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Abstract. Piecewise separable matrices are introduced as a natural gener-
alization of semiseparable and profile-low-rank matrices. It is shown that all
matrices from this class possess linear matrix-by-vector complexity.

1 Introduction

Separability is a pervasive concept in functions of two variables, where it
means (as a rule, approximate) separation of the variables, and in matrices,
where it means approximation by an outer product of two vectors (also known
by the name of dyad, skeleton, or matrix of rank 1). Usually, separabilty
is related to a certain “smoothness” of data and might not extend to the
whole of data, e.g. all entries of an invertible matrix. However, in such
cases there could be blocks of the entries where this property still applies (cf
[7, 12, 13, 14]).

Also, it was discovered long ago that inverses to banded matrices possess
separability in domains of a more complicated shape than rectangular blocks.
The first reference to the case of tridiagonal matrices with nonzero boundary
diagonals is probably Gantmacher and Krein [8] (see also [1, 2] and a thorough
look back into the history in [17]).

In the latter case, the inverse has its lower and upper triangular parts
as those cut of from some rank-1 matrices, generally different but coinciding
along the main diagonal. This is a prototype of a semiseparable matrix. An
important generalization arises by adding an arbitrary diagonal (see [3, 5,
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6, 9]). Another generalizations appears from the claim that any submatrix
located totally in one of the strictly lower or upper triangular parts is of rank
1 (so-called quasiseparable [4] or weakly semiseparable [15] matrices).

One more generalization used in the study of Kronecker-product approx-
imation is that of profile-low-rank matrices [12] (instead of formal definition,
have a look at Fig. 1).
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Figure 1: A profile-low-rank matrix.

The purpose of this note is some remarks on the matrix-by-vector com-
plexity for matrices with the above and a little generalized separability prop-
erties. This topic is directly addressed in the studies of multilevel matrices
with separable blocks resulting there in O(n logα n) estimates, α > 0 depend-
ing on the context (cf [12, 14, 16]). It is easy to see that a straightforward
recursive divide-and-conquer approach to a semiseparable matrix of order n
delivers a O(n logn) procedure. However, this certainly ignores some of this
structure, because an O(n) algorithm is almost equally immediate.

Indeed, consider a matrix A with the entries

aij =

{
uivj, i ≥ j,

0 , i < j.

Then y = Ax with y = [yi], x = [xi] can be obtained in the following way:

(1) Initialize w0 = 0.

(2) For i = 1, 2 . . . , n compute

wi = wi−1 + vixi.

(2) For i = 1, 2 . . . , n compute

yi = uiwi.
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In [12] it was observed that the linear complexity holds also for profile-
low-rank matrices. Here we introduce a wider class of matrices with arbitrary
curvilinear “profiles” and still with the same linear complexity. This kind of
structure appears naturally in matrices composed of the values of a piecewise
smooth function on some grids (cf.[12]).

2 Piecewise separability

Definition. A matrix A = [aij ] of order n is called piecewise separable if

aij =

⎧⎪⎪⎨
⎪⎪⎩

u0
i v

0
j , τ 0

i < j ≤ τ 1
i ,

u1
i v

1
j , τ 1

i < j ≤ τ 2
i ,

. . . . . .

up
i v

p
j , τp

i < j ≤ τ p+1
i ,

where uk
i , v

k
i are given values and τk

i are given indices subject to the following
inequalities:

0 = τ 0
i ≤ τ 1

i ≤ . . . ≤ τ p
i ≤ τ p+1

i = n, i = 1, . . . , n.

Clearly, the storage for such a matrix is O(pn).

When p = 1 and aij = 0 for τ 1
i < j ≤ n, we call A a standard one-piece

matrix. Obviously, any piecewise separable matrix with p boundaries can be
written as a sum of O(p) standard one-piece matrices. Hence, from the point
of matrix-by-vector multiplication, it is sufficient to investigate only the case
of standard one-piece matrices.

Thus, let A be a standard one-piece matrix. Then, denote by

0 = τ0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τn

the same indices τ 1
1 , τ 1

2 , . . . , τ 1
n taken in the non-decreasing order. We can

write τi = τ 1
σ(i) for an appropriate permutation σ. Consider now a new

standard one-piece matrix B = PA, where P = [pij] is a permutation matrix
defined by σ as follows:

P =

{
1, j = σ(i),
0, otherwise.
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Also, set ui = u1
σ(i) and vi = v1

i . Then B is a standard one-piece matrix with
generating values ui, vi and indices τi. We can reduce multiplication by A to
multiplication by B and then by P−1 = P�.

Algorithm. Computation of y = Ax is done by the following steps:

(1) Initialize w0 = 0.

(2) For i = 1, 2 . . . , n compute

wi = wi−1 +

τi∑
j=τi−1+1

vjxj .

(3) For i = 1, 2 . . . , n compute

yσ(i) = uiwi.

The operation count finishes with an O(n) estimate because of the evident
inequality

n∑
i=1

(τi − τi−1) ≤ n.

This proves (together with the previous remarks) that any piecewise sep-
arable matrix with p boundaries can be multiplied by a vector in O(pn)
operations.

3 Piecewise quasiseparable matrices

It is interesting to note that recently introduced quasiseparable [4] and weakly
semiseparable [15] matrices can be also considered as piecewise separable
matrices.

Quite formally, we can introduce a notion of piecewise quasiseparable ma-
trices: consider the index domains

Ik = {(i, j) : τk−1
i < j ≤ τk

i , 1 ≤ i ≤ n}
and require that any submatrix with indices (i, j) ∈ Ik is of a bounded rank
(e.g. 1). It is likely, all the same, that there should be some additional
requirements on the boundaries for this class to be really useful.

4



Consider first the case of one boundary defined by τi = τk
i , and assume

that A is such that all submatrices in each of the two index domains I1 and
I2 have rank less than or equal to 1. By row permutations, we can transform
A into a matrix with a monotone boundary. Thus, without loss of generality,
assume that τ1 ≤ τ2 ≤ . . . ≤ τn. In the upper domain I2, take up any 2 × 2
block [

α β
γ δ

]
.

and suppose that α �= 0. Then, β = 0 or γ = 0 if and only if δ = 0. This
simple observation results in the following. Let

a1j1 �= 0 and a1j = 0, j > j1.

Then aij = 0 for all (i, j) ∈ I2, j > j1. Thus, we can introduce an additional
monotone boundary in the upper part of A so that the third domain consists
of zeroes and the middle domain consists of the two subdomains belonging
to different diagonal blocks in a 2 × 2 partitioning of A. The first of these
subdomains is clearly a part of a matrix of rank 1. The second one may
undergo a similar partitioning. Applying the same procedure recursively, we
come up with one additional boundary in the upper domain. The part of A
between the original and new boundaries can be embedded into a matrix of
rank 1, and the part upper the new boundary contains only zeroes. Similarly,
an additional boundary can be constructed in the lower domain I1. All in all,
the two additional boundaries convert A into a piecewise separable matrix
with three boundaries.

The same construction can be applied to a more general case of a qua-
siseparable matrix with any number of monotone boundaries. Thus, a qua-
siseparable matrix with p monotone boundaries can be described by O(pn)
generating parameters and multiplied by a vector in O(pn) operations.

An open question is whether the number of generating parameters and
matrix-by-vector complexity remain linear for an arbitrary piecewise separa-
ble matrix. Also, notice a problem of finding generating values and indices
from a given sample of the matrix entries. Theory and algorithms for some
particular cases are developed in [7, 10, 11, 16], but better insight and ex-
tensions are still in need and in line with very interesting applications.
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