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ABSTRACT

In contrast to the Hermitian case, the “unfair behavior” of non-Hermitian
Toeplitz eigenvalues is still to be unravelled. We propose a general technique
for this, which reveals the eigenvalue clusters for symbols from L.,. Moreover,
we study a thin structure of those clusters in the terms of properly defined
subclusters. In some cases, this leads to as much as the Szego-like formulas.

1 Introduction

At present, we know a lot about the asymptotic behavior of Toeplitz
eigenvalues for real-valued symbols, even for multilevel Toeplitz matrices
[7, 13, 14]. For complex-valued and even block-valued symbols, we are aware
how the singular values behave [1, 8, 10, 13, 14]. In all these cases, we enjoy
the Szego-like formulas. To keep the same formula for general Toeplitz non-
Hermitian eigenvalues, we need to apply it only with harmonic test functions
[10], which skip too many details. As a matter of fact, the results for general
Toeplitz non-Hermitian eigenvalues are rather thin on the ground. What we
are aware of is based on profound and intricate studies of the Fisher—-Hartwig
hypothesis [2, 3, 16]. In this paper we propose a different and far simpler
approach. In effect it is more general as it may apply to not necessarily
Toeplitz matrices.

!The work of both authors was supported in part by the Russian Fund of Basic Research
under Grant 97-01-00155.



Given a sequence of matrices A, € C"*", consider a set €2 on the complex
plane and let (A, Q,e) count how many eigenvalues of A,, fall outside the
e-extension of 2. We say that  is a subcluster for the eigenvalues of A, if

A..Q
(A, ,6)<1

c(2,e) = lim sup ,
for any £ > 0. If ¢(2,e) = 0 for any € > 0, then Q is called a cluster [13]. In
the latter case we write A(4,) ~ Q.

Denote by € the topological closure of Q. If for any 2z ¢ € there is a
bounded open simply connected domain € O Q with a closed analytical
boundary passing through z, then Q will be called a fair domain. (It is

equivalent to say that  is a compact set with connected complement.)

Our approach can be sketched as follows. Since it might be difficult to
say anything about A(A,) directly, we may try to approximate A, by some
simpler matrices B,, with a cluster (2. We only need to know when it follows
that €2 is also a cluster for A(A4,). In many cases, it is sufficient to know
that ||A, — B,||% = o(n) [13, 15]. It is so when A, and B, are Hermitian.
However, in this paper we discover how the same key relation may work for
non-Hermitian A, and B,. More precisely, we prove the following.

Theorem 1.1 Given two sequences of matrices A, and B, of order n,
assume that

(1) 1|An = Bu|li: = o(n);
(2) A, and By, are bounded in the spectral norm uniformly in n;
(3) B, are normal matrices;

(4) N(By) ~ Q, where Q is a union of m fair domains ., 1 < k < m,
with pairwise disjoint closures.

Then
(a) MAp) ~ Q, and, moreover, for all sufficiently small e > 0,
(b) v(An, U, ) — Y(Bn, Q) =0(n), 1 <k <m.



Formally, (a) follows from (b). However, we prefer to state (a) explicitly
and first. Above all, it is due to our way to this theorem. We prove first that
2 is a common cluster for A,, and B,. Only having this done, we get on to
a thin structure of this cluster. As (b) reveals, the concerned thin structure
of 2 is also common for A, and B,. Consequently, if {2 is a subcluster for
A(By,), then it is also a subcluster for A(A,,).

Now, consider Toeplitz matrices 4, = A,(f) = [a;—;] with the entries
from the Fourier expansion

f(l') ~ i ay eikx;

k=—00

f is referred to as a symbol (generating function) for A,. We may try as
B,, the optimal circulants C,,(f) (those that minimize ||A,, — C,||r over all
circulants C,, [5]). Then, the hypotheses (1)—(3) of Theorem 1.1 are fulfilled
as soon as f € L. Since the eigenvalues of C,,(f) are distributed as the
values of f(z) (it is proved in [13] even for f € L), we come up with the
following theorem.

Theorem 1.2 Let f € Lo, be complex-valued, and assume that the values
f(z) almost everywhere in the Lebesgue sense are located inside 2, a union
of m fair domains Q, 1 < k < m, with pairwise disjoint closures. Then €2
is a cluster for A\(A,(f)), and, moreover, for all sufficiently small e > 0,

A, Q
lim 7( n kag) _

n—oo n

where
™

1 1, z €

k= 5o /Xk(f(x))dx’ Xk (2) = { 0, z & Q.

—T

The paper is organized as follows. In Section 2, we gather some auxiliary
statements. In Section 3, we present the proof of Theorem 1.1. We start
with the claim (a). The main tools are special polynomial mappings for
prescribed nested domains to march inside some nested disks. Then, for the
assertion (b), we use essentially the already established (a) while the domains
are shifted to inside some e-tubes around the real axis.



In Section 4, we get to the case of non-Hermitian Toeplitz matrices and
expound the proof of Theorem 1.2. In Section 5, we discuss a more detailed
structure of clusters. Then, we finish with a special case when the values
f(z) lie on open curves. For such cases we propose the Szego-like formula.

2 Auxiliary statements

Lemma 2.1 Given two sequences of n X n matrices A,, and B,,, assume that
(1) [|An = Bul|%: = o(n), and
(2) ||Bnll2 < M uniformly in n.

Then MN(A,) ~ K(M) ={z: |z| < M}.

Proof. Consider the Schur decomposition A, = U,T,U, with an upper
triangular 7,,, and, using the same unitary U,,, write B,, = U, B,U;:. Then,

n ~ ~

2 2 2

> |ti = biil* < (| To = Bullr = [|4n — Bu|[* = o(n).

i=1
Let v,(c) denote the number of those t;; that escape from K(M 4 ¢). Since
|bi;] < M, we obtain v,(¢) €2 = o(n), and, hence, v,(¢) = o(n). O

Lemma 2.2 Let A, H € C"*" and H = H*. Then the eigenvalues of A and
H can be ordered so that

S INA) — M(E)P < 2 [lA— HI

=1

Proof. Using the Schur decomposition for A, we reduce the problem to the
same one with an upper triangular A. Let A = A + U, where A is diagonal
and U is strictly upper triangular. Since A and H are normal matrices, we
may apply the Hoffman—Wielandt theorem. Let H = D + R + R*, where D
is diagonal and R is strictly upper triangular. Then,

1A = HI[% = (IA = DI + [IRIE) + (IIRIE) < 2114 - HI[Z,
because each term of the two does not exceed ||A — H||%. O
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Remark. Lemma 2.2 can be found in [9] with a precise specification of the
eigenvalue ordering. It is sufficient to order them so that

re(A(A)) > ... >re(M\,(4)) and N\ (H)>...> N\, (H).
Lemma 2.3 Given two sequences of n xn matrices A, and B, assume that
(1) ||An = Bullf: = o(n);
(2) |

Then the eigenvalues of A, and B, can be indexed so that

* 2
@ - < en, for some >0 and for all sufficiently large n.

n

S N(An) = XN(Bo)? < cem

=1

for all sufficiently large n, with ¢ an absolute constant.

Proof. Let H, = (B, + B})/2. Then ||A, — H,||% < o(n) + & n and also
||H,, — B,||% < & n. It remains to apply the previous lemma twice. O

3 (General approach

We present here the proof of Theorem 1.1. However, this is more than merely
a proof, for we give a general technique for clusters on the complex plane.

1. To brush up the idea of coming to (a), assume that Q = €, is a disk
centered at zero. Consider a larger disk Q' of radius M. Since A\(B,) ~ ,
there can be only o(n) eigenvalues outside . Taking into account that
B,, are normal, consider the spectral decomposition of B,, and, keeping the
same eigenvector matrices, modify the large eigenvalues of B, to obtain
some B, with the eigenvalues inside Y. Since B], are normal, ||B}||o < M
and, from the uniform boundedness of B,, in the spectral norm, we obtain
||B., — BL||% = o(n), and hence, ||A, — B.||% = o(n). Now, by Lemma 2.1,
A(Ap) ~ ¥, and, eventually, A(4,) ~ Q.



2. The considered above case is a bit too special. However, if ' is a
bounded open simply connected domain, then, due to Riemann, there is a
conformal mapping ¢ such that ¢(2') = D(M) is an open disk of radius M.
Due to Runge, on any compact set K C €', the analytical function ¢(z) can
be uniformly approximated by a polynomial p(z). Taking up a smaller ', if
necessary, we may suppose that K = (' (the closure of Q). Thus, for any
d > 0, there is a polynomial p(z) such that p(2") C D(M + ). Assume that
Q=Q; C Q and at most o(n) eigenvalues of B,, may stray out of Q'. These
eigenvalues can be modified, as above, to get to some normal matrices B],
such that A\(B!,) C Q' and ||B,, — B.||% = o(n). Tt is easy to verify that

1p(An) = p(B)I[f = o(n) and [|p(B,)]]> < M + 4.

By Lemma 2.1, again, D(M + 0) is a cluster for the eigenvalues of p(A,).
This proves also that if a set O is such that p(O) and D(M + §) do not
intersect, then O contains at most o(n) of the eigenvalues of A,,.

Still, we can not stop at this, because we need to prove the same for any
O with no common points with an e-extension of {2, and note that, if p is

fixed, some of those O might be such that p(O) N D(M + §) # 0.

3. Let 2z ¢ Q. Then there is an open set O(z) such that z € O(z) and,
for some polynomial p and M > 0, it holds

p(Q) € D(M) and p(O(z)) N D(M) = 0. (%)

To prove this, note that  is also a fair domain (as a union of finitely
many fair domains with pairwise disjoint closures). Hence, we can take up
a bounded open simply connected domain ©” such that O C Q" and the
boundary 09" is a closed analytical curve passing through z. Let ¢ be a
conformal mapping such that ¢(Q") = D(M") is a disk of radius M". Since
00" is an analytical curve, we may extend ¢ through the boundary onto a
larger bounded open simply connected domain, say Q. Let ¢(Q"") = D(M"")
with M™ > M". At the same time, there is a domain Q' O Q such that
#(QY) = D(M") for some M' < M". Now, let O(z) be the preimage of some
sufficiently small open disk centered at ¢(z). Using the Runge theorem, we
approximate ¢ by a polynomial p. If p is sufficiently close to ¢ on Q" then
we have (x) for some M' < M < M".



4. We are now ready to prove that A(A4,) ~ . Consider a compact K
disjoint with Q and yet nearby and large so that \(A4,) C K U, (€. is the
e-extension of ). By Article 3, K can be covered by open sets O(z2), z € K,
each having only o(n) of the eigenvalues of A,. Since K is a compact, there
is a finite subcovering of K with some O(z;),...,O(zx) that contain at most
o(n) of the eigenvalues of A,. The proof of the assertion (a) of Theorem 1.1
is thus completed.

5. We get on to the claim (b) of Theorem 1.1. Consider any bounded open
simply connected domains ), O €, with closed Jordanian boundaries and
pairwise disjoint closures. Denote by Dy (g") the disks of radius &’ centered
at wy = k (it is important only that they are separated by a distance
independent of '), and let ¢ be a mapping defined on the union Q' of Q). so
that it maps conformally Q). onto Di(¢'), 1 < k < m. Since the completion
to €2 is a connected set, by the extended Runge theorem, this analylitic
on € function ¢ can be uniformly approximated by a polynomial p on any
compact K C €. We do not lose the generality assuming that K = .
For some ¢ > &', we thus obtain p(2}.) C Dg(e) for all k. As previously, we
can modify the eigenvalues of B, to march them down to 2. The modified
normal matrices B!, still satisfy ||A, — B/||% = o(n). Tt is easy to see that

Hp(B;) — (p(B,))"

<e.
5 €

2

IIp(A,) — p(BL)||% = o(n) and

6. By Lemma 2.3, the eigenvalues of p(A,) can match those of p(B},) so
that, for all sufficiently large n,

S M(p(A) = Mp(BL) < cen.

i=1
Now, take up some ((¢) > 0 and let 7, count those indices i for which
IAi(p(An)) — Ni(p(BL))| > ((¢). From the above,

€
¢2(e)
To keep 7, small for small £, we can set () = /3. Anyway, the choice of
((g) should provide

Y < € n.

lim () =0, ©

e—=40 E—1>r—lr—10 C2(5) =0
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7. For any matrix A and a set D, let T'(A, D) designate the number
of the eigenvalues of A belonging to D. From the previous article, with
e’ = e+ ((e), we obtain

I'(p(An), Di(e)) < T (p(By), Di(e)) +¢

n,

¢2(e)

and, similarly,

n.

T (p(B)), Di(c)) < T (p(Ay), D(€))) +c C;s)

By the construction of B!,
[ (p(Bp), De() = T (p(By), D(e)) = T (B, @),
and, by the already established clustering property,
I'(p(An), Di(e)) = T (p(An), Di(e)) +o0(n) = T (An, @) +o(n).

All in all,

€

Ag(n) = [I(An, @) =T (B,, )| < 0(n)+CC2(6)

n.

8. The latter inequality implies that, for any § > 0,
Ag(n) <dn

for all n sufficiently large. This is equivalent to the claim that Ag(n) = o(n).

Thus, Theorem 1.1 is completely proved.

4 Non-Hermitian Toeplitz case

Here we show how Theorem 1.2 follows from Theorem 1.1. To this end,
together with the Toeplitz matrices A, = A, (f), consider also the optimal
circulants C,, = C,(f).

1. If f € Ly then ||A, — Cy[2 = o(n) [12, 13].
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2. If f € Ly then ||A,]||2 and ||C,|]2 are upper bounded by M =
ess sup | f| (the lowest M for which |f(t)] < M almost everywhere in the
Lebesgue sense).

For A, this is seen from the relation [7, 8]

™

(Anz,y) :% / £(1) (Z - eikt> (”Z " eut> "
k=0 =0

—T

where z = [zo, ... , 2o 1) vy =1[v0, ... ,Yn1|™

For C,,, we know that the eigenvalues of C,, coincide with (C,p*™), p(n)),
where p*") 1 < k < n, are the columns of the Fourier matrix, and also take
into account that [11]

(Cpp®™ plr)y = (A, p*m) pEn)) 1 <k < n.

3. (), are normal matrices, as any circulants are. Moreover, the said
above p¥") | 1 < k < n, are the orthonormal eigenvectors for any circulant.

4. Now we need to show that A(C,) ~ € so long as 2 contains all the
values of f(t) (we may change the values on a set with the Lebesgue measure
equal to zero).

This is nearly clear when f is a 2m-periodic continuous function. If so, f(t)
is uniformly approximated by the Cesaro sums o, (¢; f), and we know that
the eigenvalues of C),(f) coincide with the values of oy, (tg,; f) for tg, = 27” k,
1 <k <n. [4, 13]. However, Q is the eigenvalue cluster for C,(f) even when
felL.

Besides clusters, bring in a more general notion of distribution. Let
Cy stand for the set of all functions which are uniformly continuous and
uniformly bounded on the complex plane. We say that complex numbers
{A\in}7, are distributed as f(t) if, for any F' € C,

" 1

FOw) = 5= [ F(F() dt.

-

=1

This definition was proposed in [12]; it can be told from the Weyl definition
(see [7]) by a larger set of the test functions.
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Theorem 4.1 For any f € Ly, the eigenvalues of the optimal circulants
Cu(f) are distributed as f(t).

To prove this, we can adopt the arguments used for Theorem 4.2 from
[13] (with not nearly great changes). By and large, we could do with the
observation that, for any f, g € Ly,

n
Z |0n(tkn7 f) - Un(tkna g)| < cn ||f - g||L1'
k=1

The above articles 1-4 match literally the hypotheses (1)—(4) of Theorem
1.1. Clearly, they are satisfied simultaneously as soon as f € L. To
complete the proof of Theorem 1.2, it remains to note that the number of
the eigenvalues of C,(f) falling in any (sufficiently small) e-neighbourhood
of Q is equal to ¢ n + o(n), where

™

1
= — t))dt.
=5 [ ulf@)
This follows from Theorem 4.1 when applied with F'(z) € Cj sufficiently close
to xx(z). Indeed, let xj, be the characteristic function of €2}, an s-extension
of Q with e sufficiently small. Then we can choose a nonneg%itive F e C,
so that it coincides with x} on €2, and supp F' is larger than ) yet has no

common points with Q; for [ # k. On the base of this choice,

n

S ) € - Y FOG) o [ B0 d

1
n ;4 i—1

On the other hand, we can choose a nonnegative F' € 'y so that it coincides
with xx on Q4 and supp F' C Q). Then,
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5 Further results

Consider two disjoint open bounded simply connected fair domains €2; and
25 on the complex plane, and suppose that z is the single common point of
their closures. Assume also that there are open bounded simply connected
fair domains ] and € such that Q; C Q) U {z}, QO C Q, U {2}, and
{2} = O N Q). In addition, we assume that their boundaries are Jordanian
curves. We say that Q; and €y are separated (by z) or that z separates
Q; and s, and refer to Q) and €}, as (not uniquely determined) embracing
domains. (Note that Q; U, and Q] U Q) are also fair domains.)

For a set M and a point z, if there exist 2; and €2, separated by z
and such that M C Q; UQy U {z}, then z is said to separate M. We refer
to 1, Qs and Qf, 2, as the first and second embracing domains for z and M.

As previously, let T'(A,, M) count how many eigenvalues of A, belong
to M. For any d > 0, set

n—00 n

where Dj(2) is a radius § disk at z. If u(0,2) — 0 as  — 0, then we call
z an ungreedy point for A(A,). All other points are greedy, that is, they
accumulate too many eigenvalues of A,,.

We are ready now to discern a more detailed structure in clusters.

Theorem 5.1 Given two sequences of matrices A, and B, satisfying the
hypotheses (1)-(3) of Theorem 1.1, assume that

(a) N(By) ~ Q1 UQy, where Qq and Qs are open bounded simply connected
fair domains separated by zy, and

(b) zo is an ungreedy point for \(By).

Denote by Q) and €, any embracing domains for 4 and Qs defined through
the separation property. Then

D(A, Q) = D(By, Q) +o(n), k=1,2.

11



Proof. Choose 0 < 1)y < 7/2 and consider the following two sectors:

SV = {w: |w| <1, = < argw < thy},
Sy = {w: |Jw| <1, 7=y <argw < T+ 1}

Owing to the assumptions made, we can construct a continuous mapping
do: QUG — SPUSY

such that

(a) ¢y is conformal on €2} and €,

(b) ¢o(Q) = 57 and ¢o(%) = 59, and

(¢) bo(2) = 0.

Next, for a given € > 0, choose a positive «a satisfying ¢ = ¢y < ¢, and
set
o(2) ¢5(2), z €

—_= . . «
4 el (6717r ¢0(Z)) , 2 c Q/2

Let us agree that if 2 = |z] €7 then 2% = |2|* ¢lo7.

It is easy to see that ¢ maps Q] U Q) continuously onto S; U S,, where

S = Hw: |w| <1, = <argw < ¥},
Sey = {w: |w| <1, 7 —9¢ <argw < 7w+ 1)}

Also, -
p: QU =S US,
enjoys the following properties (similarly to those of ¢):
(a) ¢ is conformal on ] and €2,

(b) ¢(Q1) = Si and $() = S, and
(¢) bo(2) = 0.

12



Note that ¢ depends on e. In what follows, we consider ¢ for different
sifficiently small €. It is important for us that in every case

Imp(2)| <e VzeQu.

Take a sufficiently small 6 > 0 (independent of € > 0) and consider the

regions €2}, (0) = ).\ Ds(2) on the z-plane depicted on Fig. 1 and their images
Si(0) = ¢(2},(0)) on the w-plane shown on Fig. 2. By the construction of ¢,

Sk(6) C po(€2,(0)).

=

Fig. 1. z-plane.

Using the Keldysh—Mergelyan generalization of the Runge theorem (see
[6]), we can approximate ¢ by a polynomial p uniformly on Q) U Q5. Let
Si(0) = p(Q.(0)). If p is sufficiently close to ¢, then all the points in S} ()
(these are shadowed regions on Fig. 2) are inside or close enough to ¢y (£2},(0)).

S P©) P(Q©)
AYE)

(oo
e

0(c)

Fig. 2. w-plane.
Consequently, all the points of S} (0) are separated from w = 0 so that

there is a disk centered at zero with no common points with S} (J), the
shadowed regions on Fig. 2. This disk may depend on ¢ but it is the same

for all sufficiently small e.
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It is clear that there is an open domain Q" > Q) U Q) such that, first,
p(Q)") lies inside the e-tube along the real axis and, second, only o(n) of
the eigenvalues of B, might not belong to €2”. Since B, are bounded in
the spectral norm uniformly in n, we can transfer to some B! for which
||Bn, — B.||% = o(n) and A\(B],) C Q". With no loss of generality, suppose
that B = B,. Then

Ip(An) — p(B)|[7 = o(n) and H 5
Thus, by Lemma 2.3, the eigenvalues can be indexed so that
> Ni(p(An)) = Xi(p(Bn)))? < cen.
i=1

Let ((£) be the same as in Article 7 of Section 3, and denote by S.(J; ((¢))
the ((¢)-extension of Si(4). It is important that

S1(0;¢(2)) N p(%) = 0, S(0;¢(e)) N p(1) = 0,

for all sufficiently small {(g). On the base of the above constructions,

L(p(Bn), S¢(0)) < T(p(An), Si(0; ((£))) + ¢ n

) ¢2(e)
e

< T(An, Q) +0(n) +c

Furthermore, since
L'(Bn, ) <T(p(Bu), Sk(6)) + p(0,2) n + o(n)
and z is not an accumulation point for B,, we obtain eventually that
(B, Q) < I'(4,,Q,) +o(n), k=1,2.

Using these inequalities along with (since € U €2y is a fair domain, we can
apply Theorem 1.1)

(B, Q) +T(B,,Q,) = T'(4,,Q)) +T(A4,, Q) + o(n),

14



we conclude that
['(By,, Q;C) = T['(Ap, Qﬁﬁ) +o(n), k=12,

which completes the proof. O

For a point z and 4 > 0, denote by (4, z; f) the Lebesgue measure of
the preimage of the disk Ds(z). We call z = f(t) an essential point for f if
w(d,z; f) > 0 for any 6 > 0. If u(d,2; f) = 0 as & — 0, then z is said to be
an ungreedy point for f.

Theorem 5.2 Denote by M the set of the essential values for f € L.
Assume that z is an ungreedy point for f that separates M with the embracing
domains Q and Qy, and consider the Toeplitz matrices A, = An(f). Then

i WA Ly k=12,

n—o0 n 27‘(
-7

where xy. s the characteristic function for €.

This theorem stems naturally from Theorem 5.1 with the optimal circulants
C,.(f) serving as B,. The details can be gleaned from Section 4.

In the rest of this section, we propose some further research steps to be
done. As above, let M stand for the set of all essential points for a symbol
f. Let us say that f(¢) is an open curve in  if every point of M N Q is
a separation point for M. According to this definition, we admit that the
points f(t) for f(t) ¢ © might not separate M. Thus, the whole of f(t) for
all ¢ is not necessarily an open curve. We propose the following theorem.

Let f € Ly, generate an open curve in an open bounded simply connected
fair domain Q. Then, for the Toeplitz matrices A, = A,(f), the Szego-like
formula

s valid for any F € Cy supported inside 2.
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We intend to prove this in another paper.

We appreciate friendly and pertinent remarks made by Paolo Tilli. Special
thanks go to Sergei Goreinov and Igor Nikolski for their help in making

figures.
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