
Superfast inversion of two-level Toeplitz

matrices using Newton iteration and

tensor-displacement structure

To blessed memory of Georg Heinig

Vadim Olshevsky,

University of Connecticut

Ivan Oseledets, Eugene Tyrtyshnikov 1

Institute of Numerical Mathematics, Russian Academy of Sciences,
Gubkina Street, 8, Moscow 119991

Abstract

A fast approximate inversion algorithm is proposed for two-level Toeplitz matrices
(block Toeplitz matrices with Toeplitz blocks). It applies to matrices that can be
sufficiently accurately approximated by matrices of low Kronecker rank and involves
a new class of tensor-displacement-rank structured (TDS) matrices. The complexity
depends on the prescribed accuracy and typically is o(n) for matrices of order n.

1 Introduction

Dense matrices arise, for example, in numerical solution of multidimen-
sional integral equations, their approximate inverses are often of interest either
themselves or as preconditioners in iterative methods, and the size of matri-
ces occurs to be about a few hundred of thousands or even millions. These

Email addresses: olshevsky@math.uconn.edu (Vadim Olshevsky),
ivan@bach.inm.ras.ru (Ivan Oseledets), tee@inm.ras.ru (Eugene
Tyrtyshnikov).
1 Supported by the Russian Fund of Basic Research (grant 05-01-00721) and a
Priority Research Grant of the Department of Mathematical Sciences of the Russian
Academy of Sciences.

Preprint submitted to Elsevier Science 20 October 2006

cases are not very easy to handle. The standard Gaussian elimination has the
O(n3) complexity and is unacceptable. Even a method with O(n2) complexity
(an obvious lower bound) is still too slow for matrices on this scale. Luckily,
in many cases the matrices possess some structure suggesting a way to make
them tractable.

If A is a nonsingular Toeplitz matrix (aij = ai−j), then all the entries of A−1

can be computed in O(n2) operations [13]. It is ever more important that A−1

can be expressed by the Gohberg–Semencul formula [3] through some O(n)
parameters so that it can be multiplied by a vector in O(n log n) operations.
A tremendous impact of this formula on the field of structured matrices and
numerical algorithms was systematically presented in the remarkable book by
G. Heinig and K. Rost [5]. A direct but nontrivial generalization to block
Toeplitz matrices is the Gohberg–Heinig formula [2].

In this paper we consider two-level Toeplitz matrices, which are block
Toeplitz matrices with Toeplitz blocks. If p is simultaneously the block size
and the size of blocks, then n = p2 and such a matrix is defined by O(n)
parameters. In this case the Gohberg–Heinig formula contains as many as
O(p3) = O(n3/2) parameters, which is viewed as too many, when compared
with O(n). A better approach can be one that we outlined and started to
develop in [9]. However, it applies only to those two-level Toeplitz matrices that
are of low tensor (Kronecker) rank. As a nice consequence of this combination
of Toeplitz and tensor structure, such matrices are determined by O(

√
n)

parameters, the same is expected from their approximate inverse matrices and
may (and does, as we show) result in the o(n) complexity. Luckily again, this
special subclass of two-level Toeplitz matrices seems to cover all practically
interesting matrices.

We will make use of the following iterative method attributed to Hotelling
[6] and Schulz [12]:

Xi = 2Xi−1 − Xi−1AXi−1, i = 0, 1, . . . , (1)

where X0 is some initial approximation to A−1. Since I−AXi = (I−AXi−1)
2,

the iterations (1) converge quadratically, provided that ||I − AX0|| < 1. This
method is a special form of the Newton method for nonlinear equations and
referred to as Newton iteration. It has some nice properties such as numeri-
cal stability and ease for parallel computations. All the same, each iteration
requires two matrix multiplications, which is expensive for general matrices.

In order to perform the Newton iteration in a fast way, we need the fol-
lowing two ingredients:

• A fast matrix-by-matrix procedure;
• A method to preserve structure.

2

The first means that Xk and A must hold on some structure to facilitate
the computation of matrix products. However, if the Xk do not belong to
a commutative algebra (circulants, diagonal matrices etc), every next iterate
Xk+1 might be “less structured”. As a consequence, the matrix-by-matrix
complexity grows with every iteration. In order to slow down this growth, we
should preserve the structure by “brute force” — using a method to substitute
computed iterates with some approximations by “better structured matrices”.
We introduce a truncation operator R(X) acting on n × n matrices as kind
of a nonlinear projector. Then, the Newton iteration with approximations
(truncations) reads

Xi = R(2Xi−1 − Xi−1AXi−1). i = 0, 1, (2)

The Newton iteration was successfully applied to matrices with the displace-
ment structure [1,11] and matrices represented as a sum of tensor (Kronecker)
products [10]. In the case of low-displacement-rank matrices, V. Pan [11]
proved that the quadratic convergence is maintained even after truncations.
Then, it was discovered in [10] that the latter property holds true for many
useful structures rather than one considered in [11]. A pretty general formu-
lation stemming from [10] is given in [4].

Theorem 1.1 Suppose that ||(R(X)−A−1|| ≤ M ||X −A−1|| for all X. Then
for any initial guess X0 sufficiently close to A−1, the truncated Newton iterates
(2) converge quadratically:

||A−1 − Xk|| ≤ (1 + M) ||A||||A−1 − Xk−1||2, k = 1, 2,

Now, with this encouraging result, we are going to propose an algorithm
for computing an approximate inverse to a given two-level Toeplitz matrix.
Our main idea is to combine two efficient matrix representations using the low-
Kronecker-rank and low-displacement-rank properties. Thus, we introduce a
new matrix format — the TDS format (tensor displacement structure), and
therefore assume that A and A−1 should be in the TDS format, at least approx-
imately. A rigorous theory behind this assumption is still lacking; however, all
of our numerical experiments on various matrices show that the complexity of
the proposed algorithm is O(

√
n log n).

The paper is organized as follows.

In section 1 we define the TDS format and the transformation of a two-level
Toeplitz matrix into this format. In Section 2 we describe all the basic matrix
operations in the TDS format and propose a fast recompression procedure (in
other words, define the operator R).

In Section 3 we discuss the Newton iteration with approximations and its
modification which speeds up the computations dramatically. Also, we suggest

3

a method for efficient selection of the initial guess X0. In Section 4 we present
some numerical experiments.

2 The TDS format

Below we recall a general notation of multilevel matrices introduced in
[14] and the displacement rank constructions presented in [5] as a far-reaching
development of the definition introduced first in [7].

Definition 2.1 A matrix T is considered as two-level with the size-vector
(n1, n2) if it contains n1 × n1 blocks and each block is of size n2 × n2. Such a
matrix is called two-level Toeplitz matrix if

T = [a(i − j)], (3)

where i = (i1, i2) and j = (j1, j2) define the place of the element in the two-
level matrix: (i1, j1) specifies the block position and (i2, j2) does the element
location inside the block.

Definition 2.2 The operator L is said to be of Sylvester type if

L(M) = ∇A,B(M) = AM − MB (4)

and of Stein type if

L(M) = �A,B(M) = M − AMB. (5)

The value α ≡ rank(L(M)) is called the displacement rank of M . Any n × α
matrices G and H from the skeleton decomposition

L(M) = GH�

are called the generators of M . A matrix defined by its generators is referred
to as a displacement-structured matrix. By the very definition, displacement
ranks and generators of a matrix depend on the choice of the displacement
operator L.

We will use the Stein type operators. The Toeplitz matrices can be asso-
ciated with the displacement operators Za, Z

�
b , where

Za = Z + ae0e
�
n−1, Zb = Z + be0e

�
n−1,

4

Z is a unit lower shift matrix and a, b are some scalars. Let �Za,Z�
b
(M) = GH�

and G = [g1, ..., gα], H = [h1, ..., hα]. Then

(1 − ab)M =
α∑

j=1

Za(gj)Z
�
b (hj). (6)

Here, Za(g) and Zb(h) are defined as follows. Let c be a scalar and v a vector;
then Zc(v) is a Toeplitz matrix with the entries

(Zc(v))ij =

⎧⎪⎨
⎪⎩

vi−j , i − j ≥ 0,

c vn+i−j, i − j < 0.

If M is nonsingular, then M−1 can be expressed by a formula of the same
type as (6), considered in this case as one of possible generalizations of the
Gohberg–Semencul formula to Toeplitz-like matrices. Both in the latter for-
mula and in (6), a matrix is the sum of special Toeplitz matrices belonging to
some algebras; however, the Gohberg–Semencul formula and (6) use different
algebras. If M is a Toeplitz matrix then α ≤ 2.

Definition 2.3 A matrix A is said to be in the tensor format of the tensor
rank r, if

A =
r∑

k=1

A1
k ⊗ A2

k. (7)

Given a two-level matrix A, we can try to approximate it by a low-tensor-
rank matrix. Let

Vn(A) = [b(i1,j1)(i2,j2)]

be a two-level matrix with the size-vectors (n1, n1) and (n2, n2), and define it
by the rule

b(i1,j1)(i2,j2) = a(i1,i2)(j1,j2).

Then, as is readily seen, the tensor rank of A is equal to the rank of Vn(A).
Moreover,

||A − Ar||F = ||Vn(A) − Vn(Ar)||F ,

which reduces the problem of optimal tensor approximation to the problem
of optimal lower-rank approximation. The latter can be solved using the SVD
or the Lanzos bidiagonalization algorithm. However, in the case of two-level
Toeplitz matrices we can solve this problem much easier [8] (for more general
constructions see [9]).

Given T = [a(i − j)], we compose a smaller matrix

W (A) = [aμν], 1 − n1 ≤ μ ≤ n1 − 1, 1 − n2 ≤ ν ≤ n2 − 1, (8)

5

construct an optimal rank-r approximation

W (A) ≈
r∑

k=1

ukv
�
k ,

Uk = [uk
i1−j1

], 0 ≤ i1, j1 ≤ n1 − 1,

V k = [vk
i2−j2

], 0 ≤ i2, j2 ≤ n2 − 1,

and finish with the tensor approximation of the form

T ≈ Tr =
r∑

k=1

Uk ⊗ V k. (9)

It is proved that this is an optimal tensor-rank-r approximation to T in the
Frobenius norm. The computational cost is that of finding a low-rank approxi-
mation to the matrix of size (2n1−1)×(2n2−1). Remarkably, the tensor factors
are themselves Toeplitz matrices. A crucial parameter defining the complexity
is the tensor rank r. It depends on the prescribed approximation accuracy and
is directly related to the properties of the symbol (generating function) of T .
Some upper estimates on r were proposed in [9] for asymptotically smooth
symbols.

It is proved in [9] that a two-level Toeplitz matrix with an approximately
separable symbols can be approximated by a sum of tensor products of Toeplitz
matrices. Now we embed this format into a more general one which suits better
to approximate the corresponding inverse matrices.

Definition 2.4 A two-level matrix A is said to be in the TDS (tensor-displacement
structure) format if it is in the tensor format (7) with each factor being a
displacement-structured matrix.

Let r be the tensor rank and s the maximal displacement rank of the
factors. Obviously, the TDS format requires a storage of O(

√
nrs) cells.

3 Matrix arithmetic in the TDS format

3.1 Basic operations in the displacement format

Consider matrices A and B of Toeplitz displacement rank α and β. Then
it is is well known that

• a matrix-by-vector product Ax can be computed in O(αn logn) operations;
• a matrix-by-matrix product AB can be computed in O(αβn logn) opera-

tions, with the displacement rank of AB increasing at most to α + β.

6

3.2 Basic operations in the tensor format

If two matrices M1 and M2 are in the tensor format

M1 =
r1∑

i=1

A1
i ⊗ B1

i , M2 =
r2∑

i=1

A2
i ⊗ B2

i ,

then the product

M1M2 =
r1∑

i=1

r2∑
j=1

(A1
i A

2
j) ⊗ (B1

i B
2
j) (10)

is already in the tensor format. However, it requires a larger storage as the
tensor ranks are to be multiplied. The sum of two matrices in the tensor format
is also in some tensor format (we even should not do anything — only merge
two arrays). But again, the tensor rank grows. Thus, we should find a way
to approximate the results of matrix operations by matrices of lower tensor
rank. This task can be accomplished very efficiently through an SVD-based
procedure called recompression. Since the problem of finding a low-tensor-rank
approximation to matrix A is equivalent to the problem of finding a low-rank
approximation to Vn(A), we can expoit the following.

Given a low rank matrix B = UV �, U, V ∈ R
n×r, we can find q ≤ r and

matrices Ũ , Ṽ � ∈ R
n×q approximating A with the desired accuracy ε:

||B − Ũ Ṽ �||F ≤ ε||B||F . (11)

All we need is to find the SVD of B. Since B is already in the low-rank format,
we proceed as follows:

(1) Find the QR-decomposion of U and V : U = QuRu, V = QvRv;

(2) Find the SVD of a r × r matrix RuR
�
v : RuR

�
v = U1ΣV �

1 .

Then, B = (QuU1)Σ(QvV1) is the SVD of B. Now, take the smallest pos-
sible q so that

σ2
q+1 + ... + σ2

r ≤ ε||B||F .

When r is small, the cost of thid method is dominated by the QR-decomposition
complexity, which is O(nr2), and is linear in matrix size. But, recall that the
columns of U and V come from the reshaped tensor factors which are stored
in the displacement format (to be extracted from the generators). Does it help
to perform the recompression faster? The answer is yes, the algorithm being
described in the next subsection.

7

3.3 The TDS recompression

Let us look more closely at the recompression steps. The QR-decomposition
can be implemented through the Gramm–Schmidt orthogonalization algo-
rithm applied to the vectors u1, ..., ur. The orthogonality is defined by the
ordinary scalar product (x, y) =

∑n
k=1 xiyi. Now, instead of working with vec-

tors, we suggest to work directly with their matrix prototypes. The scalar
product for matrices is defined as the Frobenius scalar product :

(A, B)F = tr(AB∗).

Other operations required in the Gramm–Schmidt algorithm, which are mul-
tiplication by numbers and addition, can be performed directly with matrices.
Moreover, employing the displacement structure in these operations leads to
the O(

√
n log n) complexity. Thus, we should focus on fast calculation of the

Frobenius scalar product of two matrices given in the displacement formats.

Given p × p matrices A and B with displacement ranks α and β, we need
to find tr(AB∗). First, we calculate AB∗. As we know, that can be done in
O((α + β)p log p) operations and the displacement rank of the product does
not exceed α + β. It remains to calculate the trace of a Toeplitz-like matrix.
Fortunately, this can be done by a simple formula involving the generators.

Lemma 3.1 Let C be a p×p matrix and �Za,Z�
b
(C) = GHT , G = [g1, ..., gα],

H = [h1, ..., hα], where hi, gi ∈ R
p. Then

tr(C) =
1

1 − ab

α∑
r=1

p−1∑
k=0

hr
kg

r
k(p − k + abk). (12)

Proof. According to (6), the matrix C can be represented as

C =
1

1 − ab

α∑
j=1

Za(gj)Z
�
b (hj).

Therefore,

tr(C) =
1

1 − ab

α∑
j=1

tr(Za(gj)Z
�
b (hj)). (13)

Each term in the sum (13) is of the form

tr(Za(g)Z�
b (h)) =

p−1∑
i=0

(Za(g)Z�
b (h))ii =

p−1∑
i=0

p−1∑
k=0

Za(g)ikZb(h)ik =

=
p−1∑
i=0

i∑
k=0

gi−khi−k + ab
p−1∑
i=0

p−1∑
k=i+1

gp+i−khp+i−k.

8

The first summand is transformed as

p−1∑
i=0

i∑
k=0

gi−khi−k =
p−1∑
i=0

i∑
k=0

gkhk =
p−1∑
k=0

hkgk(p − k),

and, similarly, the second one is

p−1∑
i=0

p−1∑
k=i+1

gp+i−khp+i−k =
p−1∑
k=0

hkgkk.

3.4 Truncation operator

The truncation operator R(X) can be defined by setting either some
bounds on the ranks or accuracy. Fixing the ranks, we find Rρ,s(X) through
the following steps:

(1) Find the best tensor-rank-ρ approximation Xρ to X using the fast
recompression algorithm.

(2) Approximate tensor factors by some displacement-rank-s matrices.

It can be verified that such an operator satsfies the conjectures of Theorem
1.1. It follows that the Newton method with the truncation operator Rρ,s(X)
retains an important property of quadratic convergence.

However, in practice it is expedient to prescribe the accuracy and let the
rank vary. Denote the corresponding operator by Rε. Formally the steps are
the same, but the ranks are no longer constant. The first step ends with the
best low-tensor approximation to X satisfying ||X −Xr|| ≤ ε||X||, the second
step produces an approximation with the preset accuracy and smallest possible
displacement rank.

4 Newton iteration for approximate inversion of matrices

Let A be in the TDS format. If an initial approximation X0 to A−1 is in the
same format, then it can be fastly improved by the iteration (1). The residuals
Rk = I − AXk satisfy Rk+1 = R2

k, which proves the quadratic convergence of
the process provided that the spectral radius of R0 is less than 1. The initial
approximation can be always selected as

X0 = αA∗

9

with some α > 0. In this case the estimated number of the operations to
achieve accuracy ||A−1 − Xk||2/||A−1||2 ≤ ε is

log2 (c2 + 1) + log2 ln
1

ε
,

where c is the spectral condition number of matrix A. For ill-conditioned
matrices, the cost is dominated by log2 (c2 + 1).

4.1 Modified Newton iteration

On each step of the Newton method (2), we replace Xk with Rε(Xk), where
ε is the accuracy parameter. We can also use a modification [10] that works
with approximations much better. Indeed, a typical tensor rank of matrices
in our examples is about 10 ÷ 15, so each Newton step involves about 200
multiplications of Toeplitz-like matrices with the displacement ranks being
typically about 10. Following [10], we consider the following modification of
the Newton iteration:

Xk = Xk−1(2I − Xk−1), Yk = Yk−1(2I − Xk−1), k = 1, 2, . . . , (14)

where Y0 is an initial approximation to A−1 and X0 = AY0 is a nonsingular
matrix of which we require that the spectral radius of I − X0 is less than 1.
The latter implies

lim
k→∞

Xk = I,

and since it is easy to derive from (14) that

Yk+1X
−1
k+1 = YkX

−1
k = · · · = Y0X

−1
0 = A−1,

we conclude that

lim
k→∞

Yk = A−1.

In case of general matrices, it is easy to see that (14) is just another way
of writing (1). However, in the approximate arithmetic the situation changes
dramatically. The modified Newton method with approximations now reads

Xk = Rε(Xk−1(2I − Xk−1)), Yk = Rε(Yk−1(2I − Xk−1)), k = 1, 2,
(15)

A good argument in favour of this modification is the following. As long as
Xk converges to the identity matrix, its tensor rank decreases and, hence, the
displacement ranks of the factors become smaller and cause the complexity
get down. (This should supposedly hold for any class of structured matrices
in which the identity matrix is considered as one with “perfect” structure).

10

4.2 Selection of the initial approximation

Selection of the initial approximation X0 to A−1 is crucial, in particular for
ill-conditioned matrices. The common choice X0 = αA∗ with an appropriate
α > 0 is ever available, of course, but never good if we want a sufficiently accu-
rate answer. However, we can play with the accuracy parameter ε. In the case
of structured matrices it controls both the final accuracy and the truncation
accuracy on iterations. Thus, it accounts for the ranks after truncation, and
thence the speed of calculations. When the process is “far” from the fast con-
vergence stage, we can carry out the truncation with a much lower accuracy
ε. Consequently, the matrix operations become pretty fast in the beginning.
On later stages ε must diminish and in the end stay on the level of the desired
final accuracy.

This idea was used in [10] for a two-level Toeplitz matrix arising after
discretization of a hypersingular integral equation. It can be summarized in
the following scheme:

(1) Set X0 = αA∗ and perform the Newton iteration with the truncation
accuracy δ � ε. This results in a rough approximation M to the inverse, but
the advantage is that the δ-truncated Newton iterations are expected to have
a low complexity.

(2) Use the previous approximation M as a new guess to start the Newton
iteration with finer accuracy ε.

Of course, this scheme can be extended to three or more steps with relative
errors δ1, δ2, and so on.

5 Numerical results

Here two model numerical examples are presented. For simplicity we as-
sume n1 = n2 =

√
n

First is the standard 5-point Laplacian. It is a two-level Toeplitz matrix
[ai−j], with free parameters aij defined as aij = 0, for −n1 + 1 ≤ i ≤ n1 − 1,
j = −n2 + 1 ≤ j ≤ n2 − 1, except for

a00 = 4, a0,±1 = −1, a±1,0 = −1.

Second is a dense two-level Toeplitz matrix with aij determined by formulas

aij = −f(i+0.5, j−0.5)+f(i−0.5, j−0.5)−f(i−0.5, j+0.5)+f(i+0.5, j+0.5),

11

where

f(x, y) =

√
x2 + y2

xy
.

This matrix comes from the discretization of the hypersingular integral equa-
tion [10].

The results are given in Tables 1 and 2. We calculated tensor ranks for the
approximate inverse and mean displacement ranks of the factors. All compu-
tations were conducted with ε = 10−5 (this means that “Tensor rank” and
“mean displacement rank” in these tables stand for ε-ranks).

n 642 1282 2562 5122

Running time 154 sec 333 sec 966 sec 2555 sec

Tensor rank of A−1 9 10 11 12

Mean displacement rank of A−1 13.5 13.5 16.8 18.6

Table 1 Numerical results for the case 1.

n 642 1282 2562 5122

Running time 270 sec 433 sec 817 sec 1710 sec

Tensor rank of A−1 13 13 12 11

Mean displacement rank of A−1 8.5 9.3 9.5 9.7

Table 2 Numerical results for the case 2.

At least for these two examples we can see that the running time obeys
the expected O(

√
nr2

mean) asymptotics (where rmean is a mean displacement
rank; the dependence from tensor rank is hard to observe in these examples).
However, we are not very satisfied with the absolute values: the constant
seems to be quite large. After examining the program code it was found that
the main computational efforts were spent while recompressing the results of
the multiplication of two “large” (of tensor rank 5-10, approximately) TDS
matrices. The multiplication using formula (10) was very fast. However, the
recompression was much, much longer and it can be explained why. We have
to compress the matrix of tensor rank approximately 50-100. This involves
computation of many scalar products. We do not take into account that the
matrix is in fact of much lower tensor rank (say, 10). This surely can be
used in some kind of rank-revealing approximation of such a matrix. In the
current implementation we have to calculate, in fact, the Frobenius scalar
products between all the factor matrices and that is approximately 1002 scalar
products and that leads to serious slowdown. The rank-revealing version of the
structured recompression will be reported elsewhere.

12

References

[1] D. A. Bini and B. Meini, Solving block banded block Toeplitz systems with
structured blocks: algorithms and applications, Structured Matrices: Recent
Developments in Theory and Computation. Advances in Computation (Edited
by D.A.Bini, E.Tyrtyshnikov, P.Yalamov), Nova Science Publishers, Inc.,
Huntington, New York (2001).

[2] I. Gohberg and G. Heinig, Inversion of finite-section Toeplitz matrices consisting
of elements of a non-commutative algebra, Rev. Roum. Math. Pures et Appl.,
Vol.19, No. 5, pp. 623-663 (1974).

[3] I. Gohberg and A. A. Semencul, On inversion of finite-section Toeplitz matrices
and their continuous analogues, Matem. Issled. (Russian), Vol.7, No. 2, pp. 201-
224 (1972).

[4] W. Hackbusch, B.N. Khoromskij and E.E. Tyrtyshnikov, Approximate iterations
for structured matrices, Max-Planck-Insitut, Leipzig, Preprint 112 (2005).

[5] G. Heinig and K. Rost, ALgebraic methods for Toeplitz-like matrices and
operators, Berliin, Academie-Verlag (1984).

[6] H. Hotelling, Analysis of a complex of statistical variables into principal
components, J. Educ. Psych., 24, 1933, 417-441, 498-520.

[7] T. Kailath, S. Kung and M. Morf, Displacement ranks of matrcies and linear
equations, J. Math. Anal.and Appl., 68, pp. 395-407 (1979).

[8] J. Kamm and J. G. Nagy, Optimal Kronecker Product Approximations of Block
Toeplitz Matrices, SIAM J. Matrix Anal. Appl., Vol. 22, No. 1, pp. 155-172
(2000).

[9] V. Olshevsky, I. Oseledets, E. Tyrtyshnikov, Tensor properties of multilevel
Toeplitz and related matrices, Linear Algebra Appl. 412 (2006), 1–21.

[10] I. Oseledets and E. Tyrtyshnikov, Approximate inversion of matrices in the
process of solving a hypersingular integral equation, Comp. Math. and Math.
Phys. 45, No. 2 (2005), 302–313 (translated from JVM i MF 45, No. 2 (2005),
315–326).

[11] V. Y. Pan, Y. Rami, Newton’s iteration for the inversion of structured
matrices, Structured Matrices: Recent Developments in Theory and Computation
(Eds. Bini D.A., Tyrtyshnikov E.E., Yalamov P.), Nova Science Publishers,
Huntington, New York, 2001, 79-90.

[12] G. Schulz, Iterative Berechnung der reziproken Matrix, Z. angew. Math. und
Mech., 13 (1), 57-59, 1933.

[13] W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices, SIAM
J.Appl. Math., Vol. 12, pp. 515-521 (1964).

13

[14] E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J.
Matrix Anal. Appl., Vol. 13, No. 2, pp. 459-473 (1992).

[15] C. F. Van Loan, N. P. Pitsianis, Approximation with Kronecker products,
NATO Adv. Sci. Ser E Appl. Sci. 232, Kluwer: Dordrecht, pp. 293–314 (1993).

14

