
THE FAST ALGORITHM FOR SIMULTANEOUS ORTHOGONAL
REDUCTION OF MATRICES TO THE TRIANGULAR FORM

I. V. OSELEDETS ∗ AND E. E. TYRTYSHNIKOV †

Abstract. We consider a problem of simultaneous reduction of a sequence of matrices by
means of orthogonal transformations. We show that such reduction can be performed by a series
of the deflation steps. At each deflation step a simultaneous eigenvalue problem, which is a direct
generalization of the generalized eigenvalue problem, is solved. A fast variant of Gauss-Newton
algorithm for its solution was proposed and the local convergence properties were investigated. We
illustrate the effectiveness of our algorithm by some numerical examples.

Key words. Simultaneous reduction of matrices, fast algorithms, convergence estimates

1. Introduction. The numerical algorithms for simultaneous reduction of sev-
eral matrices to the specific form (like triangular or diagonal) by means of some
simultaneous transformation of them is one of the most challenging problems in ma-
trix analysis [3, 5, 1]. The transformations can be: similarity transforms, equivalence
transformations, etc.

The problem we are going to tackle is the following problem of simultaneous
reduction of matrices to the triangular form:

Problem.Given r n-by-n matrices A1, ..., Ar find orthogonal n-by-n matrices Q
and Z such that matrices

Bk = QAkZ

are as upper triangular as possible. This problem can arise, for example, from the
computation of the Canonical Decomposition in tensor algebra, see [1] and references
therein.

It is well known, that when r = 2 such transformation can be performed explic-
itly and the corresponding decomposition is called generalized Schur decomposition,
therefore in [1] the decomposition in the case r > 2 was called the simultaneous gen-
eralized Schur decomposition(SGSD). It is clear that in case of arbitrary matrices Ak

such reduction(with good accuracy) is not possible, so we assume that there exist
orthogonal matrices Q and Z such that

QAkZ = Tk + Ek,

where Tk are upper triangular and the residue matrices Ek satisfy

(
r∑

k=1

(||Ek||F)2)1/2 = ε

and ε is considered to be ”small”. When ε = 0 we will say that matrices (A1, ..., Ar)
have an exact simultaneous generalized Schur decomposition, otherwise we will call
this decomposition a ε simultaneous generalized Schur decomposition (ε-SGSD).

The algorithms for simultaneous reduction of matrices are often obtained as gen-
eralization of corresponding algorithms for one matrix or a pair of matrices. It is

∗Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8,
Moscow(ivan@bach.inm.ras.ru).

†Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8,
Moscow(tee@inm.ras.ru).

1

worth to note about two approaches for solving problems of simultaneous reduction
of matrices. The first is a very general approach of [2]. However, the efficient numer-
ical implementation of that approach requires an integration a of possibly very stiff
ODE and that is a very hard problem. Another approach is a Jacobi-type algorithm.
At each step, two (or one) Jacobi rotations Qi and Zi are sought to minimize the
merit function, which in our case is

r∑
k=1

||Qi(QAkZ)Zi||2LF ,

where || ||LF is a sum of squares of all elements in the strictly lower triangular part
of the matrix, and Q and Z are orthogonal matrices that are already obtained at
previous steps. Such algorithm was proposed in [1] and it was shown that at each
step it requires rooting a polynomial of order 8.

In case of r = 2 (a pair of matrices) the well-developed tool for the computation
of the generalized Schur decomposition is the QZ-algorithm. Its generalization to the
case of several matrices was developed in [4] where it was called an extended QZ-
algorithm. However, the QZ-algorithm is only efficient when the shifts are used. It is
not clear how the technique of shifts can be generalized to the case r > 2.

In this paper we propose a new algorithm for the computation of the simultane-
ous generalized Schur decomposition. We show that it can be computed by a number
of deflation steps. At each step we solve an optimization problem in 2n + r vari-
ables which is a direct generalization of the generalized eigenvalue problem(we call
it simultaneous eigenvalue problem). The main ingredient of the algorithm is a fast
Gauss-Newton algorithm for the solution of this problem. We show that matrices
at successive iterative steps can be computed using cheap update technique. We
estimate the local convergence rate of our algorithm and prove that when matrices
A1, ..., Ar have an exact SGSD the algorithm has local quadratic convergence rate and
when these matrices have (ε-SGSD) the convergence is linear with the convergence
factor proportional to ε. The numerical experiments confirm the effectiveness of our
approach. For example, the computation of the SGSD on of 128 128-by-128 matrices
takes less than a minute.

2. Simultaneous eigenvalue problem and its solution.

2.1. Transformation of the initial problem. Suppose matrices A1, ..., Ar are
given and we want to find orthogonal matrices Q and Z making matrices QA1Z, ..., QArZ
as upper triangular as possible. In order to do this, first consider a related problem
finding orthogonal matrices Q and Z such that matrices QAiZ are reduced to the
following block triangular form:

QAkZ ≈
(

λk v>k
0 Bk

)
, (2.1)

where Bk is a (n-1)-by-(n-1) matrix, λk is a scalar and vk is a vector of length n-
1. If (2.1) is found, we have performed a deflation step and can start working with
matrices Bk. Performing the same operation with Bk we can finally reduce Ak to the
triangular form. So our main goal is the solution of (2.1).

The equations (2.1) are equivalent to

QAkZe1 ≈ λke1,

2

where e1 is a first column of the identity matrix. Since Q is orthogonal, we can
multiply these equations from the left by Q> without changing the residue:

AkZe1 ≈ λkQ>e1.

Now introduce two vectors x = Ze1 and y = Q>e1. We have the following overdeter-
mined system of equations to be solved(in a least squares sense, of course):

Akx = λky. (2.2)

It can be seen that when r = 2 we have a well-known generalized eigenvalue problem
for a pair of matrices A1, A2, so we will refer to the problem (2.2) as simultaneous gen-
eralized eigenvalue problem or simply simultaneous eigenvalue problem (SEP). Since
x, y, and λk are defined up to a multiplication by a constant the following normalizing
condition will be used:

||x||2 = 1.

The solution of the simultaneous eigenvalue problem (2.2) is the key ingredient of
the algorithm and will be described in the next section. Suppose now that we have a
”black box” subroutine for solving (2.2). Then the algorithm for calculation of SGSD
is:

Algorithm 2.1.
Given r n-by-n matrices A1, ..., Ar find an orthogonal matrices Q and Z such that

QAkZ are as upper triangular as possible:
1. Set

m = n, Bi = Ai, i = 1, ..., r, Q = Z = I.

2. If m = 1 stop
3. Solve simultaneous eigenvalue problem

Bkx = λky, k = 1, ..., r.

4. Find m-by-m Householder matrices Qm, Zm such that

x = α1Q
>
me1, y = α2Zme1.

5. Calculate matrices Ck as (m-1)-by-(m-1) submatrices of matrices B̂k defined
as

B̂k = QBkZ =
(

αk v>k
εk Ck

)
.

6. Set

Q←
(

I(n−m)×(n−m) 0
0 Qm

)
Q, Z ← Z

(
I(n−m)×(n−m) 0

0 Zm

)
.

7. Set m = m− 1, Bk = Ck and proceed with step 2

3

2.2. Gauss-Newton algorithm for the simultaneous eigenvalue problem.
In this section an algorithm for solving SEP (2.2) will be derived. First let us write
(2.2) element-wise:

n∑
j=1

Ak
ijxj = λkyi. (2.3)

Now introduce r-by-n matrices

(aj)ki = Ak
ij , k = 1, ..., r, , i = 1, ..., n , j = 1, ..., n,

and a vector λ = (λ1, ..., λr). Then (2.3) becomes
n∑

j=1

xjaj = λy>. (2.4)

The set of equations (2.4) can be considered as an overdetermined system of
nonlinear equations. We will design a variant of Gauss-Newton method for its solution,
propose its fast implementation and obtain some convergence estimates.

The idea of the Gauss-Newton method is to linearize the system as in usual
Newton method and then solve an overdetermined linear system.

The linearization of (2.4) around some point (x, λ, y) yields the following overde-
termined system:

n∑
j=1

x̂jaj = 4λy> + λ4y>. (2.5)

and ||x̂||2 = 1. For brevity x +4x is denoted by x̂. At each iterative step a system
(2.5) has to be solved in a least squares sense. How to do this? We will show that
the unknowns 4y and 4λk can be excluded in the following way. Find a n-by-n
Householder matrix H such that

Hy = he1.

and r-by-r Householder matrix C such that

Cλ = ce1,

(note that here e1 is a column of r-by-r identity matrix). Multiplying (2.5) by C and
H> from left and right respectively we obtain that

n∑
j=1

x̂j âj = ce14ŷ> + h4λ̂e>1 . (2.6)

where âj = CajH
>,4ŷ = H4y and 4λ̂ = C4λ.

The equivalence (that is, the solution of these systems in a least squares sense are
the same) follows from the orthogonality of H and C.

Note that the problem (2.6) is now split in two independent problems. To find x̂
one should minimize

||
n∑

j=1

bjxj ||2F , ||x|| = 1 (2.7)

4

where matrices bj are obtained from âj by replacing elements in the first row and
column by zeroes. Once x̂ is found, 4ŷ and 4λ̂ can be determined from equations

(
n∑

j=1

x̂j âj)k1 = h4λ̂k, k = 2, ..., r, (
n∑

j=1

x̂j âj)1i = c4ŷi, i = 2, ..., n.

For two unknowns 4ŷ1 and 4λ̂1 we have only one equation, so one of these unknowns
can be chosen arbitrary. However, this approach requires an explicit computation
of the Householder matrices and evaluation of âj . It will be shown later that for
the calculation of x̂ it can be avoided. Therefore we propose another approach for
estimating new λ and y from known x̂. After the new x̂ is obtained, we estimate y
and λ by the power method:

λ̃ = by, ỹ = b>λ, (2.8)

where

b =
n∑

j=1

x̂jaj .

The problem 2.7 is in fact a problem of finding a minimal singular value of a
matrix

B = [vec(b1), ..., vec(bn)]

, where operator vec transforms matrix into a vector taking column-by-column.
Therefore x̂ is an eigenvector (normalized to have a unit norm) corresponding to

the minimal eigenvalue of the n-by-n matrix Γ = B>B:

Γx̂ = γminx̂.

The elements of Γ are given by

Γsl = (bs, bl)F

where (,)F is a Frobenius (Euclidian) scalar product of matrices.
The matrix Γ plays the key role in the solution process, because to calculate new

vector x̂ we need to find the minimal eigenvalue and the corresponding eigenvector of
the matrix Γ.

Therefore the solution of the problem (2.5) consists of two parts:
1. Calculation of the matrix Γ.
2. Finding the minimal eigenvalue and the corresponding eigenvector of the

matrix Γ.
Since we only need to calculate one eigenvector and we can use vector x from the

previous iterations as an initial approximation, we propose to use the shifted inverse
iteration for the computation of this eigenvector. Its complexity is then O(n3).

Let us determine the number of arithmetic operations required for the step 1.
The straitforward implementation of step 1 costs O(n2r + nr2) (calculation of bj) +
O(n2rn)(calculation of the B>B) arithmetic operations. The total cost of the step 1
is

O(n3r + n2r + nr2).

However, Γ can be more calculated efficiently without the explicit computation
of the Householder matrices.

5

2.2.1. Calculation of the matrix Γ. Now we will describe how to compute
matrix Γ efficiently. Since

Γsl = (bs, bl)F , i, j = 1, ..., n

we need to calculate scalar products (bs, bl)F . From the definition of bj follows the
connection between bj and âj :

bj = âj − âje1e
>
1 − e1e

>
1 âj + (âj)11e1e

>
1 .

The required scalar products are expressed as

(bs, bl)F = (âs, âl)F − (âse1, âle1)− (â>s e1, â
>
l e1) + (âs)11(âl)11.

Since âj = CajH
> we have

Γsl = (bs, bl)F = (as, al)F −
(asy, aly)
||y||2

− (a>s λ, a>l λ)
||λ||2

+
(asy, λ)(aly, λ)
||y||2||λ||2

. (2.9)

The formula (2.9) allows us to compute the matrix Γ fast. Note also that

(as, al)F =
∑
ki

(as)ki(al)ki =
∑
ki

(Ak)is(Ak)il = (
n∑

k=1

AkA>k)sl,

therefore the first summand (as, al)F can be computed once and for all y and λ at
O(n3r) cost. The cost of computing vectors asy and a>s λ for all s = 1,, n is equal
to O(n2r + r2n). The cost of computing scalar products (asy, aly) and (a>s λ, a>l λ) is
of the same order. The total complexity of computing Γ is

O(n3r),

operations once for a given matrices A1, ..., Ak plus

O(n2r + nr2)

operations for each specific y and λ.
Now we ready to describe the algorithm for solving the simultaneous eigenvalue

problem.
Algorithm 2.2.
Given a sequence of n-by-n matrices A1, ..., Ar, the initial approximation to the

solution of the SEP (2.2) x0, y0, λ0 do:
1. Set k = 0 and calculate the initial Gram matrix

Γ0 =
r∑

i=1

A>i Ai.

.
2. If converged stop, else continue
3. Calculate vectors asy

k and asλ
k for all s = 1, ..., n.

4. Calculate matrix Γ using the formula (2.9).
5. Set xk+1 to the eigenvector corresponding to the minimal eigenvalue of Γ
6. Calculate yk+1 and λk+1 from (2.8).
7. Increase k by 1 and proceed with step 2.

6

It is important to note that matrix Γ can be updated fast during the work of
Algorithm (2.1) for calculating SGSD. Indeed, the most ”hard” work is the calculation
of matrix

Γ0 =
r∑

k=1

B>
k Bk.

After the Q-Z transformation of each Bk Γ0 becomes

r∑
k=1

B̂>
k B̂k =

∑
k=1r

(QmBkZm)>QmBkZm = Z>mΓ0Zm.

We need to calculate

Γ̂0 =
r∑

k=1

C>k Ck,

where Ck is an (n-1)-by-(n-1) leading submatrix of B̂k starting from position (2,2).
It is easy to see that

(C>k Ck)ij = (B̂>
k B̂k)(i+1)(j+1) − (B̂k)i1(B̂k)j1, i = 1, ..., n− 1, j = 1, ..., n− 1,

therefore

(Γ̂0)ij = (Z>mΓ0Zm)(i+1)(j+1) −
r∑

k=1

(B̂k)i1(B̂k)j1, i = 1, ..., n− 1, j = 1, ..., n− 1.

The complexity of this update is O(n2r).
It is left to analyze the convergence properties of the algorithm.

3. Convergence. Now we assume that x∗, y∗ and λ∗ solve the nonlinear mini-
mization problem

r∑
k=1

||Akx− λky||2 → min, (3.1)

||x||2 = 1

and

Akx∗ = λ∗ky∗ + εk. (3.2)

and we have an approximation to the solution:

y = y∗ + δy,

λ = λ∗ + δλ,

and compute an approximation x to x∗ using the Algorithm (2.1). What can we say
about ||x− x∗||?

7

Recall that (3.2) can be written in terms of matrices aj (2.6):

n∑
j=1

x∗jaj = λ∗(y∗)> + ε, (3.3)

where we introduced the residue ε. Also we will need normalized vectors

ỹ =
y

||y||
, λ̃ =

λ

||λ||
, ỹ∗ =

y∗

||y∗||
, λ̃∗ =

λ∗

||λ∗||
.

Vector x is an eigenvector of the matrix Γ (2.9). Denote by Γ∗ the matrix for y∗ and
λ∗. then the following Lemma is true:

Lemma 3.1.
The following inequality holds:

|(Γx∗ − Γ∗x∗)s| ≤ ||as||(||y∗|| ||λ∗||(4 ||δỹ||2 +

||δỹ|| ||δλ̃||+ 4 ||λ̃||2) + ||ε||(||δỹ||+ ||δλ̃||)) +O(δ3 + ||ε||δ2),

where δ = max(||δy||, ||δλ||).
Proof. Using the definition of the matrix Γ and the equality (3.3) we have

((Γ−Γ0)x∗)s = −(asỹ,

n∑
l=1

x∗l alỹ)−(a>s λ̃,

n∑
l=1

x∗l a
>
l λ̃)+(asỹ, λ̃)(asỹ, λ̃)(

n∑
l=1

x∗l alỹ, λ̃) =

= −(asỹ, λ∗)(y∗, ỹ)− (asỹ, εỹ)− (a>s λ̃, y∗)(λ∗, λ̃)− (a>s λ̃, ε>λ̃)+

+(asỹ, λ̃)((y∗, ỹ)(λ∗, λ̃) + (εỹ, λ̃)).

Now set

ỹ = ỹ∗ + δỹ, λ̃ = λ̃∗ + δλ̃.

Since ||ỹ|| = ||ỹ∗|| = 1

(δỹ, y∗) = −2 ||y||∗ ||δỹ||2,

we obtain the following first order terms (denote them by Φ1):

Φ1 = −(asδỹ, εỹ∗)− (asỹ
∗, εδỹ)− (a>s λ̃∗, ε>δλ̃)− (a>s δλ̃, ε>λ̃∗)+ (asỹ

∗, δλ̃)(εỹ∗, λ̃∗)+

+(asδỹ, λ̃∗)(εỹ∗, λ̃∗) + (asỹ
∗, λ̃∗)((εδỹ, λ̃∗) + (εỹ∗, δλ̃)).

Φ1 is estimated from above by

4 ||as|| ||ε|| (||δỹ||+ ||δλ̃||).

The second order terms are estimated in the same way (we omit terms of order
O(δ2||ε||)). We give here only the final result:

|Φ2| ≤ ||y∗|| ||λ∗|| ||as|| ||δỹ|| ||δλ̃||+ 4 ||as|| ||y∗|| ||λ∗|| (||δỹ||2 + ||δλ̃||2).
8

To finish the proof it is left to note that |(Γ− Γ∗)x∗)s| ≤ (|Φ1|+ |Φ2|) +O(δ3 + δ2ε).

Now we can estimate the residue ||x− x∗||:
Theorem 3.2.
If x is computed from y and λ using the Algorithm 2.1, x∗, y∗ and λ∗ are the

solution of the minimization problem (3.1) then

||x−x∗|| ≤ 1
γn−1 − γn

√√√√ n∑
s=1

||as||2 (6δ2||y∗|| ||λ∗||+ 2 ||ε|| δ) +O(δ3 + ||ε||δ2), (3.4)

where

δ = max(||δy||, ||δλ||)

and γn, γn−1 are two smallest eigenvalues of matrix Γ∗.
If we consider matrix Γ as a perturbation of Γ∗, then x is a perturbation of the

eigenvector x∗. Using the theorem about the perturbation of the eigenvector of a
symmetric matrix we have

||x− x∗|| ≤ 1
γn−1 − γn

||(Γ− Γ∗)x∗||.

Now applying the inequality (3.4) and taking into account that

||δỹ|| ≤ ||δy||, ||δλ̃|| ≤ ||δλ||

we get (3.4).
The estimate (3.4) fully describes the local convergence of our method. If ||ε|| = 0

(that is, matrices Ak can be exactly reduced to triangular form) the convergence is
quadratic. In case of non-zero but sufficiently small ||ε|| the convergence is linear, but
the convergence speed is proportional to ||ε||.

Remark. The numerical experiments show that when ||ε|| is small enough, the
algorithm converges globally. But at present we have no rigorous formulations of the
conditions required and/or sufficient for the algorithm to be globally convergent.

4. Numerical experiments. In this section we present some numerical exper-
iments confirming the efficiency of our method. It was implemented in FORTRAN.
The first series of example is created in the following way. We generate random two
n-by-n matrices X and Y and r n-by-n diagonal matrices Λk, k = 1, ..., r and set

Ak = XΛkY, k = 1, ..., r.

The elements of X Y and Λk are drawn from the uniform distribution on [−1, 1]. As
it was shown in [1], such sequence of matrices has an exact SGSD, because we can
find orthogonal Q and Z such that

X = QR1, Y = R2Z,

with R1 and R2 being upper triangular. We also corrupt these matrices with multi-
plicative noise, setting

(Âk)ij = (Ak)ij(1 + σφ),

where φ are taken from the uniform distribution on [−1, 1] and σ is a ”noise level”.
We are interested in the following quantities:

9

• The convergence speed, its dependence from n,r, and σ.
• The stability: the dependence of the residue of the SGSD from σ.

We have observed that the speed of the algorithm does not depend any pronouncedly
on σ. We perform two experiments. First we fix r and σ setting them to 10 and 10−6

respectively and change n. The timings (in seconds) are given in Table 1.
n Time
16 0.01
32 0.11
64 0.16
128 14.77
256 210.61

Table 4.1 Timings(in seconds) for the computation of SGCD of 10 n-by-n ma-
trices.

n Time
16 0.02
32 0.14
64 3.41
128 54.96
256 810.77

Table 4.2 Timings(in seconds) for the computation of SGCD of n n-by-n matrices.
σ Mean residue Min residue Max residue

10−16 2 · 10−15 9 · 10−16 5 · 10−15

10−15 7 · 10−15 1 · 10−15 2 · 10−14

10−14 3 · 10−14 4 · 10−15 8 · 10−14

10−13 5 · 10−14 4 · 10−14 8 · 10−14

10−12 2 · 10−12 4 · 10−13 4 · 10−12

10−11 6 · 10−11 4 · 10−12 1 · 10−11

10−10 4 · 10−10 4 · 10−11 1 · 10−9

10−9 2 · 10−8 4 · 10−10 5 · 10−8

10−8 4 · 10−8 4 · 10−9 1 · 10−7

10−7 2 · 10−7 4 · 10−8 7 · 10−7

10−6 6 · 10−7 4 · 10−7 1 · 10−6

10−5 2 · 10−5 4 · 10−6 5 · 10−5

10−4 4 · 10−4 4 · 10−5 1 · 10−3

10−3 2 · 10−3 4 · 10−4 6 · 10−3

Table 4.3 Residues for different noise levels.
In the second experiment we set r to be equal to n. Corresponding timings are

given in Table 2.
To check stability we take fixed r = n = 64 and vary the noise level. For each

noise level 10 test sequences of matrices are generated and the mean, maximal and
minimum values of the residue are reported.

5. Conclusion. In this paper a problem of the calculation of the simultaneous
generalized Schur decomposition was considered. It was shown that this problem can
be reduced to a series of smaller optimization problems which are a direct general-
ization of the generalized eigenvalue problem, that is why we called it simultaneous
eigenvalue problem. We proposed fast Gauss-Newton algorithm for the solution of the
simultaneous eigenvalue problem, showed that the computations can be performed
cheap using careful update techniques. The local quasi-quadratic convergence result
was obtained. If the number of matrices r is of order n (what frequently happens, if we
use SGSD for the computation of the Canonical Decomposition), then the complexity
of the algorithm is O(n4) arithmetic operations. The efficiency and robustness of the
algorithm was demonstrated by some numerical examples.

REFERENCES

10

[1] L. De Lathauwer, B. De Moor and J. Vanderwalle, Computation of the canonical decompo-
sition by means of a simultaneous generalized Schur decomposition, SIAM J. Matrix Anal.
Appl., 26(2004), pp. 295-227

[2] M. Chu, A continues Jacobi-like approach to the simultaneous reduction of real matrices , Linear
Alg. Appl., 147(1991), pp. 75-96.

[3] A. Bunse-Gerstner, R. Byers, V. Mehrmann, Numerical methods for simultaneous diagonal-
ization, SIAM J. Matrix Anal. Appl., 14(1993), pp. 927-949

[4] A.-J. Van der Veen and A. Paulraj, An analytical constant modulus algorithm, IEEE Trans.
Signal Process., 44(1996), pp. 1136-1155

[5] A. Ziehe, M. Kawanabe, S. Hamerling, and K.-R. Müller, A fast algorithm for joint diag-
onalization with non-orthogonal transformations and its application to blind source separa-
tion , Journal of Machine Learning Research, 5(2004), pp. 801-818

11

