
Some remarks on the Elman estimate for GMRES

by

B. Beckermann1 2 & S.A. Goreinov3 & E.E. Tyrtyshnikov3 4

Abstract

Starting from an GMRES error estimate proposed by Elman in terms of the ratio of the
smallest eigenvalue of the hermitian part and the norm of some non-symmetric matrix, we
propose some asymptotically tighter bound in terms of the same ratio. Here we make use of
a recent deep result of Crouzeix et al. on the norm of functions of matrices.
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1 Introduction

A popular method for solving non-hermitian systems Ax = b is given by GMRES [10]. Provided
that A has a positive definite hermitian part (A + A∗)/2, Elman [6] pointed out the following
upper bound for the norm of the kth residual rk of GMRES for every k ≥ 0

||rk||
||r0||

≤ sink(β), where β ∈ [0, π/2] is defined by cos(β) :=
λmin((A + A∗)/2)

||A|| . (1)

Here and hereafter we use ‖ · ‖ to denote Euclidean vector norm or spectral matrix norm. Recall
that the field of values (or numerical range)

W (A) := {(Ay, y) : y ∈ C
n, ||y|| = 1}

of a matrix is bounded by the rectangle defined by the extremal eigenvalues of the hermitian and
the skew-hermitian parts of A. Hence λmin((A+A∗)/2) bounds from below the distance between
the origin and W (A). More generally, since W (A) is convex by the Hausdorff Theorem, one may
show in the case 0 6∈ W (A) that there is a t ∈ R with dist(0,W (A)) = λmin((e

itA + (eitA)∗)/2),
and t = 0 for real matrices A. Since ||rk|| does not change after multiplying Ax = b by some
number of modulus 1, we may rewrite in the case 0 6∈ W (A) the Elman bound (1) as

k ≥ 0 :
||rk||
||r0||

≤ sink(β), cos(β) ≤ dist(0,W (A))

||A|| , (2)

where we recall that (2) can be sharper than (1).

Estimates (1) or (2) are obtained by iterating the inequality for k = 1 corresponding to
a one-dimensional minimization problem, which should allow for some improvements. Here we
propose some asymptotically sharper bounds only in terms of the above angle β ∈ (0, π/2) which
to our knowledge seems to be new.
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Figure 1: Elman’s asymptotic convergence factor sin(β) versus the new asymptotic convergence
factor γβ of Theorem 1.

2 Main result

Theorem 1. Let A be a matrix with 0 6∈ W (A), and let β ∈ (0, π/2) be as in (2). Then for the
kth relative residual, k ≥ 1, of GMRES we have

||rk||
||r0||

≤ (2 + 2/
√

3) (2 + γβ) γk
β , (3)

where

γβ := 2 sin(
β

4 − 2β/π
) < sin(β).

All convergence bounds (1), (2), (3) are of the form C γk, where we will call C the constant
factor, and γ the asymptotic convergence factor. We have drawn in Figure 1 the two different
asymptotic convergence factors of (1) and of Theorem 1. Especially for β close to π/2 (i.e., the
critical case where the origin is close to the field of values), the asymptotic convergence factor
of Theorem 1 is clearly more interesting. However, the constant factor of (3) (which can be
shown to be not optimum) slightly deteriorates the sharpness of the new convergence bound,
see Figure 2.

Before entering in the proof of Theorem 1, let us briefly recall some well-known facts on
the convergence of GMRES. Starting from the observation

||rk||
||r0||

≤ min{||p(A)|| : p a polynomial of degree ≤ k, p(0) = 1},

there are many classical GMRES estimates not involving special properties of the right-hand
side b of the system, see for instance [11, Chapter 6.11] or [7, Chapter 3]. Here usually the
quantity on the right is estimated in terms of a polynomial extremal problem: for a compact
set K, consider the constrained Chebyshev approximation problem

Ek(K) := min{||p||K : p a polynomial of degree ≤ k, p(0) = 1},
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Figure 2: Upper bounds for the relative residuals of the kth iterate (k = 1, ..., 20) of GMRES for
three different values of β (E=Elman’s bound, N=bound of Theorem 1).

where by || · ||K we denote the maximum norm on K. For instance, for diagonalizable A one
immediately obtains the classical bound

k ≥ 0 :
||rk||
||r0||

≤ ||V || ||V −1||Ek(σ(A)) (4)

in terms of the spectrum σ(A) and the matrix of eigenvectors V of A. Other more sophisticated
estimates are based for instance on the pseudo-spectrum, but in general the shape of these sets
are difficult to predict. A third group of estimates are obtained via the field of values, starting
perhaps with a paper of Eiermann [5], see also [7]. These estimates are based on the observation
that, given a convex set K 6= C, there exists a constant C(K) < ∞ such that for all matrices A
and for all rational functions f having no pole in K there holds

W (A) ⊂ K =⇒ ||f(A)|| ≤ C(K) ||f ||K. (5)

Recently, Crouzeix and his co-workers [1, 2, 3, 4] gave quite deep results concerning (5). For
instance, the existence of a such finite constant in (5) only depending on the set K was established
in [4]. In [1, Corollary 2.3], it was shown that for the optimal constant in (5) (also denoted by
C(K)) one has

C(K) ≤ 2 + π +

∫ 2π

0

|ρ′(t)|
ρ(t)

dt, (6)

where [0, 2π] 3 t 7→ z0+ρ(t)eit ∈ ∂K with ρ(t) > 0 is any polar parametrization of the boundary
of K for some z0 in the interior of K (the case of a segment K is trivial, here A is hermitian and
thus C(K) = 1). The authors also give improved estimates for particular K, e.g., for a sector
[3]

C(Sα) ≤ 2 + 2/
√

3, Sα = {z ∈ C : 0 ≤ arg(z) ≤ α}, 0 ≤ α ≤ π. (7)

In some recent manuscript [2], Crouzeix showed that

C(K) ≤ 33.75 (8)
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for any convex compact set K, independently of its shape. It is a conjecture of Crouzeix that
C(K) in (5) can be replaced by the number 2.

Let us return to the proof of Theorem 1. By possibly multiplying A with some complex
number of modulus 1, we may suppose without loss of generality that the element of W (A)
closest to 0 is real positive, and thus

W (A) ⊂ {z : Re(z) ≥ ||A|| cos(β)},

with β as in (2). Define Kβ to be the (convex) intersection between the closed unit disk and
the half plane {Re(z) ≥ cos(β)}. Since W (A) ⊂ {|z| ≤ ||A||}, we see that W (A) ⊂ ||A||Kβ.
Moreover, by constructing block-diagonal matrices with blocks

B(φ) =

[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]

, 0 ≤ φ ≤ β,

we find unitary matrices An ∈ R
2n

×2n

with W (An) ⊂ W (An+1) ⊂ Kβ , and the closure of
⋃

n W (An) coinciding with Kβ. Hence in general the relation W (A) ⊂ ||A||Kβ cannot be
improved without further knowledge on A.

We have the following result for our constrained Chebyshev approximation problem.

Lemma 2. There holds for any k ≥ 1 for any β ∈ (0, π/2)

γk
β < Ek(Kβ) ≤ min{2 + γβ ,

2

1 − γk+1
β

} γk
β ,

with γβ = 2 sin( β
4−2β/π ) as in Theorem 1.

Proof. Let K be some convex compact set different from a disk containing at least 2 elements,
0 6∈ K, and denote by φ the Riemann conformal map mapping from C \ K onto the exterior of
the closed unit disk, with φ(∞) = ∞. In the first part of the proof we claim that

k ≥ 1 : γk ≤ Ek(K) ≤ min{2 + γ,
2

1 − γk+1
} γk, γ := 1/|φ(0)|, (9)

and γk < Ek(K) unless K is a lemniscate. The inequality γk ≤ Ek(K) follows by applying
the maximum principle to the function p/φk for an arbitrary polynomial p of degree ≤ k, see
also the classical Bernstein-Walsh inequality [9]. Moreover, again by the maximum principle,
we have γk = Ek(K) for some k > 0 if and only if φk is a polynomial of degree k if and only if
K is a lemniscate, which was excluded,

For the other inequality of (9) we need a good candidate p of degree k. Consider the Faber
polynomial Fk being the polynomial part of φk, see, e.g., [12, 13]. It is shown in [8, Theorem 2]
for general convex sets K that

δk := ||Fk − φk||∂K ≤ 1. (10)

From the maximum principle applied to φFk − φk+1 we know that |φ(0)| |Fk(0) − φ(0)k| <
||φFk − φk+1||∂K ≤ δk, and hence for the polynomial depending on some parameter v ∈ [0, 1]

pv(z) = Fk(z) + v (φ(0)k − Fk(0))

we obtain |pv(0)| ≥ |φ(0)|k − (1 − v)δk/|φ(0)|, and

||pv||K = ||pv||∂K ≤ ||φk||∂K + ||φk − Fk||∂K + v|φ(0)k − Fk(0)| ≤ 1 + δk + vδk/|φ(0)|,
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and thus

Ek(Kβ) ≤ min
v∈[0,1]

||pv||K
|pv(0)| ≤ min

v∈[0,1]
γk 1 + δk(1 + vγ)

1 − (1 − v)δkγk+1
,

leading to the other inequality of (9). Now the assertion of the Lemma follows from (9) by
observing that the Riemann conformal map for K = Kβ can be explicitly constructed [12],
given by φ = T3 ◦ T2 ◦ T1, with

T1(z) =
z − eiβ

z − e−iβ
, T2(z) = (ei(π−β)z)π/(2π−β), T3(z) =

z − T2(1)

z − T2(1)
,

and in particular
1/|φ(0)| = γβ.

By means of elementary computations one checks that the asymptotic convergence factor
sin(β) found by Elman coincides with E1(Kβ), which by Lemma 2 is larger than our constant
γβ. Thus (3) is asympotically sharper than (1), (2), compare with Figure 1 and Figure 2.

The second ingredient in our proof of Theorem 1 is the following observation.

Lemma 3. With β ∈ (0, π/2) as in (2) there holds for any polynomial p 6= 0

||p(A)|| ≤ (2 + 2/
√

3) ||p||K , K := ||A||Kβ.

Proof. Choose α ∈ (β, π/2), and consider the linear fractional transformation

r(z) =
||A|| eiα − z

z − ||A|| e−iα
.

Then f := p ◦ r−1 is a rational function with all poles at −1 6∈ Sα. Also, observe that r(K) ⊂
r(||A||Kα) = Sα. According to the Crouzeix results (5) and (7), for the claim of Lemma 3
it is sufficient to show the relation W (r(A)) ⊂ Sα. For a vector y 6= 0, we define ỹ := (A −
||A|| e−iαI)−1y 6= 0, and consider

d :=
(r(A)y, y)

(ỹ, ỹ)
=

((A − ||A|| e−iαI)∗(||A|| eiαI − A)ỹ, ỹ)

(ỹ, ỹ)

= −||A||2 e2iα − ||Aỹ||2
||ỹ||2 + 2 ||A|| eiα Re

((Aỹ, ỹ)

(ỹ, ỹ)

)

.

Thus Im(d) ≥ 2 ||A||2 sin(α)[− cos(α) + cos(β)] > 0, and Im(e−iαd) = sin(α) [−||A||2 +
||Aỹ||2/||ỹ||2] ≤ 0, implying that W (r(A)) ⊂ Sα.

Since the quantity Ek(K) is invariant under a scaling of the set K, we obtain from Lemma 3

min{||p(A)|| : p a polynomial of degree ≤ k, p(0) = 1}
≤ (2 + 2/

√
3)Ek(||A||Kβ) = (2 + 2/

√
3)Ek(Kβ),

and Lemma 2 allows to conclude the proof of Theorem 1.

Since the method of proof of (9) does not depend on the particular choice of the shape of the
domain including the field of values, we have shown implicitly the following result complementary
to Theorem 1 (compare with [2, Section 9]).
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Corollary 4. Let K be some compact convex set not including the origin, and A some matrix
with W (A) ⊂ ||A||K. Then for the kth relative residual, k ≥ 1, of GMRES we have

||rk||
||r0||

≤ [2 + γ]C(K) γk < [2 + γ]C(K)Ek(K),

where C(K) can be chosen as in (6) or in (8), and γ = 1/|φ(0)| < 1, φ denoting the Riemann
conformal map mapping from C \ K onto the exterior of the unit disk, with φ(∞) = ∞.

In particular, we get from Corollary 4 that the kth relative residual of GMRES is bounded
above by 101.25 γk, with γ < 1 as before.
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