A Matrix View on the Root Distribution
for Orthogonal Polynomials *

To my Italian friends in Pisa and around

E. Tyrtyshnikov

Abstract

A new message is a simple matrix-based proof of the equal distribution property for
the roots of polynomials orthogonal on an interval.

1 Introduction

Consider polynomials p, () = pon + P1nT + ... + Prpx™ (with all the coefficients real and
the senior one positive) orthogonal in the following sense:

1
/pm(:v)pn(w)da(x) = -
41

(As usual, 0y, is 1 for m = n, and 0 otherwise.)
Here, o(z) is a monotonic function with infinitely many points of growth. For such a
o(x), we always have a uniquely determined infinite sequence of orthogonal polynomials.

The elementary facts about the orthogonal polynomials are the following;:
e They satisfy the three-term recurrences
xpn(x) = /Bn—lpn—l(x) + anpn (:E) + 5npn+1(flf)-

e Their roots are all inside [—1, 1], and, moreover, the roots of p,, () and p,1(z) satisfy
the so-called interlacing inequalities.

Any other fact from a good lot of them [1, 5] is not that elementary. Not in the least
this applies to the celebrated equal distribution property of the roots for any o(z) from a
pretty wide class.
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To be precise, recall that two sequences of n-tuples of real numbers, {a;,}7; and
{bin}i—,, are said to be equally distributed if, for any F(z) continuous with a bounded
support,

) 1 & 1 &
Jim <EZ:1F(%") - ﬁz;F(bm)> = 0.

With this definition, we have the following theorem.
THEOREM 1.1. Assume that a;, and b;, are the roots of orthogonal polynomials
associated with any two functions o4(x) and op(x) providing that

1
log o’ (x)

(1) J N

dr > —o0

(for o = o4 and oy,). Then the roots aj, and bi, are equally distributed.
The proof is given in [5, 2]. However, it involves many nontrivial constructions far short
of the matrix analysis framework. In this note, we propose a simple matrix-based proof.

2 Main result
Below we present a new proof of Theorem 1.1.

1. The roots of p,(x) coincide with the eigenvalues of the following Hermitian tridiagonal
matrix:
a
B o P
(2) A, = e e
Bn-2 Qn-2 [Bn-1
Bn-1 Qn_1
(This can be found anywhere, for example, in [7].)

2. Given two sequences of Hermitian matrices A, and B,, assume that there exist
Hermitian matrices E, and R, such that

(3) A,—-B,=E,+R,, ||En||% =o(n), rankR, = o(n).

Then the eigenvalues of A,, and B,, are equally distributed.
(This is the matrix indication for the equal distribution property proposed in [6].)

It is more convenient, sometimes, to prove that, for any € > 0, it is possible to split
A, — By, = Eo, + Ry, s0 that ||E.,||% < en and rank R.,, < en for all n sufficiently
large. This implies that there exist some E, and R, satisfying (3).

3. For the Chebyshev polynomials, we have

1
ay =0, 57125 vV n.
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Their roots are the eigenvalues of

02
3 0 3
(4) A
2 002
10
4. If the relation (1) is fulfilled, then [5]
) li =0 li _ 1
(5) it o =0, lim B =3

5. Using (5), it is an easy matter to show that, for the matrices defined by (2) and (4), we
have exactly (3). Let € > 0, and take up N = N (e) such that |oy| <&, [B,—3| <e
for all m > N. Set

0 0
0 {An— B}l nii

Then A, — B, = E.,, + R.,, and, obviously,

Esn = ) Rsn = An - Bn - Een-

|Eonl|% < en, rank R., <2N.

Since ¢ is arbitrary, this implies (3).

We conclude immediately that the roots of any orthogonal polynomials are distributed
equally with the roots of Chebyshev polynomials. Thus, the proof of Theorem 1.1 is
completed.

We could stop at this. However, since the proof of the limiting relations (5) in
[5] is somewhat ”distributed” through several chapters, it might be useful to sketch a
straightforward way to them. We will do this in the next section.

3 WhyOand% ?

We answer the question through a sequence of 7 articles as follows.

1. Consider the orthogonal polynomials ¢y, (2) = ¢on + d1p2 + ... + Pppz™ on a circle
(let ann > 0)

2T
©) (b ba) = 5 [ Bua(e) Gale) dia(t) = G
0

Denote by M,, the matrix of moments:
My, = [my] = [(e*, ") 1.
Then, from (6) it readily follows that

boo Boo o1 -+ Pon
do1 P11 M, b1 - Pip

bon bin e dun b
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Therefore, the columns

$0n ¢nn

Yn = bnn e ) Tn = JIn Y = Pnn

qsnn ¢0n
are the last and the first ones in M, '. Here, .J, puts the entries into the reverse order.
(The assertion for y, stems directly from the above matrix equation. Concerning ,

we need to recognize in M, a Toepitz matrix, that implies M, = .J,, M,.J, and, hence,
(M) = J,(M; ))TJ,. Take into account also that M, = M}.)

2. In the field of matrix computations, it is well-known that, for the inverses
to nonsingular Toeplitz matrices embedded to some larger matrix, z,4+1 and yp4; are
some linear combinations of specifically augmented z, and y, (this is behind Levinson’s

algorithm; see [3, 4]):
0
+ d .

(7) Tn+1 = Cp [ 0
(The equation for y,4+1 can be obtained from this by applying J,, 1 to both sides.)

The appearance of (7) suggests that we have some relations between ¢, (z) and ¢} (z),
their reversal polynomials, defined as follows:

QSZ(Z) = ann +...+ alnzn_l +50nzn = 2" an(z_l)'

The familiar two-term recurrences come up directly from (7):

(8) ¢n+1(z) = 'Ynz¢n(z) + 5n¢:;(z)a ¢Z+1(Z) = gnz¢n(z) + '7n¢:;(z)a
where, as is easy to check,

. ¢n+1n+1 P - ¢0n+1
= — n=—.

g )

3. If we would have wanted to make a step towards computations, we need to determine
the unknown coefficients in (7). To this end, multiply (7) by My+1, and then, since M, 1
is Toeplitz,

1 :Cn+dnGna OZCnGn+dna

where, as is readily seen,

Gn=m_1Yon + .-+ M_pYnn = MpZop + - - + M1Tpp-

It follows that

1 _
®) =TT =G = - ldl =
n
Consequently,
(10) ¢%+1n+1 - ¢%m = |¢0n—|—1|2 = 772L - |5n|2 =L

It implies that the senior coefficient ¢,,,, increases monotonically.
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4. We want to have ¢, converge to some finite limit. In line with the above, it is
sufficient to know that ¢y, is upper-bounded. For this, we make use of a short yet elegant
chain of inequalities (due to Szegd) as follows:

¢—2 — i 7 ¢:L(eit) ’ d (t) > i 7 :,(eit) ’ l(t) d (t)
" 27 0 $nn 2 0 $nn . a
.- i?l @\
> owd o [og (| ) auo
1 027r
= exp oo 0/10g,u'(t) dt

(Some explanation, for the last passage, will appear in a minute.)

It is clear now that if we assume that
1 2
(11) S /logu'(t)dt >~ oo,
0

then, for some finite number ®,
(12) b = . = don =0, Y —1, & —0.

Moreover, allowing for (10), we have

[oe] [oe]
(13) Soal? < +o00, D gl < 400
n=0 n=0

Note that, in the above chain, we use that

27
1 * (it |2
exp oy /log (‘% >dt =1,
0

for ¢%(0)/¢nn = 1 and the function under the integral is analytic. The latter emanates from the
fact that all zeroes of ¢ (z) lie strictly outside the unit circle.

The proof for this is more or less straightforward: it is based chiefly on (8), and uses, in
particular, the imposing Cristoffel-Darboux formula: !

(14 > 0u0) 3 = O Eo 0= 0us(0) 5G]

Let # = y and ¢}, ,(z) = 0. If 1 — |z|> > 0, then it contradicts (14). If |z| = 1, then
Ont1(x) = o () =0 = ¢u(x) = ¢)(x) =0, and so on. Eventually, we conclude that z is

!This can be readily derived from (8) by induction, and relies, above all, on the relation 72 — |§,|* = 1,
which we have derived above from Levinson’s formulas.
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the root for ¢g(z) and ¢§(x), which is impossible.

5. We need to prove, to boot, that

(15) §251n —0
and
(16) an n+1 — ¢n71n — 0.

On equating the coefficients at z and 2™ in the first relation from (8),

QSI n+l — 'Yn¢0n + 5n$n71 no Cbn n+l — 'Yn@snfl n+ 5n$0n-

Since v, — 1, &, — 0, and ¢y, — 0, we obtain the said limits as soon as we show that
¢n—1n is bounded. Using the same relation from (8) recursively, we have

|pn—1n] < cne1|0n=1|lpon-1] + ... + coldo||Pool,

where
¢n— 1n—1 S i )
$00 $00

The boundedness of |¢,,_1 | follows by applying the Cauchy inequality and recollecting (13).

GG = Yo—1-7% <

6. For any o(z), the orthogonal polynomials p,(z) on [—1,1] can be juxtaposed to
some orthogonal polynomials ¢, (z) on the unit circle [1, 5]. The latter ones emerge if we
take

() = —o(cost), 0 <t <m,
B =3 o(cost), m <t < 2m

Since p(t) is an odd function with respect to m, the matrix of moments M,, (see Article 1)
is now a real symmetric positive definite matrix. Hence, from the Cholesky decomposition
of M !, the coefficients of the polynomials orthogonal on the circle for u(t) are real. Note
also that, for any functions f(z) and g(z),

2w

/p(cos z)g(cos x) du(t).

0

N —

1
(17) [ p(@)g@)dota) =
~1

It is not difficult to verify that, for z = elt,

* 2n . .
¢2n(z);¢2n(z) _ Z(¢k2n+a2nfk,2n) elkt—mt

k=0

n
= 2¢non +2 Z(an—k 2n + ¢n+k,2n) cos kt
k=1

is a polynomial in

1
x = 5(24—271) = cos t.
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Any two of them, for different n, are orthogonal with respect to o(z), because

2w 2n

/ > (fron + bon—k2n) €FT M dpu(t) =

o k=0

/¢2n it elm n) d/J, +/¢2 elt —i(m4n) dlj'() 0

for —n+1 < m < n —1 (the first integral is equal to 0 for —n + 1 < m < n while the
second one is for —n < m < n — 1). More precisely [1, 5],

Pon(2) + ¢5,(2) 1
2" c(1+vy)’

(18) Pn(z) =

where

¢ 02n

c=V2r, 1+4uv,=4/1+ .
¢2n2n

Indeed, using (17), we have

/|¢2n )+ Bom € 2] du(t) /|¢2n 2 duu(t) +Re/¢zn €12t gy (1),

where the first integral is equal to 27 while the second is

2

Re /¢2n(6) boon e 2" du(t) = 2 %021
0

¢2n 2n ‘

What is important for us is only that ¢ is a constant and v, — 0. As is easy to see, if
o(x) is subject to (1), then u(t) satisfies (11). That provides us with the limiting relations
for the coefficients of ¢o,(z). With that much, it is obvious that v, — 0.

From (18), we also have

(19) c(1+vn) pn(2) =2 ¢p2n + 2 Z(¢n+k on + Pn—k2n) coskt.
k=1

7. Write the three-term recurrences for p,(z) in the form

Qp, /anl

1
(20) pn+1($):E$Pn( )_B_npn( )—anﬂ(l“)-
On the strength of (19), the ratio of the senior coefficients for p, 11 and p,, is equal to

1, 1+m P2(n+1) 2(n+1) T Po2(n+1)
ﬁn 1+ Vp+41 ¢2n on T ¢0 2n ‘

The first coefficient (equal to 2) comes from the expansion of cosnt in the powers of
cost = x. From (12) we arrive immediately at 8! — 2.
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Further, on the comparison of the coefficients at ™ in both sides of (20),

9 P2(nt1)=12(n+1) T P12n41) 1 don1ontdr1on  am P2non+ doom

L4+ vnn _Bn 1+, Bn I+uv,
Here, we use that the expansion of cosnt in the powers of cost contains cos®t only for
k=mn,n—2,...,that is, for all £ of the same parity as n. From the above, it is clear now
that a, — 0.

I would like to thank Dario Bini, Stefano Serra Capizzano, Paolo Tilli, and Nickolai
Zamarashkin for their discussion and encouragement.
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