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Abstract
A fast algorithm is proposed for computation of certain multilevel Toeplitz forms.

It helps to implement some simple quadrature formulas in an efficient way, allowing
for the use of more nodes. An application example is given with the volume integral
equations in electromagnetics.

1 Introduction

Given a multilevel Toeplitz matrix [5] with entries ai1−j1, ..., ip−jp and multilevel vectors with
components u1

i1 . . . up
ip and v1

j1 . . . vp
jp

(p is the number of levels and 1 ≤ ik, jk ≤ n, k =
1, . . . , p), consider a problem of computation of the following quantity:

f =
∑

1≤i1, ..., ip≤n

∑
1≤j1, ..., jp≤n

u1
i1

. . . up
ip

ai1−j1, ..., ip−jp v1
j1

. . . vp
jp

. (1)

This is a p-level Toeplitz form. A direct computation of f , based on the Fast Fourier
Transform (FFT), requires O(N log N) arithmetic operations, where N = np. In this paper,
we present a faster algorithm that delivers f in O(N) operations for any p ≥ 2.

In the case p = 1 the direct FFT-based computation remains unbeaten. However, the
new algorithm is faster for p ≥ 2. Moreover, a special structure in the vectors [ul

il
] and [vl

jl
]

improves the performance to O(N) operations even in the case p = 1.
The advantage is not only in removing the logarithmic factor. Since the FFT is not

involved, the complexity is no longer dependent on the arithmetic properties of n. The new
algorithm is noticably faster in practice, for instance, in typical applications with n from
units up to several tens (e.g. n = 10) and p = 3.

Fast computation of multilevel Toeplitz forms allows us to suggest a fast method of
computation of some multidimensional integrals (arising in the method of moments when
solving some integro-differential equations).

2 Fast computation of Toeplitz forms

Consider first the case p = 1. In order to compute

f =
∑

1≤i≤n

∑
1≤j≤n

uiai−jvj , (2)
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let us set k = i − j and restructure summation as follows:

f =

n∑
j=1

n−j∑
k=1−j

akuk+jvj =

n∑
j=1

n−1∑
k=−n+1

akuk+jvjs(k, j),

where

s(k, j) =

{
1, 1 − j ≤ k ≤ n − j,
0, otherwise.

(3)

Therefore,

v =
n−1∑

k=−n+1

akbk, (4)

where the quantities bk are defined by

bk =

n∑
j=1

uk+jvjs(k, j) (5)

and can be computed in O(n2) operations.
At the first glance, this does not seem to give any gain. However, in some cases we need

to compute f for the same ui and vj but various ak. In all such cases, evaluation of bk via
(5) can be considered as precomputation and is the only step involving O(n2) operations,
whereas the repeated computation by the formula (4) takes only O(n) operations.

Moreover, in typical practical cases the values ui and vj depend polynomially on i and
j, which makes it possible to compute bk in O(n) operations as well. For example, assume
that

ui = A + Bi, vj = C + Dj.

In this case the bk can be computed analytically. Indeed,

bk = Ak + Bkk, (6)

Ak = AC b0
k + (BC + AD) b1

k + BD b2
k, Bk = BC b0

k + BD b1
k,

b0
k =

m∑
j=1

s(k, j),

b1
k =

m∑
j=1

js(k, j),

b2
k =

m∑
j=1

j2s(k, j),

and elementary calculations show that

b0
k = m − |k|,

b2
k =

(m − |k|)(m − k + 1)

2
,

b3
k =

⎧⎪⎪⎨
⎪⎪⎩

m−k∑
j=1

j2, k ≥ 0,

m∑
j=|k|+1

j2, k < 0.
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The Ak and Bk in (6) can be evaluated altogether in O(n) operations so long as the same holds
true for the bl

k. Consequently, we implement (4) capitalizing on (6) and find f eventually in
just O(n) operations. The same complexity stands when ui and vj are arbitrary polynomials
of i and j, their orders being fixed and independent of n.

3 Multilevel case

Let f be defined by (1). Then, we may proceed by induction:

f =
∑

1≤i1, ..., ip−1≤n

∑
1≤j1, ..., jp−1≤n

u1
i1 . . . up−1

ip−1
ãi1−j1, ..., ip−1−jp−1 v1

j1 . . . vp−1
jp−1

,

where

ãi1−j1, ..., ip−1−jp−1 =

n−1∑
kp=−n+1

ai1−j1, ..., ip−1−jp−1, kp

n∑
jp=1

up
kp+jp

vp
jp

s(kp, jp).

Here, s(k, j) is the function already defined by (3).
It is already obvious that f can be computed in O(np) operations. The previous section’s

constructions now apply in succession on every level. Finally, we obtain

f =
n−1∑

k1=−n+1

. . .
n−1∑

kp=−n+1

ak1, ..., kp β1
k1

. . . βp
kp

, (7)

where

βl
kl

=

n∑
jl=1

ul
kl+jl

vl
jl
s(kl, jl), l = 1, . . . , p. (8)

Evidently, only O(n2) operations appear through the implementation of (8) and O(np) op-
erations are required to compute (7).

Remark that there are special cases when the complexity can be further reduced. For
instance, assume that

ai1−j1, ..., ip−jp = a1
i1−j1

. . . ap
ip−jp

.

Then f can be found in just O(n2) operations. The same growth in n is kept when the above
right-hand side is substituted with a sum of a few terms of similar structure.

4 Fast computation of integrals

Many integro-differential equations can be set in such a way that the kernel functions involved
possess only weak singularity at x = y. Then simple quadrature rules can be used. The
entries of the matrix of moments are typically assembled from those integrals precomputed
over tensor products of some basic rectangular (cubic) cells.

Thus, a typical computation reads

(f, g) =

∫∫∫
Πi1i2i3

∫∫∫
Πj1j2j3

G(x, y) f(x)g(y) dxdy,

where f , g are scalar functions (basis functions or their derivatives) and G is a scalar kernel
with weak singularity at x = y. Choose a positive integer m, subdivide each cell into m3
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rectangular subcells and approximate the integral by multiple rule of rectangles, excluding
the pairs with same subcells (where x may coincide with y). This suggests an approximate
formula (f, g) ≈ I with the sextuple summation as follows:

I =
(h1h2h3)

2

m6

∑
α1

∑
α2

∑
α3

∑
β1

∑
β2

∑
β3

G(Xα1α2α3 , Yβ1β2β3)f(Xα1α2α3)g(Yβ1β2β3), (9)

where Xα1α2α3 and Yβ1β2β3 are the central points in the subcells. To exclude from summation
the indices such that (α1α2α3) = (β1β2β3), we set G(X, Y ) = 0 whenever X = Y .

Quite typically, G(Xα1α2α3 , Yβ1β2β3) is actually a function of α1 − β1, α2 − β2, α3 − β3.
It implies that

G(Xα1α2α3 , Yβ1β2β3) = aα1−β1, α2−β2, α3−β3.

At the same time, in general f(Xα1α2α3) and g(Yβ1β2β3) depend upon the indices in the
following way:

f(Xα1α2α3) = (a1 + b1α1)(a2 + b2α2)(a3 + b3α3),

g(Xβ1β2β3) = (c1 + d1β1)(c2 + d2β2)(c3 + d3β3).

The quadrature rule (9) provides a reasonable accuracy for moderate m. Using the
algorithms proposed in this paper we also claim that the arithmetic complexity is O(m3).

5 Example from electromagnetics

Consider the Cartesian coordinate system (x1, x2, x3) and a nonuniform inclusion V with the
(complex-valued) permittivity ε. The inclusion is in the shape of parallelepiped and located
in the half-space x2 > 0. The outer space W (medium outside the inclusion) is uniform
with the (complex-valued) permittivity ε0. The plane x2 = 0 can be (optionally) the perfect
conductor surface, in this case W = {x2 > 0} \ V. The excitation is time-harmonic with the
frequency ω (e.g. comes from a magnetic dipole located in the outer space under the bottom
of the inclusion). The time-dependence factor is common for all quantities and cancelled in
all formulas. As usual, all the quntities are considered without this factor.

It is well-known that the full electric field E can be found from the following volume
integral equation [1, 2, 3, 4, 6]:

γ−1J(x) − (k2
0 + graddiv)

∫
V

G(x, y)J(y)dy = E0, x ∈ V, (10)

where E0 is the primary electric field, J = γE, k0 =
√

ε0μω2, γ ≡ ε
ε0
− 1.

We solve the volume integral equation (10) by the Galerkin method with special
locally-supported basis functions which are piecewise-linear (roof-like) in one direction and
piecewise-constant (hat-like) in the other two directions [2, 4, 6].

Suppose that V = [a1, b1]× [a2, b2]× [a3, b3] and introduce regular one-dimensional grids
with steps h1, h2, h3 as follows:

xj1
1 = a1 + (j1 − 1)h1, h1 = (b1 − a1)/n1,

xj2
2 = a2 + (j2 − 1)h2, h2 = (b2 − a2)/n2,

xj3
3 = a3 + (j3 − 1)h3, h3 = (b3 − a3)/n3.
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Thus, V is a union of the basic 3D cells

Πj1j2j3 = [xj1
1 , xj1+1

1 ] × [xj2
2 , xj2+1

2 ] × [xj3
3 , xj3+1

3 ],

1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, 1 ≤ j3 ≤ n3.

The approximate unknown vector function J is sought in the form

J(x1, x2, x3) =
n1−1∑
j1=1

n2∑
j2=1

n3∑
j3=1

u1
j1j2j3

F1
j1j2j3

(x1, x2, x3) +

n1∑
j1=1

n2−1∑
j2=1

n3∑
j3=1

u2
j1j2j3F

2
j1j2j3(x1, x2, x3) +

n1∑
j1=1

n2∑
j2=1

n3−1∑
j3=1

u3
j1j2j3

F3
j1j2j3

(x1, x2, x3),

(11)

where

F1
j1j2j3

=

⎡
⎣ Φ1

j1
Ψ2

j2
Ψ3

j3

0
0

⎤
⎦ , F2

j1j2j3
=

⎡
⎣ 0

Ψ1
j1

Φ2
j2

Ψ3
j3

0

⎤
⎦ , F3

j1j2j3
=

⎡
⎣ 0

0
Ψ1

j1Ψ
2
j2Φ

3
j3

⎤
⎦ , (12)

Φk
jk

(xk) are the roof-like functions:

Φk
jk

(xk) =

{
1 − |xk − xjk+1

k |/hk, |xk − xjk+1
k | ≤ hk,

0, otherwise,
(13)

Ψk
jk

(xk) are the hat-like functions:

Φk
jk

(xk) =

{
1, xjk

k ≤ xk ≤ xjk+1
k ,

0, otherwise.
(k = 1, 2, 3) (14)

The Fk functions can be associated with the internal basic-cell faces orthogonal to the xk

axis. The boundary faces are ignored for all the functions to be zero outside V.
In line with the Galerkin method, the unknown coefficients in the expansion (11) are

found from the system of linear algebraic equations

(
γ−1J, Fk

i1i2i3

)
−

⎛
⎝(k2

0 + graddiv)

∫
V

G J dx, Fk
i1i2i3

⎞
⎠ =

(
E0, Fk

i1i2i3

)
. (15)

On suitable ordering of the unknowns and equations, it is of the form⎛
⎝

⎡
⎣ D1

D2

D3

⎤
⎦ +

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦
⎞
⎠

⎡
⎣ u1

u2

u3

⎤
⎦ =

⎡
⎣ f 1

f 2

f 3

⎤
⎦ , (16)

where the block diagonal part of the matrix corresponds to the off-integral term of (15),
and, specifically,

(Dk)
j1j2j3
i1i2i3

=

∫
V

γ−1
(
Fk

i1i2i3(x),Fk
j1j2j3(x)

)
dx, (17)
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(Akl)
j1j2j3
i1i2i3

= −
∫
V

⎛
⎝(k2

0 + grad div)

∫
V

(
G(x, y)Fl

j1j2j3
(y), Fk

i1i2i3
(x)

)
dy

⎞
⎠ dx. (18)

The right-hand side of (18) can be remarkably simplified. To this end, we need to observe that

∂

∂xl
Gl(x1, x2, x3, y1, y2, y3) = − ∂

∂yl
G1(x1, x2, x3, y1, y2, y3), l = 1, 2, 3.

Then,

div

∫
V

G(x, y)Fl
j1j2j3

(y)dy =

∫∫∫
Πl

j1j2j3

∂

∂xl
Gl(x, y)Φl

jl
(yl) dy1dy2dy3,

where

Π1
j1j2j3

= [x1
j1

, x1
j1+2] × [x2

j2
, x2

j2+1] × [x3
j3

, x3
j3+1],

Π2
j1j2j3

= [x1
j1

, x1
j1+1] × [x2

j2
, x2

j2+2] × [x3
j3

, x3
j3+1],

Π3
j1j2j3 = [x1

j1 , x1
j1+1] × [x2

j2 , x2
j2+1] × [x3

j3 , x3
j3+2].

Using integration by parts, we obtain

xl
jl+2∫

xl

∂

∂xl
Gl(x, y)Φl

jl
(yl)dyl = −

xl
jl+2∫

xl

∂

∂yl
G1(x, y)Φl

jl
(yl)dyl =

xl
jl+2∫

xl

G1(x, y)
∂

∂yl
Φl

jl
(yl)dyl.

Hence,

div

∫
V

G(x, y)Fl
j1j2j3

(y)dy =

∫∫∫
Πl

j1j2j3

G1(x, y)
∂

∂yl

Φl
jl
(yl) dy1dy2dy3.

One more integration by parts yields

∫
V

⎛
⎝grad div

∫
V

(
G(x, y)Fl

j1j2j3
(y), Fk

i1i2i3
(x)

)
dy

⎞
⎠ dx =

∫∫∫
Πk

i1i2i3

∂

∂xk

⎛
⎜⎜⎝

∫∫∫
Πl

j1j2j3

G1(x, y)
∂

∂yl
Φl

jl
(yl) dy1dy2dy3

⎞
⎟⎟⎠ Φk

ik
(xk) dx1dx2dx3 =

∫∫∫
Πk

i1i2i3

∫∫∫
Πl

j1j2j3

G1(x, y)
∂

∂xk
Φk(xk)

∂

∂yl
Φl

jl
(yl) dx1dx2dx3 dy1dy2dy3.
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Finally, (18) transforms into a simpler expression

(Akl)
j1j2j3
i1i2i3

= − k2
0δkl (Pk)

j1j2j3
i1i2i3

+ (Qkl)
j1j2j3
i1i2i3

(19)

with Kronecker’s symbol δkl and

(Pk)
j1j2j3
i1i2i3

=

∫∫∫
Πk

i1i2i3

∫∫∫
Πk

j1j2j3

Gk(x, y) Φk
ik

(xk)Φ
k
jk

(xk) dx1dx2dx3 dy1dy2dy3, (20)

(Qkl)
j1j2j3
i1i2i3

=

∫∫∫
Πk

i1i2i3

∫∫∫
Πl

j1j2j3

G1(x, y)
∂

∂xk
Φk(xk)

∂

∂yl
Φl

jl
(yl) dx1dx2dx3 dy1dy2dy3. (21)

Thus, our method for computation of multilevel Toeplitz forms can be applied to evaluate
the integrals (20) and (21). If the perfect conductor plane is present, then G should be
considered of the form

G(x1, x2, x3, y1, y2, y3) = T (x1 − y1, x2 − y2, x3 − y3) +H(x1 − y1, x2 + y2, x3 − y3), (22)

for certain three-variate functions T and H. In this case G(Xα1α2α3 , Yβ1β2β3) is the sum of
two functions, one being related to T and depending on α1 − β1, α2 − β2, α3 − β3, and the
other being related to H and depending on α1−β1, α2 +β2, α3−β3. Using this observation,
we can write

G(Xα1α2α3 , Yβ1β2β3) = aα1−β1, α2−β2, α3−β3 + bα1−β1, α2+β2, α3−β3.

This allows us to split the sextuple summation in two parts, one with a and the other with
b. The summation with b is easlily reduced to the already considered case by substitution
β2 → m + 1 − β2.
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