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Abstract

Let an m x n matrix A be approximated by a rank r matrix with an
accuracy €. The paper addresses the problem of construction of accuracy
estimates of the so called pseudo-skeleton approximations using r columns
and r rows of the matrix to be approximated. We derive the upper bound
accuracy estimate of the form O(e /7 (v/m + \/n)) in the sense of the 2-norm.

1 Introduction

Let A € IR™*" and assume that rank A = r. Then there exists
a nonsingular » X r submatrix A in A. Denote the columns
and rows of A containing the submatrix A by C' € R™*" and
R € R™", respectively. It is easy to verify that

A=CA'R. (1)

This decomposition is known as a skeleton decomposition of A.

Now let us suppose that rank A ~ r means that rank (A +
E) =r, where E ~ 0 in the sense of a prescribed matrix norm.
The exact equality rank A = r implies the exact equality (1)
and we wonder if the approximate equality rank A ~ r may
imply the approximate equality

A~ B =CGR, (2)
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where G € IR™" is not necessarily equal to A~! and even not
necessarily nonsingular. The matrix B in (2) will be called the
pseudo-skeleton component of the matrix A.

Assume that A possesses an accurate enough (say, accurate
to within ¢ > 0) rank r matrix approximation. The question
arises how accurately such an A can be approximated by one
of its pseudo-skeleton components? The answer is given by

Theorem 1. Assume that A, F € R™", rank (A—F) < r,
and ||F||2 < €, for somee > 0. Then there ezist r columns and r
rows i A which determine a pseudo-skeleton component CGR
such that

|A=CGR]l» < (14 (yt(r,n) + Vt(r,m))? ), (3)

where

t(r,n) = ! ; (4)

min max o, (P
U PeM(U) min(F)

U'U =1, U e R, r <n; (5)
by M(U) we denote the set of all r X r submatrices in U;
Omin(P) is the minimal singular value of P.

Corollary. Under the hypotheses of Theorem 1 there exists
a pseudo-skeleton component such that

|A—CGRl; < e(1+2yrn+2yrm ). (6)

This bound immediately follows from the following nontrivial
inequality:

t(r,n) < \r(n —r) + min{r,n —r}. (7)

This inequality was recently obtained in [1], [2].

It becomes the equality in the two extreme cases: » = 1 and
r = n — 1. In other cases this estimate is not sharp. We have
a conjecture that the inequality

t(r,n) < v/n



holds true. At least, we do not know any matrix for which it is
violated.

We would like to emphasize that Theorem 1 is somewhat
different from theorems of the small perturbations theory. If
e — 0 then estimate (3) can be significantly improved. How-
ever, in the most interesting and important cases € may depend
on m and n, and usually the decrease of ¢ corresponds to the
increase of the matrix size.

We have a proof that is almost constructive and involves two
stages:

(a) the choice of appropriate C' and R;

(b) the choice of G.

Both stages of the proof make use of the explicit knowledge of
F'. This is prohibitive from the practical point of view, because
usually we know nothing about F' except that it exists. Ex-
ploiting another choice of G with no explicit information of F
leads to a more coarse estimate.

Theorem 2. Under assumptions of Theorem 1 there exists
G which can be chosen using only A and which provides the
estimate

|A—CGRll> < e/(1+(r,p) ) (1+ (VE(r,n) + VE(r,m))? ).
(8)

where p = min(m,n).
Proof of the Theorem 1. Consider the decomposition

A—F=U%V,

where ¥ = diag (01,...,0,), 01> ... 20, 2 0; U'U = VV' =
I, and submatrices U , V e R of U , V', respectively, such
that

1T s < t(rym), [Vl < t(r,n). (9)

We now select the r rows and r columns determined by the
choice of U and V, respectively.



Let C and Fy denote m x r submatrices, R and Fr denote
r X n submatrices of A and of F', respectively, which correspond
to the selected rows and columns. Let A and F denote the
r X r submatrices which occupy the intersection of these rows
and columns in A and F. Then we have

CGR = (USV + Fo)G(UZV + Fp)

. . 10
UU-1(®G®) V-V + E, (10)

where
E = UUY(®G) Fr+ Fo (GO®) V™V + FoGFy, (11)
d = USV=A-F. (12)
Now consider the singular value decomposition of ®:
o= U5V, $=diag(d,....5,), U707 =VV=T.
Let 7 > 0 be a threshold value which will be specified later.
Introducing the notation

_ _ ] 5 . O',L', if U’L Z 7-’
¥, = diag (6;) = { 0, otherwise;

+) = ol ifo; >,
0, otherwise.

OS, o= VTS,
we see that

POIP =0,  |[8d]| <1, [®iPa<1.  (13)

If we set
G = o7, (14)

then relations (11) and (13) imply that

I1Els < & (102 + 17+ =) (15)



Note that A — F = UU V-1V, Using this equality in con-
junction with (10)—(15) we get the estimate

2
~ ~ € ~ ~
|A=CGRll> < e+ 7[T 2V o+ — +ellT o+l Vo
(16)
Now setting

r = e\ IT a7
and substituting for (9) we complete the proof of the theorem.

Proof of the Theorem 2. Without loss of generality we
assume that the matrix A is of the form

1 0

OEQVEIR ,

A:UEVEU[

where m < n, ¥; € R™", 55 € R 15,1, < ¢, and
the leading r X r submatrices in U and V satisfy the inequalities

(9).

Take the partitioning of U which is induced by that of X

Ull U12 rXr (m—7r)x(m-r)
U = , U1 € R, Uy, € IR ,
[ Usi Uss ] 11 22
and consider the matrix
~ 0 F _
F:U[O 5, v, E=-Uj' UpXs.

Obviously, rank(A — F) < r and
IFI3 = 1E"E + 323502 < B3+ [%:]l; < * (1+£(r,n)).

Now apply Theorem 1 to the matrices A and F. The first r
rows of the matrix F' are by construction zero; therefore G will
be computed using the submatrix A—F = A, ie. using only
the entries of A. The inequality (8) is thus proven for p = m;
applying the same train of reason to the matrix AT, we arrive
at (8) for p = n.
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