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ABSTRACT

It is well-known that the roots of any two orthogonal polynomials are
distributed equally if the weights satisfy the Szegö condition. In this paper,
we propose a general equidistribution theorem that does not use the Szegő
condition and admits an elementary proof.
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1 Introduction

In many questions of mathematics, given a sequence of n-point sets {xin}n
i=1,

we are interested to study the asymptotic behavior of these sets as n → ∞.
A prolific concept for this is one of equidistribution.

Let xin and x̃in be real (or complex) numbers. Then we write

xin ∼ x̃in

and call {xin}n
i=1 and {x̃in}n

i=1 equidistributed if

lim
n→∞

1

n

(
n∑

i=1

F (xin) −
n∑

i=1

F (x̃in)

)
= 0 (1)

for any function F (x) from a prescribed set F . A convenient and general
enough choice is when F consists of all continuous functions with a bounded
support [11].

This definition played the key role in recent simplifications in the proof
and various generalizations of the Szegő formula [3] for the eigenvalues of
Hermitian Toeplitz matrices [11, 13]. It was successfully used in a lot of
papers on the spectra of structured matrices (see [7, 10]); a nice sketch and
guide in the related fields is [1].

The same definition allows one to describe the asymptotic behavior of the
roots of polynomials orthogonal on an interval.

Consider two sequences of polynomials, pn(x) and p̃n(x), with real coef-
ficients and the highest degree coefficient positive, and assume that they are
orthogonal in the following sense:

(pm, pn)σ = δmn, (p̃m, p̃n)σ̃ = δmn,

where

(f, g)σ =

1∫
−1

f(x)g(x)dσ(x), (f, g)σ̃ =

1∫
−1

f(x)g(x)dσ̃(x),

σ(x) and σ̃(x) are monotone functions with infinitely many points of growth;
δmn is 1 for m = n and 0 otherwise. Note that we have uniquely determined
infinite sequences of orthogonal polynomials [2, 9].
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Denote by xin and x̃in the roots of pn(x) and p̃n(x), respectively. Then
xin ∼ x̃in provided that both σ and σ̃ satisfy the following Szegő condition:

1∫
−1

log σ′(x)√
1 − x2

dx > −∞,

1∫
−1

log σ̃′(x)√
1 − x2

dx > −∞. (2)

The proofs given in [2, 9] are far from trivial. Moreover, within the ap-
proach therein, the fact itself is far from evident even under more restrictive
assumptions on σ and σ̃.

One straightforward proof has been recently suggested in [12]. It begins
with the elementary observation that the roots coincide with the eigenvalues
of the Hermitian tridiagonal matrices made up of the coefficients of the three-
term recurrences for the orthogonal polynomials:

xpn(x) = bn−1pn−1(x) + anpn(x) + bnpn+1(x),

xp̃n(x) = b̃n−1p̃n−1(x) + ãnp̃n(x) + b̃np̃n+1(x).

In matrix notation, these read

x[p0(x), . . . , pn(x)] = [p0(x), . . . , pn(x)]An + [0 . . . 0 bn]pn+1(x),

x[p̃0(x), . . . , p̃n(x)] = [p̃0(x), . . . , p̃n(x)]Ãn + [0 . . . 0 b̃n]p̃n+1(x),

where

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0

b0 a1 b1

. . .
. . .

. . .

bn−2 an−1 bn−1

bn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

Ãn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ã0 b̃0

b̃0 ã1 b̃1

. . .
. . .

. . .

b̃n−2 ãn−1 b̃n−1

b̃n−1 ãn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

It is obvious now that the roots of pn+1(x) are the eigenvalues of An while
those of p̃n+1(x) are the eigenvalues of Ãn.
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Then, we make use of the well-known limiting relations for an and bn:

lim
n→∞an = 0, lim

n→∞ bn =
1

2
. (5)

It follows immediately that An and Ãn are asymptotically close in the fol-
lowing sense:

for any ε > 0 there exists a splitting An−Ãn = Eεn+Rεn

with ||Eεn||2F ≤ εn, rankRεn ≤ εn.

As we know from [11], such splittings lead to equidistribution of the eigen-
values of An and Ãn (if the matrices are non-Hermitian, the equidistribution
holds for the singular values).

The only place that is not quite elementary in the above proof is (5).
And this is the only place where we use the Szegő condition. A proof can
be found in [2, 9]; a direct way to (5), still chiefly along the same ideas, is
sketched in [12].

From the equidistribution property we readily infer that any σ, under
the Szegő condition, generates the orthogonal polynomials with the roots
distributed equally with the roots of the Chebyshev polynomials.

If the Szegő condition does not hold, then the limiting relations (5) can be
lost. In some particular cases (see [14]) we can have them in a modified form
(for subsequences). For such cases we are able to adopt our matrix-based
proof. However, the limiting relations in the above or modified form remain
a rather nontrivial part of the enterprise.

Thus, on the way to an approach elementary in every detail, one might
think about proving the equidistribution property without any reference to
the limiting relations like (5). This is the main result of this paper.

At the same time, we present a new equidistribution theorem that cov-
ers some cases where the Szegő condition is not fulfilled. We discover that
equidistribution of the roots takes place whenever σ and σ̃ enjoy the following
equivalence property:

m (f, f)σ ≤ (f, f)σ̃ ≤ M (f, f)σ, (6)

where m and M are positive constants, and f is an arbitrary polynomial.
(In spite of the generality, the equivalence property is certainly a restriction
that is still to be better understood.)

Some recent references on the subject with a classical approach using
complex analysis tools are [?, 4], for a matrix approach see also [5].
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2 Auxiliary lemma

Lemma 2.1 Given two sequences of n × n matrices, An and Hn, assume
that, for all n,

H∗
n = Hn

and

lim
n→∞

||An − Hn||2F
n

= 0.

Then the eigenvalues of An and Hn are equidistributed.

This lemma is a consequence of Lemma 2.3 from [13]. For the reader’s
convenience, below we give a direct proof.

Proof. We use the following fact: if An is an arbitrary matrix and Hn is
Hermitian, then their eigenvalues can be ordered such that [8] (for a short
proof, see also [13])

n∑
i=1

|λi(An) − λi(Hn)|2 ≤ 2 ||An − Hn||2F .

As we know from [11], this is sufficient for the equidistribution of λi(An) and
λi(Hn). �

The eigenvalues of An can be complex numbers. However, in the con-
structions that follow these will be still real numbers.

3 Main theorem

Theorem 3.1 Assume that σ and σ̃ are equivalent in the sense of (6). Then
the roots of the corresponding orthogonal polynomials are equidistributed in
the sense of (1).

Proof. Note that, for any n, the system of polynomials P0(x), . . . , Pn(x),
where Pi(x) can be pi(x) or p̃i(x) (the choice may alter for different i), is
linearly independent, and consider the following expansions:
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x pn(x) =
n∑

i=0

ri pi(x) + rn+1 p̃n+1(x),

x p̃n+1(x) =
n∑

i=0

ti pi(x) + ãn+1 p̃n+1(x) + b̃n+1 p̃n+2(x),

x p̃n+2(x) = b̃n+1 p̃n+1(x) + ãn+2 p̃n+2(x) + b̃n+2 p̃n+3(x).

In matrix notation, we obtain

x [p0(x), . . . , pn(x), p̃n+1(x), p̃n+2(x)]

= [p0(x), . . . , pn(x), p̃n+1(x), p̃n+2(x)] Bn+2 + [0 . . . 0 b̃n+2] p̃n+3(x),

where

Bn+2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0

b0 a1 b1

. . .
. . .

. . .

bn−2 an−1 bn−1

r0 . . . rn−2 rn−1 rn rn+1

t0 . . . tn−2 tn−1 tn ãn+1 b̃n+1

b̃n+1 ãn+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, the roots of p̃n+3(x) coincide with the eigenvalues of Bn+2 (and
with those of Ãn+2 defined by (4)). As we see from the introduction, the
roots of pn+3(x) coincide with the eigenvalues of An+2 defined by (3).

The next step is to show that

||Bn+2 − An+2||2F = O(1). (7)

By simple calculation, we have

||Bn+2 − An+2||2F ≤ 2(c1 + c2),

where

c1 = a2
n + a2

n+1 + a2
n+2 + b2

n−1 + 2b2
n + 2b2

n+1.

c2 =
n+1∑
i=0

r2
i +

n∑
i=0

t2i + ã2
n+1 + ã2

n+2 + 2b̃2
n+1.
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It is easy to see that all the coefficients of the three-term recurrences are
bounded from above by 1. Indeed, since |x| ≤ 1, because of the orthogonality
conditions and due to the Cauchy inequality,

|an| = |(xpn, pn)σ| ≤ 1,

|bn| = |(xpn, pn+1)σ| ≤
√

(xpn, xpn)σ (pn+1, pn+1)σ ≤ 1.

Hence, it is sufficient to establish the boundedness of the two sums with the
quantities r2

i and t2i .
Taking into account the equivalence property (6) and using the Cauchy

inequality, we obtain

|rn+1| = |(xpn, p̃n+1)σ̃| ≤
√

(xpn, xpn)σ̃ (p̃n+1, p̃n+1)σ̃ ≤
√

M.

Further,

n∑
i=0

r2
i =

(
n∑

i=0

ripi,
n∑

i=0

ripi

)
σ

= (xpn − rn+1p̃n+1, xpn − rn+1p̃n+1)σ

≤ 2 (xpn, xpn)σ + 2 r2
n+1 (p̃n+1, p̃n+1)σ ≤ 2

(
1 +

M

m

)
.

Consider now the sum with t2i . From the uniqueness of the above expan-
sions,

n∑
i=0

tipi(x) = b̃np̃n(x).

Consequently,

n∑
i=0

t2i = (
n∑

i=0

tipi,
n∑

i=0

tipi)σ = b̃2
n (p̃n, p̃n)σ ≤ 1

m
,

and this completes the proof of (7).
To finish the proof of the theorem, apply Lemma 2.1 to the Hermitian

matrices An+2 and to the non-Hermitian matrices Bn+2. The premises of this
lemma are obviously fulfilled as we have (7). �
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