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ABSTRACT

Optimal preconditioners (those that provide a proper cluster at 1) are
very important for the cg-like methods since they make them converge su-
perlinearly. As is well known, for Toeplitz matrices generated by a continuous
symbol, many circulant and circulant-like (related to different matrix alge-
bras) preconditioners were proved to be optimal. In contrast, for multilevel
Toeplitz matrices, there has been no proof of the optimality of any multilevel
circulants. In this paper we show that such a proof is not possible since
any multilevel circulant preconditioner is not optimal, in the general case of
multilevel Toeplitz matrices. Moreover, for matrices not necessarily Toeplitz,
we present some general results that enable us to prove that many popular
structured preconditioners can not be optimal.

1



1 Introduction

The phenomenon of superlinear convergence for the cg-like methods was scru-
tinized, first of all, in [1, 22], and then it has become one of most topical sub-
jects in many papers discussing how to make the cg-like iterations converge
superlinearly [6, 8, 12, 13, 14, 15, 16, 17, 23, 24]. The key concept behind
these papers is that of a cluster. From some naive approach in the beginning,
it has eventually developed into a rigorous notion [4, 25, 26, 28, 29] as follows.

Consider a sequence of matrices An ∈ Cn×n and a set M in the complex
plane. Denote by Mε the ε-extension of M , which is the union of all balls
of radius ε centered at points of M . Let γn(ε) count those eigenvalues of An

that do not belong to Mε. Assume that, for any ε > 0,

γn(ε) = o(n), n → ∞.

Then M is called a general (some say weak) cluster. If o(n) = O(1), then M
is called a proper (some say strong) cluster.

Of course, we are interested in the clusters as narrow as possible. In this
paper we deal only with one-point clusters, and mostly those of the singular
values rather than eigenvalues.

If An are Hermitian positive definite matrices and Cn are their Hermi-
tian positive definite precondintioners, then the superlinear convergence for
the preconditioned conjudate gradient (pcg) method is guaranteed whenever
the eigenvalues of C−1

n An have a proper cluster at 1. In the non-Hermitian
case, the pcg-method can be applied to the symmetrized preconditioned sys-
tem, and the superlinear convergence is seen so long as the singular values
of C−1

n An have a proper cluster at 1.

We would have called a preconditioner Cn for An optimal if the singular
values of C−1

n An have a proper cluster at 1. However, we will require a little
more.

A preconditioner Cn for An is said to be suboptimal if the singular values
of C−1

n An − In have a cluster at 0 (In is the identity matrix of order n), and
optimal if this cluster at 0 is proper.
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There are also useful equivalent definitions in the terms of convenient
matrix relations. A preconditioner Cn for An is suboptimal iff, for any ε > 0,
there exist matrices En ε and Rn ε such that

C−1
n An − In = En ε + Rn ε (1)

with
||En ε||2 ≤ c1(ε), lim

ε→0
c1(ε) = 0; (2)

rank Rn ε ≤ c2(n, ε), lim
n→∞

c2(n, ε)

n
= 0 ∀ ε > 0. (3)

A suboptimal preconditioner Cn is optimal iff c2(n, ε) is uniformly bounded
in n (which is equivalent to the claim that some bound c2 does not depend
on n, and so we may write c2 = c2(ε)).

For the singular values of C−1
n An, it is easy to prove that a suboptimal

preconditioner provides a general cluster at 1 while an optimal one provides
a proper cluster, and thence the superlinear convergence. However, beware
of claiming the reverse, because a preconditioner providing a proper cluster
at 1 for the singular values of C−1

n An is not necessarily optimal according to
our definition.

In applications, optimal preconditioners may be not easily available. Still,
there are some important cases when they are.

If An = An(f) = [ai−j ]
n
ij=1 are Toeplitz matrices associated with an abso-

lutely convergent Fourier series for a positive symbol

f(x) =
∞∑

k=−∞
ake

ikx,

then the circulant preconditioners proposed by G. Strang and T. Chan are
optimal [4]. More precisely, this is true for the G. Strang preconditioner
when f belongs to the Dini-Lipschitz class [18], while for the T. Chan this
is true when f is merely continuous [5, 18, 19]. Moreover, many other pre-
conditioners related to different matrix algebras [2, 3, 9, 11, 19, 20, 21] can
be proved to be optimal even in the ill-conditioned case where the symbol f
has zeros [7, 18].
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From the practical point of view, the profusion of research devoted to
preconditioners for Toeplitz matrices is likely to go with the hope to use the
same ideas for multilevel Toeplitz matrices (see [24]). In the multilevel case,
the constructions similar to those of the unilevel case have led only to sub-
optimal preconditioners [26, 19].

As yet, all attempts to construct an optimal multilevel circulant or cir-
culant-like preconditioner ended with nothing. In this paper, we show that
this is not because we have not seized the idea how to prove this. It can not
be proved because it is not true in the general case.

We propose thus a negative result that can be summarized as follows. If
a preconditioner Cn for An is sought in the form Cn = UnDnVn, with unitary
matrices Un and Vn (still subject to some assumptions) given beforehand and
so independent of An, and a diagonal matrix Dn to be chosen, then there
are multilevel Toeplitz matrices An associated with a multivariate symbol,
for which the preconditioner Cn can not be optimal.

All the same, much of what we discuss has little to do with the Toeplitz
property itself; we use, instead, some general ergodic assumptions (that fol-
low from the Szego-like theorems in the Toeplitz case). Moreover, our results
might apply also to the preconditioners for unilevel matrices.

In Section 2, we present the basic theoretical tools allowing us to prove
that a preconditioner is not optimal. Then, in Section 3, we recollect the
notion, common toolkit, and some ergodic results for the multilevel matri-
ces. In Section 4, we present our main negative results concerning optimal
circulant-like preconditioners.

2 Basic statements

All matrices, for the time being, are unilevel of order n (with different n).
The next two lemmas are almost evident, so they go without a proof.
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Lemma 2.1 Assume that matrices Cn are nonsingular and uniformly bounded
in n, in the spectral norm, together with C−1

n . Then a preconditioner Cn for
An is suboptimal iff the singular values of An − Cn have a general cluster at
zero, and it is optimal iff this cluster is proper.

We will say that An and Cn are ε-close up to the rank bound r = r(n, ε)
if, ∀ ε > 0 and ∀ n, there exist matrices En ε and Rn ε such that

An − Cn = En ε + Rn ε, ||En ε||2 ≤ ε, rank Rn ε ≤ r(n, ε). (4)

Lemma 2.2 The singular values of An − Cn have a cluster at zero iff the
matrices An and Cn are ε-close up to the rank bound r(n, ε) which enjoys the
relation

lim
n→∞

r(n, ε)

n
= 0 ∀ ε > 0. (5)

The cluster at zero is proper iff r(n, ε) does not depend on n.

We term a matrix equimodular if all its entries are equal in modulus. It is
clear that any unitary equimodular matrix of order n has all its entries equal
to 1/

√
n in modulus.

Lemma 2.3 Let Cn = UnDnVn, where matrices Dn are diagonal, Un and Vn

are unitary, and Vn are equimodular. Assume that, for any ε > 0 and for
any n, there exists a column eε n of In such that ||Cneε n||2 ≤ ε. Then the
singular values of Cn are clustered at zero.

Proof. If Dn = diag {d1n, . . . , dnn}, then the singular values of Cn are equal
to |djn|, 1 ≤ j ≤ n. From the contrary, assume that zero is not a cluster for
them. Then, there are positive δ and c such that

γn(δ) ≥ cn (6)

for infinitely many n. In line with the previous notation, γn(δ) counts those
indices j for which |djn| > δ. Take up any n for which (6) is valid, and set
vn = [v1n, . . . , vnn]

T ≡ Vn eε n. Then, for those n,

||Cneε n||2 = ||Dnvn||2 =

√√√√ n∑
j=1

|djnvjn|2 ≥ √
c δ,
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and hence, this can not be less than ε for an arbitary ε > 0. �

We will say that An are ε-zeroed on ρ = ρ(n, ε) columns of the identity
matrix In if, first, they are uniformly in n bounded in the spectral norm, and
second, ∀ ε > 0 and ∀ n, for some ρ(n, ε) columns ejn ε of In it holds that

||An ejn ε||2 ≤ ε, j = 1, . . . , ρ(n, ε).

Lemma 2.4 Let matrices An and Cn be ε-close with the rank bound r(n, ε),
and let An be ε-zeroed on ρ(n, ε) columns of In so that

lim
n→∞

r(n, ε)

ρ(n, ε)
= 0. (7)

Suppose ||Cn||2 are uniformly bounded in n. Then, ∀ ε > 0 and ∀ n, there is
a column en ε of In such that

||Cn en ε||2 ≤ 3 ε.

Proof. By contradiction, assume that

||Cn ejn ε||2 > 3 ε, j = 1, . . . , ρ(n, ε).

Since An are ε-zeroed on the vectors ejn ε, it implies that

||(An − Cn) ejnε||2 > 2 ε.

Denote be σ1n ≥ . . . ≥ σnn the singular values of An − Cn. Then, as is well
known,

ρ∑
j=1

σ2
jn ≥

ρ∑
j=1

||(An − Cn) ejn ε||2.

Since An and Cn are ε-close up to the with the rank bound r(n, ε), it follows
that

σjn ≤ ε for j > r = r(n, ε).

Using this and taking into account the preceding inequalities, we obtain

r σ2
1n ≥ 4ε2 · ρ − ε2 (ρ − r),
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and thence
r(n, ε)

ρ(n, ε)
||An − Cn||22 ≥ 3 ε2.

On the strength of (7) and since the spectral norms of the matrices are
bounded, the right-hand side must vanish as n → ∞, which is at odds with
the last inequality. �

Theorem 2.1 Suppose that Cn = UnDnVn, where matrices Dn are diagonal,
Un and Vn are unitary, and Vn are equimodular. Let matrices An and Cn be
ε-close with the rank bound r(n, ε), and let An be ε-zeroed on ρ(n, ε) columns
of In. If the singular values of An are not clustered at zero, then (7) does not
stand, that is,

r(n, ε) 
= o(ρ(n, ε), n → ∞. (8)

Proof. We do not lose generality if assume that Cn are bounded in the
spectral norm uniformly in n. If it is not the case, we transfer to another
matrices C̃n satisfying the same premises with r(n, ε) being possibly replaced
by 2 r(n, ε). Indeed, the number of singular values for Cn that are greater
than ||An||2 +ε can not exceed r(n, ε), and we may thus get to C̃n by cutting
off the largest diagonal entries of Dn in the equation Cn = UnDnVn.

Assume that the relation (7) is still fulfilled. Then, since all the premises
of Lemma 2.4 are fulfilled, we conclude that, for any ε > 0 and for any n,
there exists a column eε n of In such that ||Cneε n||2 ≤ ε. From Lemma 2.3,
we now deduce that the singular values of Cn have a cluster at zero.

Allowing for (7), we have also r(n, ε) = o(n), which implies that An

and Cn have the same clusters [26, 29]. However, the matrices An have no
singular value cluster at zero, and this can not be reconciled with the above
conclusion that Cn have the cluster at zero. �

Theorem 2.2 Under the hypotheses of Theorem 2.1, assume that

lim
n→∞ ρ(n, ε) = ∞ ∀ ε > 0.

Then the singular values of An − Cn can not have a proper cluster at zero.

Proof. From Lemma 2.2, r(n, ε) is bounded uniformly in n. Then, obviously,
r(n, ε) = o(ρ(n, ε)), which contradicts (8). �

7



Theorem 2.3 Under the hypotheses of Theorem 2.2, consider any matrices
Pn such that Pn + An and Pn + Cn are nonsingular and uniformly bounded
in n, in the spectral norm, together with their inverses. Then the matrices
Pn + Cn can not be optimal preconditioners for Pn + An.

Proof. According to Lemma 2.1, the preconditioner Pn + Cn for Pn + An is
optimal iff the singular values of An − Cn have a proper cluster at zero. All
reduces now to applying Theorem 2.2. �

It might be useful to consider also quasi-equimodular matrices, instead
of equimodular ones. A matrix V = [vij ] of order n is referred to as quasi-
equimodular if

c1√
n

≤ |vij| ≤ c2√
n

∀ i, j,

for some 0 < c1 ≤ c2 independent of n. It is transparent that the above
statements remain valid for quasi-equimodular matrices.

However, the same statements stand also even in a more general case of
subequimodular matrices. This notion applies to a sequence of matrices, not
to an individual matrix.

A sequence of matrices Vn = [vn
1 , . . . , vn

n] is said to be subequimodular if,
for any sequence of indices j(n), 1 ≤ j(n) ≤ n, n = 1, 2, . . . , there exists
δ > 0 such that the set [δ, +∞] is a cluster for |v1 j(n)|, . . . , |vn j(n)|, the
absolute values of the entries of the column j(n). It is not difficult to show
that the above statements hold true for subequimodular matrices Vn.

3 Multilevel preliminaries

We call a matrix multilevel if it can be viewed as one with a nested block
structure: A is a p-level matrix of multiorder n = (n1, . . . , np), if it is a matrix
with n1×n1 blocks, each of them consists of n2×n2 blocks, and so on. Hence,
A is of order N(n) ≡ n1 . . . np. The rows and columns of A can be naturally
pointed to through multiindices i = (i1, . . . , ip) and j = (j1, . . . , jp). Thus,

A = [aij ], 1 ≤ i, j ≤ n,

where 1 = (1, . . . , 1), and inequalities between multiindices are understood
in the entrywise sense.
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Multilevel matrices may possess some structure: An is called a p-level
Toeplitz matrix if An = [ai−j], and An is called a p-level circulant if An =
[ai−j (mod n)], where i(modn) ≡ (i1(mod n1), . . . , ip(modnp)).

Given two sequences of p-level matrices An and Bn of multiorder n, we
call their singular values equally distributed if, for any function F continuous
with a bounded support,

1

N(n)
Σ(An, F ) − 1

N(n)
Σ(Bn, F ) = o(1), n → ∞,

where
Σ(An, F ) ≡ ∑

1≤i≤n

F (σi(An)),

and n → ∞ means that every component of the multiindex n tends to infinity.
The singular values of multilevel matrices An are called distributed as

f(z) for z ∈ Π, if, for any F continuous with a bounded support,

1

N(n)
Σ(An, F ) → 1

mes Π

∫
Π

F (f(z))dz.

Here, Π is a Lebesgue-measurable set and f is a Lebesgue-measurable func-
tion on Π.

If f(z) = 1, then the above means that the singular values of An have a
general cluster at 1. It is not necessarily a proper cluster.

Let z ∈ Π ≡ [−π, π]p, and consider f ∈ L1(Π) with the formal Fourier
expansion

f(z) ∼ ∑
k

ak ei(k,z),

where
k = (k1, . . . , kp), (k, z) = k1z1 + . . . + kpzp.

Such a function f (we call it a symbol) generates naturally the p-level Toeplitz
matrices as follows:

An(f) = [ai−j ], 1 ≤ i, j ≤ n.

For the unilevel Hermitian Toeplitz case, the classical distribution results
can be found in [10]. The Szego-like theorem for the singular values of An(f)
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obtained in [27] reads: if a symbol f ∈ L1(Π) is a complex-valued function of
z ∈ Π = [−π, π]p, then the singular values of An(f) are distributed as |f(z)|
with z ∈ Π.

4 Main negative results

Consider a p-variable symbol f(x1, . . . , xp) = 1
2

exp{ix1 + . . . ixp} and the
corresponding p-level Toeplitz matrices An = An(f), where n = (n1, . . . , np).

Theorem 4.1 For In + An, any preconditioner of the form In + Cn, where
Cn is a p-level circulant, is not optimal.

Proof. As is not difficult to verify, the matrices An are zeroed (ε-zeroed
with ε = 0) on ρ(n) columns of the identity matrix of order N(n) = n1 . . . np,
where

ρ(n) ≥ c N(n)
p∑

k=1

1

nk
, (9)

and c ≥ 21−p provided that nk ≥ 2 for all k. Clearly, ρ(n) → ∞ as n → ∞
(which means, by definition, that every nk tends to infinity). Note also
that Cn = V ∗

n DnVn, where Vn is a unitary equimodular matrix, for it is the
Kronecker product of Fourier matrices. Therefore, we may have recourse to
Theorem 2.3, and this completes the proof. �

In effect, the above proof enables us to claim much more. In particular, we
can propose a lower estimate on the rank of Rn ε in the splitting for An −Cn

concerning the ε-closeness of An and Cn. What is more, it is possible to
cover a more general case when Cn is not necessarily a multilevel circulant.
We call matrices Cn ciculant-like if, for any n, it holds that Cn = V ∗

n DnVn,
where Dn is a diagonal matrix, and matrices Vn are unitary subequimodular
matrices.

Theorem 4.2 For In + An, any suboptimal preconditioner of the form In +
Cn, where Cn are p-level circulant-like matrices, provides the singular value
cluster for which, for some c(ε) > 0 and infinitely many n, it holds

γn(ε) ≥ c(ε) ρ(n),

where ρ(n) is defined by (9).
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To demonstrate this, we follow the previous proof with the reference, in
the end, to Theorem 2.1.

We know that, when using the multilevel T. Chan preconditioner, the

number of outliers is O(N(n)
p∑

k=1

1

nk
) for any An generated by a continuous

function f [19]. Therefore we can say that this preconditioning technique,
unless not satisfactorily for large p, is the best that we may obtain when
quasi-equimodular algebras are considered.

The last theorem apparently pertaines to many popular matrix algebra
preconditioners. We have got now a rigorous proof that they can not be
optimal, at least for the particular example of a multilevel Toeplitz matrix.

Note also that the basic results of Section 2 allow us to construct many
other examples. In particular, there are Hermitian multilevel Toeplitz matri-
ces (generated by a multivariable symbol) for which any Hermitian multilevel
circulant-like preconditioner is not optimal.

To see this, take up the previous f(x1, . . . , xp) and consider the symbols

g1 = Re f(x1, . . . , xp), g2 = Im f(x1, . . . , xp).

At least one of the sequences I +An(g1) or I +An(g2) can not have circulant-
like optimal preconditioners. By contradiction, if both of them have optimal
preconditioners I + Cn,1 and I + Cn,2, then the circulant-like preconditioner
I+Cn,1+iCn,2 is optimal for I+An(f) and this contradicts the main negative
results of this section.
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