
TUCKER DIMENSIONALITY REDUCTION OF
THREE-DIMENSIONAL ARRAYS IN LINEAR TIME ∗

I. V. OSELEDETS † , D. V. SAVOSTIANOV ‡ , AND E. E. TYRTYSHNIKOV §

Abstract. We consider Tucker-like approximations with an r × r × r core tensor for three-
dimensional n×n×n arrays in the case of r ¿ n and possibly very large n (up to 104−106). As the
approximation contains only O(rn + r3) parameters, it is natural to ask if it can be computed using
only a small amount of entries of the given array. A similar question for matrices (two-dimensional
tensors) was asked and positively answered in [14]. In the present paper we extend the positive answer
to the case of three-dimensional tensors. More specifically, it is shown that if the tensor admits a
good Tucker approximation for some (small) rank r, then this approximation can be computed using
only O(nr) entries. Moreover, in many cases it can be computed with O(nr3) complexity.

Key words. Multidimensional arrays, Tucker decomposition, tensor approximations, low rank
approximations, skeleton decompositions, dimensionality reduction, data compression, large-scale
matrices, data-sparse methods.

1. Introduction. Multidimensional arrays of data appear in many different ap-
plications. One can mention signal processing, statistics [3, 1, 4], chemometrics [5],
face recognition [7], solving multidimensional integral and differential equations [6](a
very comprehensive list of references on the subject can be found on a Three-mode
company web site, [2]). These arrays often can not be handled by standard meth-
ods because of their huge sizes: we cannot solve linear systems or calculate required
decompositions due to speed or memory restrictions. The obvious solution is to per-
form a sort of dimensionality reduction: an initial “large” array is transformed to a
smaller array for which we can use standard methods. However, such a reduction by
conventional approaches may be computationally still too expensive. In this paper we
suggest a way to make it not only feasible but even quite fast. We will focus only on
three-dimensional arrays mostly to simplify the presentation and note that our results
can be generalized to more dimensions.

The most useful method to reduce dimension is based on the celebrated Tucker
decomposition [23] and solves the following problem: given a three-dimensional array
(tensor) A = [aijk], i = 1, ..., n1, j = 1, ..., n2, k = 1, ..., n3, compute its approxima-
tion

aijk =
r1∑

i′=1

r2∑

j′=1

r3∑

k′=1

gi′j′k′uii′vjj′wkk′ + eijk (1.1)

with the eijk to be sufficiently small for prescribed r1, r2, r3. Here we ignore the
orthogonality requirements in the original Tucker decomposition. Despite that, the
matrices U = [uii′], V = [vjj′],W = [wkk′] will be referred to as Tucker factors, and
the r1 × r2 × r3 tensor G = [gi′j′k′] as the core tensor.

∗Supported by the Russian Fund of Basic Research (grants 05-01-00721, 04-07-90336 and 06-
01-08052) and a Priority Research Grant ONM-3 of the Department of Mathematical Sciences of
Russian Academy of Sciences.

†Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8,
Moscow(ivan@bach.inm.ras.ru).

‡Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8,
Moscow(draug@bach.inm.ras.ru).

§Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8,
Moscow(tee@bach.inm.ras.ru).

1

A well-known method for the computation of the Tucker decomposition is based
on the SVD algorithm. Consider three rectangular matrices (“unfoldings”) of the
tensor A:

A(1) = [a1
i(jk)] = [aijk],

A(2) = [a2
j(ki)] = [aijk],

A(3) = [a3
k(ij)] = [aijk].

(1.2)

The superscripts 1,2,3 in the definitions of unfoldings define which index (first, second
or third) is used; two other indices are merged into one “long” index.

The left (“short”) singular vectors of the SVD-s of these matrices

A(1) = UΣ1Φ>1 , A(2) = V Σ2Φ>2 , A(3) = WΣ3Φ>3 (1.3)

give the factors U, V, W of the Tucker decomposition, possibly after an appropriate
truncation, and the core is computed as a convolution of the tensor with these matri-
ces:

gi′j′k′ =
n∑

i=1

n∑

j=1

n∑

k=1

aijkuii′vjj′wkk′ . (1.4)

The tensor dimension can be large (for example, n = 104 − 106 for some tensors
coming from three-dimensional integral equations). The array itself can not be even
stored in the operative memory as O(n3) memory cells are needed. The computation
of the SVDs in (1.3) by standard methods costs O(n4) operations and is anyway
prohibitive for n ≥ 1000.

However, we are chiefly interested in the case r ¿ n and the Tucker decomposition
contains only O(rn + r3) parameters. If a good approximation exists, we can ask if
it can be computed using only a small amount of entries of the tensor A. A similar
question for matrices (two-dimensional tensors) was asked and positively answered
in [14]. In the present paper we extend the positive answer to the case of three-
dimensional tensors. More specifically, it will be shown that if the tensor admits a
good Tucker approximation for some (small) rank r, then this approximation can be
computed using only O(nr) entries. Moreover, in many cases it can be computed with
O(nr3) complexity.

Prior to investigation of special low-parametric (data-sparse) representations ob-
tained only from the knowledge of a small portion of the data entries, we use a general
assumption that some low-parametric approximations exist. In other words, we con-
sider the cases with sufficiently small approximate tensor rank estimates. Several
estimates for many practically interesting cases are developed in [15, 19, 20]. We can
mention also some practical algorithms using interpolation and other function approx-
imation techniques or additional structural properties rather than the given arrays
of data [15, 22]. The reference [21] is most close to the paradigm of a completely
data-based method (using no knowledge beyond the data themselves); however, [21]
contains no proof for the existence of a sufficiently good low-data representation and
does not suggest a general adaptive procedure for selecting “most meaningful” entries.
Recently, much attention has been paid to the approximation of a given matrix by
a low rank matrix using randomized algorithms, for example see [24]. To our best
knowledge, these algorithms are fast only asymptotically with very large constants
in the estimates and can not be applied in practice. Moreover, the authors do not

2

report any numerical results in their articles so we can not compare their methods
with our method. In this paper we present the existence results and the adaptive 3D
cross algorithms.

2. Notations and definitions. Let us recall some basic facts about tensors
[10, 11].

Definition 2.1. The norm of the n1 × n2 × n3 tensor A = [aijk] is defined
similarly to the Frobenius norm for matrices as

||A|| = ||A||F = (
n1∑

i=1

n2∑

j=1

n3∑

k=1

a2
ijk)1/2.

Also, let

||A||C = max
i,j,k

|aijk|

be a Chebyshev norm of a tensor A.
Definition 2.2. (Outer product.) If A is a p-index array ai1,i2,...,ip

and B is
a q-index array bj1,j2,...,jq , then C = A ⊗ B is defined as a (p+q)-index array with
elements

ci1,i2,...,ip,j1,j2,...,jq = ai1,i2,...,ipbj1,j2,...,jq .

Tensors can be multiplied by matrices along a specified index (mode) direction.
Definition 2.3. (Mode convolution or n-mode product) If A = [aijk] is a n1 ×

n2 × n3 array, U is a n1 × q then their product B is q × n2 × n3 is defined as

B = A×i U, Bijk =
n1∑

i′=1

uii′ai′jk.

The operations A ×j U , A ×k U are defined analogously, provided that U and
A have appropriate sizes. In this notation, the Tucker decomposition (1.1) can be
written as

A = G ×i U ×j V ×k W.

We will say that a tensor has a rank-(r1, r2, r3) (Tucker) decomposition, if (1.1) holds
[10, 11].

The important objects are slices of the three-dimensional arrays.
Definition 2.4. If A = [aijk] is a n1 × n2 × n3 array, then its k-th slice by the

third index is a n1 × n2 matrix Ak with elements

(Ak)ij = aijk.

The slices by two other indices (i and j) are defined in the same way.
The “short” vectors along the modes i, j and k will be referred to as columns,

rows and fibers.
3

3. Existence theory. Suppose an n1 × n2 × n3 tensor A = [aijk] is given.
Assume also that there exists a rank-(r1, r2, r3) Tucker approximation to A with

the accuracy ε:

A = G ×i U ×j V ×k W + E , ||E|| = ε. (3.1)

If we are aware that such an approximation exists, then a generally different approx-
imation of the same type with the accuracy bound cε (where c > 1 is a deterioration
coefficient) can be constructed from the knowledge of roughly the same amount of
entries as those explicitly involved in (3.1). We want to prove this together with a
bound on the deterioration coefficient c depending only upon dimensions but not on
the entries of the array.

Theorem 3.1. Suppose (3.1) holds for some U, V, W and G. Then there exist
matrices U ′, V ′ and W ′ of sizes n1 × r1, n2 × r2 and n3 × r3 and consisting of some
r1 columns, r2 rows and r3 fibers, of A, respectively, and a tensor G′ such that

A = G′ ×i U ′ ×j V ′ ×k W ′ + E ′,
where

||E ′||C 6 (r1r2r3 + 2r1r2 + 2r1 + 1)ε.

Proof. Consider an unfolding matrix A(1) of the array A. Since A has a rank-
(r1, r2, r3) approximation with accuracy ε, it is easy to see from (3.1) that A(1) has
rank-r1 approximation with the same accuracy. A low-rank matrix can be approxi-
mated by its skeleton decomposition

A(1) = CĈ−1B> + E1

where C is a n1× r1 matrix containing some r1 columns of A(1) and B is a n2n3× r1

matrix containing some r1 rows of A(1), and Ĉ is a submatrix on the intersection
of these rows and columns. In [13] it was proved that if Ĉ is a submatrix of maxi-
mal volume (i.e. the r1 × r1 submatrix which has the largest absolute value of the
determinant) in A(1) then ε1 is bounded as follows:

||E1||C 6 (r1 + 1)ε,

where || · ||C denotes the largest magnitude element of a matrix (array). Also, if Ĉ is
a maximal volume submatrix, it is easy to prove (cf. [13]) that the elements of CĈ−1

are not greater than 1 in modulus. Consequently,

|aijk −
r1∑

s=1

γiszjks| ≤ (r1 + 1)ε,

where

|γis| ≤ 1, 1 ≤ i ≤ n1,

and zjks are in a one-to-one correspondence with the entries of B> (for a fixed s these
elements present a slice by the index i of the array A). Also note that

γis =
r1∑

l=1

uilφls,

4

where the matrix [uil] consist of some columns of A.
Now let us look more closely at the matrix B>. In a reshaped form, it becomes

the tensor with the elements zjks. As previously, unfold this tensor along the index
j. The ε-rank of the unfolding matrix does not exceed r2. Using again the result of
[13], we obtain the following inequalities:

|zjks −
r2∑

t=1

r2∑
τ=1

ψtτvjtwksτ | ≤ (r2 + 1)ε,

where the arrays [vjt] and [wksτ] consist of some rows and fibers of A.
Unfolding the array [wktτ] by the index k, we observe that the ε-rank of the

unfolding matrix cannot be larger than k3. Hence, this matrix admits the skeleton
approximation with the error bound

|wksτ −
k3∑

α=1

k3∑

β=1

xkαζαβyαsτ | ≤ (r3 + 1)ε.

Finally,

|aijk −
r1∑

l=1

r1∑
s=1

r2∑
t=1

r2∑
τ=1

r3∑
α=1

r3∑

β=1

(φlsψtτζαβyαtτ)uilvjtxkα| ≤ |aijk −
r1∑

s=1

γiszjks|+

r1∑
s=1

|zjks −
r2∑

t=1

r2∑
τ=1

ψtτvjtwksτ |+
r1∑

s=1

r2∑
τ=1

|wksτ −
k3∑

α=1

k3∑

β=1

xkαζαβyαsτ | ≤

(r1 + 1)ε + r1(r2 + 1)ε + r1r2(r3 + 1)ε,

which completes the proof.

If r1 = r2 = r3 = r then the error bound becomes (r +1)(r2 + r +1)ε ≤ (r +1)3ε.
In the general case, we are not completely satisfied with the error bound of this
theorem, because it is not a symmetric function of r1, r2, r3. Of course, the answer
can be formally symmetrized, using different permutations of modes (e.g n3×n2×n1)
and taking minimum of all these error bounds, but the obtained result seems to be
rather artificial. So here we note that a “truly symmetric” version of this theorem is
likely to need a different technique.

Corollary 3.2. Under the premises of the theorem,

||E ′||F 6 (r1r2r3 + 2r1r2 + 2r1 + 1)
√

n1n2n3ε.

4. The cross approximation method. For presentation purposes from now
on we will assume that n1 = n2 = n3 = n and r1 = r2 = r3 = r.

4.1. The 2D-cross method. In the works [13, 14, 18] the problem of finding
a rank-r approximation to a given matrix was connected with finding in matrix A
a submatrix of maximal volume (i.e. determinant in modulus) among all r × r sub-
matrices. The latter problem is hard to solve. However, we may be satisfied with a

5

Fig. 4.1. How a cross method works. Filled dots: elements used for the calculation of
cross(ip, jp). Empty dots: row-pivot (step 2).

“sufficiently good” submatrix and some heuristic algorithms. Since these algorithms
are to fetch a cross of some columns and rows, we call them cross algorithms. Prob-
ably the most simple and effective cross algorithm is the Gauss elimination method
using some pivoting technique over dynamically selected sets of the entries of the “ac-
tive matrix” (for general description, see [9]). We will use here the column and row
pivoting considered in [8]. This method is simple but may have break-downs (quiting
when a good approximation is not obtained) if applied as it is. A cheap practical
remedy proposed in [16] is a restarted version of this cross method. For the readers
convenience, we give here a brief description of the algorithm.

Algorithm 1 (Cross 2D). Given a matrix A of approximate rank r, approximate
it by a matrix Ãr, which is a sum of r rank-1 matrices upv

>
p (so-called skeletons).

(0) To begin with, take some column in A, for example, the first one. Set j1 = 1.
(1) Numbering the steps by p, set p = 1. Calculate column jp of the matrix A and

subtract from all elements the corresponding elements of already calculated
skeletons. In the resulting vector find the largest magnitude element. Suppose
it is located in the row ip.

(2) Calculate the row ip of the residue and the next pivot which is its largest
magnitude element with a restriction that the element from the jp-th column
can not be chosen again (see Fig. 4.1). Suppose this pivot is located in the
jp+1-th column.

(3) Calculate the new cross centered at (ip, jp).
(4) If a stopping criterion is not satisfied, set p := p + 1 and go to step 1.

The approximation Ãp =
∑p

α=1 uαv>α is considered good, if

‖A− Ãp‖ ≤ ε‖A‖F ≈ ε‖Ãp‖F .

However, the exact computation of the error requires all matrix elements and n2 op-
erations, which is unacceptable. At the same time, the norm ‖Ãp‖F can be computed

6

via the formula

‖Ãp‖2F =
m∑

i=1

n∑

j=1

(
r∑

α=1

uiαvjα

)2

=
r∑

α=1

r∑

α′=1

(uα, uα′)(vα, vα′),

using O(p2n) operations. And as practical estimator of the error (stopping criterion),
we use the norm of a newly computed rank-1 correction. Specifically, we stop if

(n− p)‖up‖2‖vp‖2 ≤ ε‖Ãr‖F .

The number (n − p) is a heuristic constant. Note that after p steps of the cross
algorithm exactly p rows and columns of the residue are zeroed, so if we assume
that the error is ”equally distributed” among the remaining (n − p) rows than we
immediately arrive to the presented stopping criteria.

Such version of the cross method requires 2rn evaluations of matrix elements and
O(r2n) additional operations (the reason to count the number of element computa-
tions is that the calculation of one element may be a very time-consuming operation).
Even if the stopping criteria is satisfied, in some cases the obtained approximation
is not good enough (but this happens not very often). To make the method more
robust, the restart step is performed: we create a sample from the elements of the
residue matrix A− Ãr. If the error, estimated from that sample is large, we proceed
with step 3 using the largest magnitude element in the sample as a pivot.

4.2. Towards the 3D-cross method. Consider the unfoldings of the array
A (rectangular matrices of sizes n × n2 defined by (1.2)) and apply to them the
cross approximation algorithm. If the array A possesses a good Tucker rank-(r,r,r)
approximation, then there exist rank-r approximations for the unfoldings A(1), A(2),
A(3) which are also good:

Ã(1)
r = UΨ>1 Ã(2)

r = V Ψ>2 Ã(3)
r = WΨ>3 ,

where U, V, W are n× r matrices with orthonormal columns and matrices Ψ1,Ψ2,Ψ3

are n2×r. The Tucker core is calculated by the convolution of the form (1.4) with aijk

being replaced with their approximate values. For example, using the decomposition
by the first direction, Ã

(1)
r = UΨ>1 , we have

aijk ≈ ãijk =
r∑

α=1

uiαψ1
jkα.

Substituting this into (1.4), we obtain

gi′j′k′ =
n∑

i=1

n∑

j=1

n∑

k=1

(
r∑

α=1

uiαψ1
jkα

)
ũii′ ṽjj′w̃kk′ =

=
r∑

α=1

(uα, ũi′)




n∑

j=1

n∑

k=1

ṽjj′w̃kk′ψ
1
jkα


 .

(4.1)

This computation needs O(n2r) evaluations of the elements of A plus O(n2r2) oper-
ations.

Of course, O(n2) is much smaller than the total number of elements in the array
A, but it is still too large when n is about 103.

7

Fig. 4.2. The work of the 3D-cross method. The big filled and empty dots correspond to
elements for the ”outer” cross algorithm and small dots show elements used for the ”inner” cross
algorithm, approximating a particular two-dimensional slice

4.3. How to achieve linear complexity. We want to achieve linear complexity
in n. To this end, we have to get rid of the computation of all elements in the slices
of A used in the unfoldings (1.2) (then we avoid n2-long vectors). We suggest to
approximate the slices by the same cross algorithm developed for matrices. Since A
has a good Tucker approximation with the accuracy ε, each slice Ak = [(ak)ij] can be
accurately approximated by a rank-r matrix. In what follows, we will never store a
slice as a full n × n matrix and never refer to all its elements. Instead, we deal only
with some low-rank approximations for the slices.

Algorithm 2. Given an n× n× n array A, take one of the indices i, j, k as the
“leading index”, let it be k. Then consider the corresponding unfolding matrix of size
n× n2 and approximate it applying the cross method. The columns of the unfolding
matrix are calculated as usual, but each of the “long” rows is considered as a matrix
of size n×n to be approximated by the same cross method. The expected number of
arithmetic operations is almost linear in sizes of the array: the complexity is O(nrd)
operations for some small d > 0.

(0) Numbering the steps by p, set p to 1 and select a slice Ak = [(ak)ij] in A, for
example, the first one. Set k1 to 1 and let

Ã = 0.

(1a) Find an approximation Akp to the kp-th slice of the residue R = A− Ãp by
the cross-method:

Akp =
r∑

q=1

upqv
>
pq.

(1b) Find the largest magnitude element in the matrix Akp , let it be located at
(ip, jp).

(2) Compute the row

(wp)k = Rip,jp,k

8

corresponding to the index (ip, jp) and find its largest magnitude element
from those whose index is not equal to kp. 1 Suppose it is located at the
kp+1-th position of wp. Perform the scaling:

wp := wp/wkpp.

(3) Compute a new approximation:

Ã = Ã+ Akp ⊗ wp = Ã+

(
r∑

q=1

upqv
>
pq

)
⊗ wp = Ã+

r∑
q=1

upq ⊗ vpq ⊗ wp.

(4) If the stopping criterion is not satisfied, set p := p + 1, and go to step 1.
In the end, the array A is approximated by Ã = [ãijk] having a Tucker-like

decomposition (also viewed as a trilinear decomposition) of the form

ãijk =
r∑

p=1

(
r∑

q=1

uipqvjpq

)
wkp =

r2∑
α=1

uiαvjαwkα. (4.2)

During the implementation of this method, we encounter several problems that
should be solved with a linear complexity in n:

• Determine the largest magnitude element in a low-rank matrix (step 1b);
• Estimate the quantities in the relationships

‖A − Ã‖F 6 ε‖A‖F ≈ ε‖Ã‖F

so that to have a sound stopping criterion (step 4).
The first problem is not trivial and we do not know if there is an exact and fast

way to find a maximal element in a low-rank matrix. However, we are able to design
a heuristic algorithm, based on the submatrix of maximal volume. It manifests a very
good practical performance (see Appendix).

The stopping criterion in the 3D-Cross method is identical to the 2D case, by
the comparison of the approximant norm and the norm of a newly computed cross-
correction. The norm ‖Ã‖F is computed by the formulas

‖Ã‖2F =
n∑

i=1

n∑

j=1

n∑

k=1




r2∑
α=1

uiαvjαwkα




2

=

=
r2∑

α=1

r2∑

α′=1

(uα, uα′)(vα, vα′)(wα, wα′).

The cost of Algorithm 2 is O(nr2) evaluations of the elements of A plus O(nr4)
arithmetic operations (at each “outer” step of the method we compute a new slice from
which we should subtract the elements of the previously computed approximation,
and that results in a relatively big constant r4 at the size n). This is already a
linear complexity. However, we are going to present a “clever” implementation with
a significantly better performance.

1It is the worth to note we can not use also elements with indices k1, ..., kp−1 but it can be
verified that they are all zeroes, so they can not have maximal modulus.

9

4.4. The 3D-cross algorithm. We can improve the efficiency of Algorithm 2
by using a more compact way to store and handle the slices Akp

so that the required
number of vectors to represent them is reduced from O(r2) to O(r).

At each step we approximate the computed slices Akp in the format

Akp = UBpV
>, (4.3)

where n × r matrices U, V are orthogonal and the core matrices Bp are r × r. It
is worth to note that the equation (4.3) is also known as a Tucker2 decomposition,
where only 2 of 3 modes are compressed. The storage for p slices is now 2nr + pr2

which is asymptotically equal to O(nr). The existence of matrices U, V, follows from
the existence of a ”good” Tucker approximation. In fact, we can try U and V as
the Tucker factors. The computation of this simultaneous matrix decomposition is
equivalent to the computation of the Tucker decomposition of a n× n× p array

A′ = [Ak1 . . . Akp
],

Indeed, if

aijkp =
r∑

i′=1

r∑

j′=1

r∑

p′=1

gi′j′p′uii′vjj′wpp′ ,

then, setting

r∑

p′=1

gi′j′p′wpp′ = bi′j′p = (bp)i′j′ ,

we immediately arrive at (4.3).
Another important modification concerns the computation of the slices. Suppose

the p steps are done and we are going to compute the p + 1-th slice Akp+1 . Instead of
using the “full” cross method for this slice, we first find an approximation of the form

Akp+1 ≈ UΦV >,

where U, V come from (4.3) and a matrix Φ is r × r. Such an approximation can be
obtained quite cheaply by the following scheme:

• Find r × r submatrices of maximal volume in U and V. Suppose they have
indices i1, ..., ir and j1, ..., jr. Denote these submatrices by Û and V̂ .

• Compute the r × r submatrix S in Akp+1 lying on the intersection of rows
with indices i1, ..., ir and columns with indices j1, ...jr.

• Compute

Φ = Û−1SV̂ −1. (4.4)

We can prove that this approximation approach is robust (see Appendix B). After Φ is
computed, we check the approximation error by taking some random samples of a true
matrix Akp . If the approximation is not good enough, then we perform some steps of
the cross approximation algorithm, starting from a good approximation. However, as
a rule, only a few steps (or even none) of the cross algorithm are required.

Algorithm 3 (Cross 3D). Suppose an n× n× n three-way array A is given.
10

(0) Perform one step of Algorithm 2 (with p = 1). Upon completion, p = 2 and
A is represented as

Ã =

(
r∑

q=1

u1qv
>
1q

)
⊗ w1 =

r∑
q=1

u1q ⊗ v1q ⊗ w1.

Compute orthogonal U, V by the two QR-decompositions

U1 = URu, V1 = V Rv.

Then A is represented as

Ã = (URuR>v V >)⊗ w1 = (UB1V
>)⊗ (w1/‖w1‖2),

B1 = RuR>v ‖w1‖2.
Set w1 := w1/‖w1‖,. Note that we will normalize all computed vectors
up, vp, wp. In the vector w1 compute the largest magnitude element, suppose
it has index k2.

(1.1) Compute Φ from (4.4). If necessary, perform some additional steps of the
cross method to obtain an approximation to the slice Akp

.

Akp ≈ Ãkp = UΦV > +
r1∑

q=1

upqv
>
pq.

(Note that r1 is supposed to be small even compared to r).
(1.2) Add new vectors upq, vpq, q = 1, . . . , r, to basises U, V and orthogonalize the

extended matrices [UUp], [V Vp]

[UUp] = [UÛp]
[

I Mu

0 Ru

]
, [V Vp] = [V V̂p]

[
I Mv

0 Rv

]
,

U>Ûp = 0, V >V̂p = 0 ,̂U>
p Ûp = I ,̂V >

p V̂p = I.

(1.3) Compute new (r + r1)× (r + r1) core Bp

Bp =
[

Mu

Ru

] [
M>

v R>v
]
.

Other slices in new basis have the form

Akq = [UÛp]
[

Bq 0
0 0

]
[V V̂p]>, q = 1, . . . , p− 1.

Therefore, approximation Ap−1 is represented as

Ap−1 =

(
p−1∑
q=1

U ′B′
qV

′>
)
⊗ wβ ,

U ′ = [UÛp], V ′ = [V V̂p], B′
q =

[
Bq 0
0 0

]
, q = 1, . . . , p− 1.

Set also B′
p = Bp.

11

(1.4) In the new slice Akp
the largest magnitude element is found. Suppose it is

located in (ip, jp).
(2.1) The fiber wp, of the residue A− Ãp−1 corresponding to (ip, jp) is computed.
(2.2) Vector wp is orthogonalized to vectors W = [w1, . . . , wp−1]

wp =
p−1∑
q=1

cqwq + ŵp, ω>q ŵp = 0, q = 1, . . . , p− 1.

Cores of “old” slices B′
q, q = 1, . . . p− 1, are modified

B′′
q = B′

q + cqB
′
p, q = 1, . . . , p− 1,

vector ŵp is normalized

wp := ŵp/‖ŵp‖2, B′′
p = ‖ŵp‖2B′

p.

(3) The approximation Ãp is represented as

Ãp =

(
p∑

q=1

U ′B′′
q V ′>

)
⊗ wq. (4.5)

To reduce the sizes of the matrices B′′
q (they are (r + r1)× (r + r1)), we apply

the Tucker reduction method:
(3.1) Create a three-way array (r+r1)× (r+r1)×p B′′ = [B′′

1 . . . B′′
p] and compute

its Tucker decomposition.

b′′ijk =
r∑

i′=1

r∑

j′=1

r∑

k′=1

g♣i′j′k′u
♣
ii′v

♣
jj′w

♣
kk′ .

If we introduce

r∑

k′=1

g♣i′j′k′w
♣
kk′ = b♣i′j′k = (b♣k)i′j′ ,

the we have

B′′
k = U♣B♣kV >

♣ , k = 1, . . . , p. (4.6)

where matrices U♣ and V♣ are (r + r1)× r, cores B♣k are r × r.
(3.2) Substituting (4.6) into (4.5), we obtain that

Ãp =

(
p∑

k=1

(U ′U♣)B♣k(V ′V♣)>
)
⊗ wk =

(
p∑

k=1

UBkV >
)
⊗ wk, (4.7)

where U = U ′U♣, V = V ′V♣ are orthogonal, cores Bk = B♣k are r × r. The
format (4.3) is restored.

(4) Check stopping criteria, if it is not satisfied, go to 1.1.
This is the final version of Cross-3D. The numerical complexity of the method is O(nr)
evaluations of the array elements and O(nr3) additional operations.

12

5. Numerical experiments. We illustrate the performance of our algorithm
on some model tensors which allow good low-rank approximation.

Specifically, we consider the following two types of arrays:

A = [aijk], aijk =
1

i + j + k
, 1 6 i, j, k 6 n,

B = [bijk], bijk =
1√

i2 + j2 + k2
, 1 6 i, j, k 6 n.

The rank estimates obtained in [15, 19, 20] have form

r 6 C(log n log2 ε),

where ε is an error of the approximation, so the rank grows only logarithmically with
n and ε.

These two examples arise from the numerical solution of the integral equations.
For example, the array B is obtained from the integral equation with kernel 1

||x−y||
acting on a unit cube and disretizied by the Nyström method on a uniform grid.

Table 5.1 shows the ranks, accuracies and size of the computed Tucker approxi-
mation for the array A, Table 5.2 shows the same for B. The accuracy of the approx-
imation was computed by sampling the elements of the array, since it is not possible
to check all the elements for large n. The size of the sample was determined by the
following rule: if the sample size was doubled, the estimated error should change by
no more than 10%. As it can be seen, the approximation method is robust and leads
to astonishing memory savings: the arrays that would need in the full format an
enormous storage of 2 petabytes (2 · 250 PB) are compressed to the sizes of 100 MB.

Moreover, our algorithm works with arrays on this huge scale on a personal work-
station. The timings made on a personal computer Pentium-4 with 3.4 Ghz clock are
shown on Fig. 5.1. This figure confirms that the approximation time is almost linear
in n. The somewhat irregular behavior on this plots is caused by the effects of caching
(for small n) and by some rank overestimation by the stopping criteria for large n.

13

Table 5.1
Numerical results

A = [aijk], aijk =
1

i + j + k
, 1 6 i, j, k 6 n

Rank and accuracy of the decomposition.
ε 1.10−3 1.10−5 1.10−7 1.10−9
n r err r err r err r err
64 5 2.510−4 8 2.310−6 10 1.410−8 12 3.110−10
128 6 6.810−4 8 4.410−6 11 3.110−8 13 6.410−10
256 6 8.810−4 9 3.910−6 12 5.410−8 15 3.010−10
512 7 7.410−4 10 1.410−6 13 6.810−8 16 5.210−10
1024 7 5.710−4 11 4.810−6 14 4.010−8 18 2.710−10
2048 7 6.610−4 12 2.010−6 16 4.010−8 19 4.010−10
4096 8 3.210−4 12 6.310−6 17 3.410−8 21 3.510−10
8192 8 6.310−4 13 3.310−6 18 1.910−8 22 4.510−10
16384 9 7.910−4 14 3.510−6 19 7.210−8 24 5.610−10
32768 9 6.410−4 14 8.810−6 20 5.210−8 25 3.810−10
65536 9 4.010−4 15 6.310−6 21 2.510−8 26 5.210−10

Rank and size (MB) of the Tucker decomposition
The sizes smaller than 1MB are not shown.

ε 1.10−3 1.10−5 1.10−7 1.10−9
n full r mem r mem r mem r mem
64 2Mb 5 8 10 12
128 16Mb 6 8 11 13
256 128Mb 6 9 12 15
512 1Gb 7 10 13 16
1024 8Gb 7 11 14 18
2048 64Gb 7 12 16 19
4096 512Gb 8 ¡1 12 1.1 17 1.6 21 2
8192 4Tb 8 1.5 13 2.5 18 3.5 22 4.2
16384 32Tb 9 3.4 14 5.25 19 7.2 24 9
32768 256Tb 9 6.75 14 10.5 20 15 25 19
65536 2Pb 9 13.5 15 22 21 31 26 39

14

Table 5.2
Numerical results

B = [bijk], bijk =
1√

i2 + j2 + k2
, 1 6 i, j, k 6 n

Rank and size (MB) of the Tucker decomposition.
Values less than 1MB are not shown.

ε 1.10−3 1.10−5 1.10−7 1.10−9
n r err r err r err r err
64 7 3.710−4 11 3.910−6 14 5.710−8 18 2.210−10
128 8 5.110−4 12 5.910−6 17 2.010−8 20 5.610−10
256 9 4.110−4 14 6.410−6 19 3.410−8 23 4.510−10
512 10 4.910−4 15 6.710−6 21 2.910−8 26 3.210−10
1024 10 5.510−4 17 3.210−6 23 3.910−8 29 4.710−10
2048 11 5.010−4 18 5.210−6 25 6.810−8 31 5.910−10
4096 12 8.410−4 19 4.210−6 27 3.510−8 34 3.310−10
8192 12 6.810−4 20 6.010−6 28 5.810−8 36 3.610−10
16384 13 2.710−4 22 4.810−6 31 5.610−8 39 2.610−10
32768 13 8.510−4 23 6.110−6 32 7.110−8 41 5.510−10
65536 14 6.210−4 24 6.510−6 34 7.810−8 44 1.410−9

Rank and accuracy of the Tucker decomposition.
Values less than 1MB are not shown

ε 1.10−3 1.10−5 1.10−7 1.10−9
n full r mem r mem r mem r mem
64 2Mb 7 11 14 18
128 16Mb 8 12 17 20
256 128Mb 9 14 19 23
512 1Gb 10 15 21 26
1024 8Gb 10 17 23 29
2048 64Gb 11 ¡1 18 ¡1 25 1.18 31 1.46
4096 512Gb 12 1.15 19 1.78 27 2.54 34 3.2
8192 4Tb 12 2.25 20 3.75 28 5.3 36 6.8
16384 32Tb 13 4.9 22 8.25 31 11.7 39 14.7
32768 256Tb 13 9.75 23 17.25 32 24 41 31
65536 2Pb 14 21 24 36 34 51 44 66

15

Fig. 5.1. Approximation time, sec.

A = [aijk], aijk =
1

i + j + k
, 1 6 i, j, k 6 n

ε = 10−9

ε = 10−7

ε = 10−5

ε = 10−3

n log3
n

21821721621521421321221121029282726

104

103

102

101

100

10−1

10−2

10−3

B = [bijk], bijk =
1√

i2 + j2 + k2
, 1 6 i, j, k 6 n

ε = 10−9

ε = 10−7

ε = 10−5

ε = 10−3

n log3
n

21821721621521421321221121029282726

104

103

102

101

100

10−1

10−2

10−3

Two dense tensors considered come from a simple disretization of integral equa-
tions. Despite their ”regularity” they are quite representative: in more complex cases
our method behaves similarly. In other areas where tensor decomposition is used the

16

researchers often obtain more irregular and possibly sparse tensors. We want to note
that sparseness is ideal for the Cross-3D because in that case the residue can be mea-
sured exactly and the pivots during the cross approximation stage can be also found
exactly, leading to a theoretically robust method. The applications of the 3D-cross
approach to more complex tensors will be reported elsewhere.

Appendix A: How to find the maximal element in a slice. One of the
important ingredients of the 3D-cross method is the determination of the maximal
element in a given low-rank matrix in linear time.

Suppose we have computed a skeleton approximation to a low-rank matrix

A = UV >,

where U, V are n× r, and we want to find the largest magnitude element in it. This
problem can be solved by comparing all the elements of the matrix, but it costs O(n2)
operations. The proposed algorithm is based on the following hypothesis.

Hypothesis. Consider r × r submatrices in a rank-r matrix A. Let B be a
submatrix of maximal volume among all such submatrices. Then

||B||C > ||A||C
r

.

So the maximal element in the submatrix of maximal volume can not be very
much different from the maximal element in the whole matrix A.

How to determine a submatrix of maximal volume? This submatrix of A lies on
the intersection of rows i1, . . . , ir, coinciding with rows which contain the submatrix of
maximal volume in U, and columns j1, . . . , jr, which contain the submatrix of maximal
volume in V >. To find the submatrix of maximal volume in a n×r matrix we will use
the algorithm, proposed in [12]. For the readers convenience we describe it below.

Algorithm 4. Suppose U is n× r. and its r× r submatrix with maximal volume
is needed.

(0) Let Aγ be a leading submatrix. In the beginning set Aγ to any nonsingular
submatrix of A and permute the rows so that Aγ is located in the first r rows.

(1) Compute

AA−1
γ =

[
Ir×r

Z

]
= B.

(2) Find the largest magnitude element |zij | in Z.
(3) If γ = |zij | > 1, then

Permute in B rows r + i and j. The upper submatrix in B after the
permutation has the form




1
. . .

∗ ∗ γ ∗ ∗
. . .

1




and its determinant is equal to γ > 1 + ε, i.e. it increased. Denote by
Aγ the new submatrix in the first r rows of A and return to step 1.

Otherwise terminate the algorithm.
In practice, to avoid huge number of transpositions a more “soft” stopping criteria is
used in step 3. The algorithm stops if |zij | 6 1+ν, where ν is a some small parameter.

17

Appendix B: The UΦV > decomposition. In this appendix we will prove
that the usage of (4.4) for the construction of the low-rank approximation to a slice
is “legal”.

Theorem 5.1. Suppose A is a n1 × n2 matrix, U, V are n1 × r1 and n2 × r2

matrices with orthogonal columns and there exists matrix Φ such that

A = UΦV > + E, ||E||F 6 ε.

Then, if we compute Φ′ by the formula (4.4) then

||A− UΦ′V >||F 6 √
n1r1n2r2ε.

Proof.
If Û and V̂ are submatrices of maximal volume in U and V respectively and Â is

a submatrix in A lying on the intersection of the selected rows from U and columns
from V > then

Â = ÛΦV̂ > + Ê,

where Ê is a submatrix of E occupying the same positions in E as Â in A.

||Φ− Φ′|| 6 ||Û−1|| ||Ê|| ||V̂ −1||.

The norms Û−1, V̂ −1 can be estimated as follows. We know that the elements of

UÛ−1

are not greater than 1 in modulus (because Û is a submatrix of maximal volume).
Therefore,

||Û−1||F 6 √
n1r1.

Using this estimate we immediately complete the proof.

6. Acknowledgements. We are very grateful to both of the referees of our
paper. The remark of one of the referees helped us to discover a nasty bug in the
program code.

REFERENCES

[1] R. A. Harshman, Foundations of the Parafac procedure: Models and conditions for an explana-
tory multimodal factor analysis, UCLA Working Papers in Phonetics. V. 16. P. 1-84(1970).

[2] Three-mode Company, three-mode.leidenuniv.nl
[3] P. Comon, Tensor decomposition: State of the Art and Applications, IMA Conf. Math. in

Signal Proc. Warwick, UK, Dec. 18-20, 2000.
http://www.i3s.fr/~comon/FichiersPs/ima2000.ps

[4] J. D. Caroll, J. J. Chang, Analysis of individual differences in multidimensional scaling
via n-way generalization of Eckart-Young decomposition, Psychometrica. V.35. P. 283-
319(1970).

[5] R. Bro, PARAFAC: Tutorial and applications Chemom. Intelligent Lab. Systems., V. 38. pp.
149-171 (1997).

[6] G. Beylkin, M.M. Mohlenkamp, Numerical operator calculus in higher dimensions, PNAS, V.
99, No. 16, pp. 10246-10251(2002)

[7] M. A. O. Vasilescu, D. Terzopoulos, Multilinear Image Analysis for Facial Recognition, Proc.
of Int. Conf. on Pattern Recognition (ICPR 2002), V. 2, Quebec City, Canada, Aug, pp.
511-514 (2002).

18

[8] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., V. 86, No. 4, P.
565–589 (2000).

[9] J. M. Ford, E. E. Tyrtyshnikov, Combining Kronecker product approximation with discrete
wavelet transforms to solve dense, function-related systems, SIAM J. Sci. Comp., V. 25,
No. 3. P. 961–981 (2003).

[10] L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value decomposition,
SIAM J. Matrix Analysis Appl., 21, pp. 1253–1278 (2000).

[11] L. De Lathauwer, B. De Moor and J. Vandewalle, On best rank-1 and rank-(R1, R2, ..., RN)
approximation of high-order tensors, SIAM J. Matrix Analysis Appl., 21, pp. 1324–1342
(2000).

[12] S. A. Goreinov, Pseudoskeleton approximations of block matrices generated by asymptotically
smooth kernels, Ph. D. Thesis, INM RAS, 2001 (in Russian).

[13] S. A. Goreinov, E. E. Tyrtyshnikov, The maximal-volume concept in approximation by low-rank
matrices, Contemporary Mathematics, V. 208, P. 47–51 (2001).

[14] S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, A theory of pseudo–skeleton approxi-
mations, Linear Algebra Appl. 261, P. 1–21 (1997).

[15] W. Hackbusch, B. N. Khoromskij, E. E. Tyrtyshnikov, Hierarchical Kronecker tensor-product
approximations, J. Numer. Math., V. 13, P. 119–156 (2005).

[16] D. V. Savostianov, Mosaic-skeleton approximations, Master Thesis, INM RAS, 2001 (in Rus-
sian).

[17] E. E. Tyrtyshnikov, Mosaic–skeleton approximations, Calcolo, V. 33 (1-2), P. 47–57 (1996).
[18] E. E. Tyrtyshnikov, Incomplete cross approximation in the mosaic–skeleton method, Comput-

ing, V. 4, P. 367–380 (2000).
[19] E. E. Tyrtyshnikov, Kronecker-product approximations for some function-related matrices,

Linear Algebra Appl., V. 379, P. 423–437 (2004).
[20] E. E. Tyrtyshnikov, Tensor approximations of matrices generated by asymptotically smooth

functions, Sbornik: Mathematics 194, No. 5-6, 941–954 (2003).
[21] I. Ibraghimov, Application of the three-way decomposition for matrix compression, Numer.

Linear Algebra Appl., V.9, No. 6-7. P. 551–565 (2002).
[22] V. Olshevsky, I. V. Oseledets, E. E. Tyrtyshnikov, Tensor properties of multilevel Toeplitz and

related matrices, Linear Algebra Appl. 412, P. 1–21 (2006).
[23] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, V. 31,

P. 279–311 (1966).
[24] P. Drineas, R. Kannan, and M. W. Mahoney, SIAM J. Computing, 36, 158-183 (2006).

19

