t, + T, 

with m, = <Ji, - Ji,) being the number of observations available for the ith variable. 

Algorithm II. 
Step 1. Transform the initial value problem for a system of DDEs into an equivalent integral 

system of equations: 

(3.5) 

Step 2. Interpolate the observed data pairs for each of the model state variables 

using an appropriate spline function S$)(t> which is to be selected for particular aims. These 
aims depend on the character of available data; smoothing (when all m, are large), least 
squares approximation (all m, are large), monotonic interpolation by quasi-Hermite polynomi- 
als (mi are small), etc. In this way the N-dimensional vector spline function ,SF(t) is generated. 
We consider the s:(t) as a prototype (quasi-solution) of these model solution yN(t>, which 
corresponds to the unknown best-fit parameter values. The model parameter estimates may be 
improved using this quasi-solution. 

Step 3. Substitute the quasi-solution s;(t) for yN(t9> and project the system of integral 
equations (3.5) on given set of observation times, 

kkjk=k,,...,k,: tk, = my (b,,) 7 tk2 = yin (‘J)} ) 
‘2 

to obtain a nonlinear algebraic system of equations with respect to unknown parameters (Ye: 

!Psy(s,(aL) = AYJ, 

where the vectors AYJ and I~,~cx’) have the components 

(AY”)j =Y$!sk -Yzzsk,r 

i= 1, 2,..., N, k=k,, k,+l,..., k,, j=(k-l)x(N+i), .7=max(j). 

Step 4. Find the solution to the overdetermined system of algebraic equations with respect to 
CXL: CX~ = w,;‘(AYJ). 

If parameters aL appear linearly in the right-hand side of the differential system, then we 
obtain a linear overdetermined system of algebraic equations with respect to (Ye (or to some 
subset (Y’, 1 <L, depending on the number of observations and the value of L). It may be 
solved easily by a number of algorithms for linear LS problems [35] to get the best LS solution 
cyL = (qc* L)+~ AY”, where (PC* L)+ is a generalized inverse matrix. 

The corresponding code, suitable for fitting the DDE models to data, makes use of the 
following algorithms of the IMSL package [28]: the one-dimensional quasi-cubic interpolation 
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based on Hermite polynomials IQH SCU (Step 2), the one-dimensional adaptive quadrature 
procedure DCADRE (Steps 1 and 3) and the LINPACK algorithm for the linear LS problems 
(Step 4). This makes it possible to refine the crude estimates for some components of the 
parameter vector a$ providing that there are enough observation data to construct the spline 
functions s;(t) for all components of the state vector y(‘)(t), i = 1,. . . , N. 

3.3.2. Deficient data case 
The typical situation in mathematical modelling of infectious diseases is when the available 

observation data allow one to construct the spline function S;(t) only for a number (n) of the 
N model state variables (n <N). In this case, the model system of the DDEs is decomposed 
into two subsystems with dimensions n and N - n. The second subsystem is used to generate 
the “quasi-solution” for data-deficient variables. To this end, the components of the spline 
function S;(t) are substituted instead for y"(t) in the following reduced system of DDEs: 

dyN-“(t) 

dt 
=f(c&-n, S;(t), y’+“(t), S;(t -T), yN-n(t -+ to” <t <t; + T, 

&-” E &N-R c [WL, y”-“(t) = q”-“(t), t,* - 7 < t <t;. 

The interval [to*, to* + T*] is chosen according to available observations at times (t,: k = 

k 1,. . . , k,). Integrating numerically the IVP for the reduced DDE system we obtain a solution, 
which is used instead of the unavailable (N - n) continuous functions Sr-‘Yt>. The N-dimen- 
sional quasi-solution vector-function is obtained then by combining the data-generated quasi- 
solution and the model-generated one: S;,(t) = [SF(t), Sf-‘Yt)lT. Now, using the Sgy(t >, the 
initial estimates for the model parameter ay,” may be refined by applying Steps 3 and 4 of 
algorithm II. In this way the model DDEs are used to fill in the data set and the applicability of 
Himmelblau’s method is extended. 

It must be noted that it is quite common in chemical kinetics modelling for the parameters 
used in a full set of equations to be obtained from reduced data on subsystems. A sequential 
equation procedure based on the singular perturbation approach to estimate the nonstiff and 
stiff parameters in chemical reaction systems [58] gives an example of the attempt to reduce the 
number of equations which are used to generate good initial parameter estimates for subse- 
quent refinement. 

Spline functions approximating continuously an observed data for the n state variables, 
SF(t), give a similar opportunity for the simplification of the parameter refinement process. 
Indeed, the vector-function S:(t), or some of its components may be used to reduce the 
dimension of the model differential system by excluding (via direct substitution) those equa- 
tions, which do not contain the parameters varied to solve a particular minimization problem in 
Step 3 of Algorithm I, i.e., ol, I< L. This leads to the following problem of reduced complexity: 

Find 

minF( yNed(cr’), YNed), A’ G (x’ G B’, 

dyN-d(t) 

dt 
=fN-+d, S;(t), ~~-~(t), S;(t - T)yN-d(t - T)), t, < t <to + T, 

yN-d(t)=pN-d(t), t,-T<ttt(). 



316 G.A. Bocharoc, A.A. Romanyukha /Applied Numerical Mathematics 15 (1994) 307-326 

This technique is helpful in decreasing the sensitivity of partial optimization subproblems 
with respect to the dimension of the model. The particular choice of the state vector 
components yCi)(t) is to be fixed and replaced by the data-derived spline functions depending 
on the particular fitting subproblem to be solved. 

3.4. Numerical solution of the function minimization problem 

It has been noted above that the problem of identifying model parameters was reduced to a 
sequence of minimization subproblems for the nonlinear function @((Y’-) subject to simple 
two-sided bound constraints: 

C& = arg min @(L&), A’, G (Y’, G B/m. (3.6) 
It should be pointed out that the two-sided inequality constraints improve the convergence of 
minimization algorithms, because they allow the scaling of variables to pass from primary units 
of parameters to new ones which are of the same order and, therefore, suitable from a 
computational point of view [24]. 

A search for a minimum was performed by a two-step procedure: (1) searching for a crude 
estimate of the minimum point by a simplex method and (2) precise localization of the 
minimum by a quasi-Newton (QN) method. 

Smoothness properties of the objective function @(c&) are the major characteristic required 
to decide whether higher-order optimization methods can be applied. Using the results on the 
differentiability of the solutions of IVP DDEs with respect to parameters, it can be shown that 
for the twice continuously differentiable right-hand side function, f<t, (Y, y(t), y(t - T)), with 
respect to all arguments and for strongly positive initial conditions to objective function, @(a), 
given by (3.2) or (3.3) and determined by an IVP for DDEs is also twice continuously 
differentiable in Rt. Therefore, the gradient g(cr) and the Hessian matrix H(a) exist and are 
continuous in R$. Two algorithms-the simplex method and quasi-Newton method-realized 
in the MINUIT system [31], as well as the QN method for nonlinear function minimization with 
the specified accuracy of function evaluation, ZXMIN [28], have been used to solve the 
minimization problem (3.6). The MINUIT package provides a comfortable environment for 
function minimization, even though it requires the objective function to be calculated with the 
full accuracy. If the two-sided linear constraints were imposed on parameters, then the 
following transformation was used to make the optimization problem unconstrained; y(l) = 
arcsin(2(&‘) -A(‘))/( B(‘) -A(‘)) - 1). 

The simplex method is a derivative-free heuristic method, which uses only the information of 
the minimized function values and is less sensitive to the errors in the function evaluations. It 
was started first for obtaining better estimates of parameter values followed by the launching of 
the more efficient QN method. The QN method is considered to be very efficient for 
unconstrained minimization of nonlinear functions, when the dimension of the parameter space 
is not too high. It requires, however, more precise evaluation of the objective function. For 
evaluation of the gradients and the hessian matrix of the objective function, a finite-difference 
approximation was used. In this case, the smoothness of the numerical solution of the IVP for 
DDEs, yh(t, a), which is used for evaluations of @((u) with respect to LY becomes a delicate 
problem. Indeed, it determines the differentiability of @,,(Q~) and, hence, the precision of the 
approximations gh(Q) and HJLY) and, consequently, the behavior of the minimization code. 
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The most effective numerical methods for systems of differential equations are the adaptive 
variable step/variable order algorithms. However their smoothness properties are poor, be- 
cause two slightly different values of any parameter of the IVP can generate different 
sequences of integration steps and approximation orders, resulting in small jumps, about 
O(tolerance), of solution values [5,23]. Generally, the discontinuities arise as the change of a 
parameter causes the code to employ a different execution path. As a result, the numerical 
solution y,(t, a) is a piecewise smooth function of the parameter cy with frequent jump 
discontinuities. There are a number of approaches to handle the smoothness problem of the 
numerical solution [_5,23,24,39,47]: using an equally spaced integration mesh, or using a fixed 
mesh/order sequence; integration of a set of variational equations; simultaneous integration of 
both the perturbed and basic system of equations; the more accurate solution of the IVP to 
decrease the level of noise in the estimation of the objective function, etc. We used the last of 
these approaches because it is easier to implement for multiparameter models. 

It was shown in [23,24] that to estimate the partial derivatives 

asy(t, a)/&K~, s = 1,2, 

of the IVP solution with the precision O(6) using the finite-difference interval ACY, the 
corresponding IVP should be solved numerically with tolerance O((Acr>‘8). Therefore, an 
adaptive and robust code for the numerical integration of stiff IVP DDEs within a wide range 
of tolerances is required. The description of our approach to the numerical solution of the IVP 
for stiff DDEs is given below. 

3.5. Algorithm for solving numerically the stiff II/p for DDEs 

A conventional approach to numerical integration of IVP DDEs is based on adapting the 
standard techniques developed for ODES. Two major concerns are the inherent derivative 
jump discontinuities of the analytical solution [45,46,52,64] and the need for continuous 
approximation of delayed variables by an interpolation method which should be consistent with 
an ODE-related discretization scheme being adapted [3,25,29,45,63]. A variety of numerical 
methods have been proposed for solving the IVP for DDEs, mainly for nonstiff problems. The 
first widely available code for finite-difference equations was the DMRODE [43,44]; then, 
experimental solvers based on Runge-Kutta methods, including the DELAY-2, STRIDE, etc., 
have been proposed [3,11,25,48-50,591. The multistep integrators for DDEs based on the 
composite methods, as well as the Adams or BDFs, were developed in [9,32,55,62]. The recent 
contribution in this field is the general-purpose Adams-formulas-based code DELSOL devel- 
oped according to NAG standards [63]. 

For treating a stiff IVP for DDEs, an adaptation of the A-, A(a)- or stiffly stable methods is 
required. An IVP for DDEs is referred to as stiff if, for a given tolerance, the stepsize taken by 
a numerical method is restricted by stability rather than accuracy requirements [9,30,62]. There 
are a number of references to codes suitable for solving stiff DDEs [9,32,55]; however the codes 
themselves are not readily available [19]. 

For numerical integration, in a wide range of tolerances, of a stiff IVP for DDEs having 
several constant delays we developed an adaptive code, the DIFSUB-DDE [12,13], using Gear’s 
DIFSUB [21,22]. The Nordsieck history arrays are utilized as natural interpolating polynomials, 
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being locally consistent with the underlying ODE’s method, for continuous approximation of 
the delayed variables, To approximate delayed variables in the vicinity of the mesh point t,, 
Nordsieck’s p,th-order polynomial is applied as follows: 

~(t -T) = C(a) *JJ, + O((a . h, > a+*) + C(a) ‘F,, YER, (t-T)E(tn-l, tn), 

with 

,,,.,p) T 

P,! 1 
C(a) = diag[ 1, (Y, . . . , apn], a= 

t, -I,_, ’ 
Ial Cl. 

Because only constant delays are considered, the derivative discontinuities points, up to the 
order (p + 11, are calculated in advance and are included amongst the integration meshpoints. 
A stepsize/order selection strategy employed in the DIFSUB code is kept unmodified except 
for an additional control of stepsize and order to pass smoothly trough the jump points. The 
original DIFSUB’s error control criterion was modified to be based on a relative error criterion 
above a certain threshold. Integration stepsizes are not limited explicitly by particular delay 
values within those time intervals in which the corresponding analytical solution is sufficiently 
smooth. Test calculations are given in [13]. 

4. Applications in immune response modelling 

The presented approach to treating the parameter identification problem was elaborated in 
applications of mathematical models to quantitative description of immune response in a 
number of infectious diseases: acute hepatitis B virus infection [38], uncomplicated influenza A 
virus infection [15], acute pneumonia [34] and T cell proliferation [57]. 

We present here an example: we apply the methods developed in the previous section to the 
identification of several parameters in a mathematical model of antiviral immune response by 
the data on the kinetics of acute hepatitis B. The following notation is used for the state 
variables of the model; free virus population, V&t >; antigen-presenting cell population, M,(t); 
helper Thl cell population, H,(t); helper Th2 cell population, HB(t); cytotoxic T cell popula- 
tion, E(t); B cell population, B(t); plasma cell population, P(t); antibody population, F(t); 
virus-infected sensitive tissue cell population, CJ t); destroyed sensitive tissue cells, m(t). The 
interactions in which these species participate are represented by the model, which is a system 
of ten nonlinear DDEs with several constant delays: 

dVr/dt = vCv+ nb,,C,E - yVFVfF - yVMVf - y&‘,(C* - C, - m), 

dC,/dt =aV,(C* - C,-m) - b,,CvE - b,C,, 

dm/dt = b,,C,E + b,C,- cy,,,m, 

l(m) = 1 -m/C*, 
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d&/d t = y,,,_JV* V, - aMMv, 

dH,/dt =b,E[~(m)p~M,(t--~)H,(t -T;)-M&] 

- b,H”MvHEE + a;(H; -HE), 

dH,/dt =bf:[[(m)pf;M,(t +)H,(t -T;) -i&H,] 

- b,H”MvHBB + c&H; - HB), 

dE/dt=b,E[@z)p,M,(t-+)HE(t-~E)E(t--7E) -MVHEE] 

- b,,C,E + c+(E* -E), 

dB/dt=b,B[c$+n)p,M,(t-T,)H,(t-T,)B(t-T,)-M,H,B] +aB(B*-B), 

dP/dt = b,PS(m)p,M,(t - +)He(t - +)B(t -TV) + ap(P* -P), 

dF/dt = pFP - yFVFVf - cu,F. 

To describe the onset and development of an infectious disease in a healthy organism 
following virus exposure the following initial conditions are specified: 

b(O) = vf”, M,(O) =M;, H,(O) = Hz, H,(O) = Hi, E(0) = E*, 

B(0) = B*, P(0) = P”, F(0) = pF. P*&, C,(O) = 0, m(0) = 0, 

M,(t)H,(t) = 0, for -7: < t < 0, 

JG(t)H,(t) = 0, for -7i<t<O, 

M,(t)H,(t)E(t) = 0 for -TB < t G 0, 

M,(t)H,(t)B(t) = 0, for -max(TB, TV) < t < 0. 

In this type of immune response modelling, experimental data is never taken on all variables 
of interests in a single set of experiments. Available sets of data, partial and incomplete, are 

Table 1 
Data of the Generalized Picture of acute hepatitis B virus infection 

T Vf W/ml) C, m Mv HE HS E B P 
c* - 

C* F H* 
- - - 

t. H,* E* B* P* 

0 1 -106 0 0 0 1 1 1 1 1 
60 0.5.10” _ - _ - - - - 

70 0.2.109 - - - - - - - 

80 0.8. lo9 0.02 - - - _ - _ - 

90 - 
0.15 

0.008 0.1 - - - - - 

100 0.5~10’0 0.06 - 10 10 2 1.5 - 

105 - 0.5 100 100 20 15 10 

110 0.6-10” 0.04 0.2 _ lo3 10’ 2.104 0.15.105 lo4 
120 10 - 0.09 _ _ - _ _ - 

130 - - 0.02 _ - - - - 
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Table 2 
The set of the model parameters allowing to simulate quantitatively the kinetics of acute hepatitis B virus infection 
(“d” denotes day) 

Parameter Value Parameter Value [Initial estimate] 

lo- ls M 
lo-” M 
lo-r9 M 
10-r’ M 
10-l’ M 
4.3 x 1O-22 M 
8.3 x lo- l4 M 
0.5 x lo- ‘* M 
1.2 d-’ 
1.0 d-’ 
1.0 d-’ 
0.4 d-’ 
0.1 d-’ 
0.4 d-l 
0.043 d - ’ 
0.6 d 
0.6 d 
2.0 d 
2.0 d 
3.0 d 
2 
1.6x 10” M-Id-’ 
2.9x10-i6 M 

PE, PB 
PP 

PF 

bE 
b j 
bE 
bpB 
b’ P 
YMV 

YFV 

cr 

b CE 

bm 

ffm 

V 

YVC 

YVM 

YVF 

b”E 
b% 

% 
PH 

n 

16 
3 
1.7X 10’ molec.(cell *d)-’ 
2.7x lOI M-‘d-’ 
2.7x 1016 M-‘d-l 
5.3x 1O33 M-2d-’ 
8.0x 1O32 M-‘d-i 
17x 103’ M-‘d-t 
9:4x lo9 M-Id-’ 
8.6~10” M-‘d-’ 
2.3x109 M-id-’ 
66~10’~ M-‘d-’ 
0:OSZ d - i 
0.15 d-’ 
83 d-’ 
2.5 x 10’ M-‘d-’ 
0.4 d-’ 
3x 10” M-‘d-’ 
5.3x 1O27 M-*d-l 
8.0x 102s M-2d-1 
4 
5 

[lo’5] 
[1o’5l 
[ 10321 
[lo=] 
[ 10321 

msl 

[2.5x 10’1 
[1.6x 1015] 
[O.Oll 
[0.12] 
[6x 103] 

[2x lo41 

Fig. 1. The flowchart of sequential model parameter identification based on the “natural history” of an infection. 

i-mv,b~,bjj>! . . . . . . . . . . . . . . . . . . . . . -.. 
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specially organized to represent the kinetics of an infection under modelling in the state space 
of the model. Table 1 lists the data points representing the typical kinetics (Generalized 
Picture) of immune response in hepatitis B virus infection. 

10 2 l-5 /i _--- -- ? 
10-J I ’ .- 

0 20 40 66 80 100 120 140 160 180 200 

107 

1 
PP 

10 3 

WY-’ 

0 20 40 60 80 100 120 140 160 180 iO0 

Fig. 2. Model solution for the initial parameter guess and the data on kinetics of the acute hepatitis B virus infection. 
The uncertainty boundaries for the data points are marked by the dotted line. 
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Parameters of the model are listed in Table 2. They span thirty orders of magnitude. Some of 
them are taken directly from experiments, the others are derived from theory (see [14,37] for 
details). The last estimates can be incorrect by orders of magnitude and need to be refined by 
fitting to the data. 

10 5 H&e* 
J ! 

10 1’ GE* 

10 5 I. 

1 
-- _--- 

,()-l 
0 20 40 60 80 100 120 140 16x00 

0 20 40 60 80 100 120 140 160 180 200 

0 20-40 60 80 100 120 140 160 180 200 

107 F/P 

10 2 

10-J w 
days 

0 20 40 60 60 100 120 140 160 180 200 

.4 
T 

m/c* 

0 20 40 60 80 100 120 140 160 180 200 

Fig. 3. Model solution fitted to the observed data on kinetics of the acute hepatitis B virus infection. The uncertainty 
boundaries for the data points are marked by the dotted line. 
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In this particular example, twelve parameters characterizing the rates of immune precesses 
in lymph nodes and viral spread in liver, were identified. A detailed fitting protocol is given in 
[38], and the sketch of the sequential parameter identification approach is displayed on Fig. 1. 
The identified parameters in Table 2 are distinguished by their initial estimates given in square 
brackets. The solution of the antiviral immune response model for the initial guess parameter 
values is pictured in Fig. 2. The fitted-to-data parameters give the solution shown in Fig. 3. 

Calculations were performed in double precision on HP-1000. The IVP for DDEs was solved 
with a relative tolerance of about lop8 by the stiff version of the DIFSUB-DDE. As large as 
3000 times the IVP was solved to identify several parameters, giving the quality of fit shown on 
Fig. 3. Simplex and quasi-Newton procedures implemented in the MINUIT package [31] were 
utilized for numerical minimization of an objective function over the sequential subintervals. 

Another example of parameter identification for an immune response to influenza A virus 
infection, which is a faster process as compared to hepatitis B, is given in [14,15]. A 
combination of crude but global fitting methods (Algorithm II> and locally convergent tech- 
niques was required to identify ten model parameters. 

The presented strategy of treating the parameter identification problem for nonlinear 
multiparameter DDE models gives, in a strict sense, nonunique parameter estimates or may 
involve ill-conditioned stages. Therefore, parameter identification results need further biologi- 
cal validation [38,57]. Nevertheless, this approach allows the allocation of the iterative process 
of model fitting between the crude but computationally cheap “global fitting” method and 
exact but computationally expensive “local” optimization methods to be made more effectively. 
Usually, a stochastic sensitivity analysis was performed to obtained a measure of confidence 
with respect to certain characteristics of model solutions for the identified parameters [l&38]. 
The ill-conditioning results from the character of the data are available for the processes under 
study: they are valuable from a biological viewpoint and poor from a formal or statistical point 
of view. We have addressed the problem of homogeneous data requirement to reliably estimate 
the model parameters in [14,38]. 

5. Concluding remarks 

Heavy computational work is inherent to parameter identification problems for stiff nonlin- 
ear DDEs with constant delays arising in immune response modelling. They could be effectively 
solved by carefully developing the tools and experience from another branches of computa- 
tional mathematics. In turn, the methodology elaborated in treating complex immunological 
processes may be useful for other problems in mathematical biology, as well as for these studies 
in chemical kinetics which use the delay effects and the DDEs for representing the dynamics of 
reactions [ 191. 
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