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ABSTRACT

In the general case of multilevel Toeplitz matrices, we proved recently
that any multilevel circulant preconditioner is not optimal (a cluster it may
provide cannot be proper). The proof was based on the concept of quasi-
equimodular matrices. However, this concept does not apply, for example,
to the sine-transform matrices. In this paper, with a new concept of partially
equimodular matrices, we cover now all trigonometric matrix algebras widely
used in the literature. We propose a technique for proving the non-optimality
of certain frequently used preconditioners for some representative sample
multilevel matrices. At the same time, we show that these preconditioners
are the best, in a certain sense, among the suboptimal preconditioners (with
only a general cluster) for multilevel Toeplitz matrices.

1The work of this author was supported by the Russian Fund of Basic Research (under
grant 97-01-00155) and Volkswagen-Stiftung.
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1 Introduction

Although a preconditioner can be generally regarded as an approximant to a
given matrix, the approximation here is understood in a fairly broad sense.
In particular, given Cn and An, both of order n, assume that for any ε > 0
there exist matrices En ε and Rn ε such that

An − Cn = En ε +Rn ε, ||En ε||2 ≤ ε, rankRn ε ≤ r(n, ε) = o(n). (∗)

Then let us say that Cn and An are ε-close by rank with the rank bound
r(n, ε). If γn(ε) counts how many singular values σin(An − Cn) are greater
than ε, then (∗) amounts to the claim that γn(ε) = o(n); in other words,
the singular values of An − Cn have a general cluster at zero. By defini-
tion, it becomes a proper cluster if γn(ε) = O(1), which holds equally with
r(n, ε) = r(ε) = O(1), for any ε > 0.

To estimate the convergence rate of the cg-like methods, one should be
interested in the ε-closeness of C−1

n An and In rather than Cn and An. In the
former case, Cn is called optimal for An if r(n, ε) = O(1), and suboptimal if
r(n, ε) = o(n). For the cg-like methods, optimal preconditioners provide the
superlinear convergence (see [1, 15, 19]).

However, it is easier and still useful to get on with the ε-closeness of Cn

and An. In this case, Cn is optimal for An in the above sense so long as
r(n, ε

||C−1
n ||2 ) = O(1). More precisely, the following simple but useful proposi-

tion holds.

Proposition 1.1 If Cn and C−1
n are bounded uniformly in n, then An and

Cn are ε-close by O(1) rank iff C−1
n An and In are.

Proof. It is enough to observe that An − Cn = Cn(C
−1
n An − In) and

C−1
n An − In = C−1

n (An − Cn). Therefore An − Cn can be written as the
sum of a term of norm bounded by ε and a term of constant rank iff the
same thing can be done for C−1

n An − In for n large enough. �

Notice that if Cn is uniformly bounded in n but we do not suppose any-
thing about C−1

n , then the fact that the singular values of C−1
n An are properly

clustered at one implies that An and Cn are ε-close by O(1) rank. Conversely,
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if Cn is bounded and An and Cn are not ε-close by O(1) rank, then the sin-
gular values of C−1

n An cannot be properly clustered at one and, therefore, Cn

cannot be an optimal preconditioner for An. These remarks are now resumed
in the next proposition.

Proposition 1.2 Let Cn be nonsingular. If Cn is bounded uniformly in n
and An and Cn are not ε-close by O(1) rank, then Cn is not optimal for An.

Proof. By contradiction, if Cn is an optimal preconditioner for An, then
C−1

n An − In can be written as a term of norm bounded by ε
‖Cn‖2

and a term
of rank bounded by a constant independent of n. Therefore, An − Cn =
Cn(C−1

n An − In) is the sum of a term of norm bounded by ε and a term of
constant rank, and this contradicts the assumption that An and Cn are not
ε close by O(1) rank. �

Proposition 1.1 gives a criterion to establish the existence of an optimal
preconditioner by analyzing the difference An − Cn. However, we have to
suppose the uniform of boundedness of Cn and C−1

n and this request is not
practical since Cn is unknown. In Proposition 1.2 we give a simpler condition
to establish the nonoptimality of a preconditioner Cn but again we suppose
something on Cn. In the next proposition we eliminate any assumption on
Cn so that the related statement is truly useful to decide the nonoptimality
of a preconditioner Cn.

Proposition 1.3 Let An and Cn be nonsingular. If An is bounded uniformly
in n and if An and Cn are not ε-close by O(1) rank then Cn is not optimal
for An.

Proof. By contradiction, if Cn is an optimal preconditioner for An, then
C−1

n An−In can be written as term of norm bounded by ε and a term of rank
bounded by a constant independent of n. Therefore, by using the Sherman-
Morrison-Woodbury formula we have that A−1

n Cn−In can be written as term
of norm bounded by O(ε) and a term of rank bounded by a constant inde-
pendent of n. Therefore −(An −Cn) = An(A−1

n Cn − In) is the sum of a term
of norm bounded by O(ε) and a term of constant rank and this contradicts
the assumption that An and Cn are not ε close by O(1) rank. �

3



In this paper we propose some technique for proving that

r(n, ε) �= o(ρ(n)),

for certain functions ρ(n), so long as An and Cn possess some special prop-
erties. In fact, we generalize our previous results from [14]. In that paper we
considered Cn of the form Cn = UnDnVn, where matrices Un are unitary, Dn

are diagonal, and Vn are unitary quasi-equimodular. For brevity, we refer to
Cn as QE-based matrices.

We term a matrix equimodular if all its entries are equal in modulus. It is
clear that any unitary equimodular matrix of order n has all its entries equal
to 1/

√
n in modulus. If there exist two positive constants 0 < c1 ≤ c2 < ∞

independent of n so that the entries of a sequence of matrices Vn belong to
[c1/

√
n, c2/

√
n], then the sequence is called quasi-equimodular.

A principal result proved in [14] was the following.

Theorem 1.1 Assume that An and Cn are ε-close by rank with the rank
bound r(n, ε) and, for any ε > 0, let An have ρ(n, ε) columns of the Euclidean
length not greater than ε. Let ||An||2 be bounded uniformly in n. Assume also
that:

(a) the singular values of An are not clustered at zero;

(b) Cn = UnDnVn are QE-based matrices.

Then r(n, ε) �= o(ρ(n, ε)).

With this theorem we come up with some interesting negative results
about optimal preconditioners for multilevel matrices.

Recall that A is a p-level matrix of multiorder n = (n1, . . . , np) (and of
order N(n) ≡ n1 . . . np), if it encompasses n1 × n1 blocks, each of them has
n2 × n2 blocks, and so on. The rows and columns of A can be pointed to
through multiindices i = (i1, . . . , ip) and j = (j1, . . . , jp) as follows: A = [aij ],
1 ≤ i, j ≤ n, where 1 = (1, . . . , 1), and inequalities between multiindices are
understood in the entrywise sense. By definition, o(n) = o(N(n)) as n→ ∞,
and the latter means that every component of n tends to infinity.
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An is called a p-level Toeplitz matrix if An = [ai−j ], and it is a p-level cir-
culant if ai−j = ai−j (mod n), where i(modn) ≡ (i1(modn1), . . . , ip(modnp)).
Toeplitz matrices An = An(f) are said to be generated by a symbol f ∈
L1(Π), z ∈ Π ≡ [−π, π]p, if their elements come from the formal Fourier ex-
pansion f(z) ∼ ∑

k
ak e

i(k,z), where k = (k1, . . . , kp), (k, z) = k1z1 + . . .+ kpzp.

For matrices An(f), the assumption (a) of Theorem 1.1 can be reformu-
lated in the terms of some properties of the symbol f . We may use the
following result: if a symbol f ∈ L1(Π) is a complex-valued function of
z ∈ Π = [−π, π]p, then the singular values of An(f) are distributed as |f(z)|
with z ∈ Π, that is, for any F continuous with a bounded support,

1

N(n)

∑
1≤i≤n

F (σi(An)) → 1

(2π)p

∫
Π
F (|f(z)|)dz.

This is a Szego-like theorem obtained in [18]. For the unilevel Hermitian
Toeplitz case, the classical distribution results can be found in [8]. It is easy
to see that the above assumption (a) is fulfilled so long as f(z) does not
vanish on a subset of positive Lebesgue measure in Π. It is equivalent to the
demand that f(z) is at most sparsely vabishing [16, 5].

For example, consider 2-level Toeplitz matrices An(f) for f(x1, x2) =
exp{ix1}. In line with the above,

An =

⎡
⎢⎢⎢⎢⎣

0 I
. . .

. . .

0 I
0

⎤
⎥⎥⎥⎥⎦ ,

where 0 and I are of order n2 as n = (n1, n2). Consider any QE-based
matrices Cn that are ε-close to An by rank. From Theorem 1.1, since
An has ρ(n) = n2 zero columns, r(n, ε) �= o(ρ(n)). Consequently, since
ρ(n) = n2 → ∞ as n → ∞, we conclude that r(n, ε) �= O(1). Now, choose
any real value s and take up matrices In + sAn. With QE-based Cn with
Un = V ∗

n , it is next to obvious to infer that any preconditioners of the form
In + Cn for In + sAn are not optimal.

5



One may remark still that matrices In +Cn can be not easily invertible in
the case of Vn �= U∗

n (they might be not QE-based), and hence, we scarcely
use them as preconditioners. All the same, in the case where Vn = U∗

n the
matrices In + Cn remain to be QE-based so long as Cn do. For the above
An, consider the splitting An = Hn1 + iHn2, where Hn1 and Hn2 are Hermi-
tian, and approximate them by QE-based (with common Vn) matrices Cn1

and Cn2, respectively. If the ε-rank bounds for Hn1 − Cn1 and Hn2 − Cn2

are both O(1), then An should be ε-close to Cn = Cn1 + iCn2 with the rank
bound O(1). Since Cn is also QE-based, it contradicts the above negative re-
sult. Now, choose a real value s and consider the following Hermitian 2-level
Toeplitz matrices: In + sHn1 and In + sHn2 (to guarantee that In + sHn1 and
In + sHn2 are both invertible we may choose s ∈ (0, 1)). We have proved
that at least one of the two does not admit an optimal preconditioner among
QE-based matrices of Hermitian pattern. Still, we can not say definitely
which of the two.

In the above respect, our negative result for the Hermitian case does not
look very satisfactory. In pursuit of using Theorem 1.1 in a direct way, we
need to produce a symbol giving Hermitian multilevel Toeplitz matrices with
sufficiently many zero columns, which is barely possible.

Another criticism of Theorem 1.1 is that it leaves aside some important
matrix algebra preconditioners. In particular, the sine-transform matrices [2]
of the form

Sn =

√
2

n

[
sin

πij

n+ 1

]n

ij=1

are not quasi-equimodular, and hence, prohibited to play as Vn. To cover
such cases, we introduce here a new concept of partially equimodular matri-
ces.

Definition. Matrices Vn are called partially equimodular if there exist
two positive constants c and d independent of n so that, in any column of Vn

for any n, the number of entries which are not less in modulus than c/
√
n, is

greater than or equal to dn. Matrices Cn = UnDnVn, where Un are unitary,
Dn are diagonal, and Vn are unitary partially equimodular will be referred
to as PE-based matrices.
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In this paper we modify Theorem 1.1 so that matrices Cn are allowed
to be PE-based. Since any PE-based matrices are also QE-based, we thus
weaken Article (b) of the premises. At the same time, we have to strengthen
Article (a), yet so that it is still equally easy to fulfil for producing the same
negative results.

The paper is organized as follows. In Section 2, we discuss the concept of
partially equimodular matrices and their relation with trigonometric matrix
algebras. We show that all known algebras consist of PE-based matrices.
In Section 3, we propose a new technique to study the ε-closeness of matri-
ces. Then, in Section 4, we show how this technique can be applied to the
multilevel Toeplitz matrices and in Section 5 we discuss the (more difficult!)
Hermitian case.

2 Unitary partially equimodular matrices

and matrix algebras

We begin with a very convenient indication for unitary matrices to be par-
tially equimodular.

Theorem 2.1 Let Vn be unitary n× n matrices, and assume that the max-
imal in modulus entry of Vn does not exceed M/

√
n, where M is a constant

independent of n. Then matrices Vn are partially equimodular.

Proof. With 0 < c < M , consider an arbitrary column of Vn and denote by
ζn the number of its entries which are not less in modulus than c/

√
n. Since

the Euclidean length of the column is equal to 1, we obtain

1 ≤ (n− ζn)
c2

n
+ ζn

M2

n
⇒ ζn ≥ 1 − c2

M2 − c2
n. �

Consider a sequence of grids Wn = {xin} with n nodes x1n < . . . < xnn

defined on a given basic interval I, and suppose that for any n there is a set
Φn = {φin} of n functions orthogonal in the following sense (see [12]):

[φin, φjn]n ≡
n∑

l=1

(
φin φ̄jn

)
(xln) = δij , 1 ≤ i, j ≤ n.
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It follows that the generalized Vandermonde matrices [7] Vn = [φjn(xin)]nij=1

are unitary. By {V ∗
nDnVn}, we denote a sequence of matrix algebras, each,

for a fixed n, comprizes the matrices of the form V ∗
nDnVn, where Vn is fixed

and Dn is an arbitrary diagonal matrix.
When the functions of Φn are trigonometric polynomials, we come up with

the well-known matrix algebras associated with the classical fast transforms
[10, 6, 9]. Canonical examples of such matrix algebras are the circulant, the
τ , and the Hartley [3]. The corresponding functions φjn and nodes xin are
the following:

φjn = 1√
n

exp{i(j − 1)x}, xin = 2π(i−1)
n

∈ [−π, π];

φjn =
√

2
n+1

sin(jx), xin = πi
n+1

∈ [0, π];

φjn = 1√
n

(sin((j − 1)x) + cos((j − 1)x)) , xin = 2π(i−1)
n

∈ [−π, π].

In addition, other 7 examples of unitary transforms Vn related to cosine/sine
functions are presented in [10]. One more example is the matrix algebra
of ε–circulants [4] with |ε| = 1; if ε = exp{i2πψ} then the corresponding
functions and nodes are of the form

φjn =
1√
n

exp{i(j − 1 + ψ)x}, xin =
2π(i− 1)

n
∈ [−π, π].

In the above cases, it is easy to check that unitary matrices Vn satisfy the
hypothesis of Theorem 2.1, and hence, are partially equimodular. The same
holds true even in a more general context.

Theorem 2.2 Assume that the nodes xin are quasi-uniform on I in the sense

that
n∑

i=1
| |I|/n− (xi+1 n − xin)| = o(1), and let φjn(x) = θnφj(x), where θn

are constants, and φj(x) are continuous uniformly bounded in j functions
with a finite number of zeroes on I. Assume that the matrices Vn = [φjn(xin)]
are unitary. Then, they satisfy the hypothesis of Theorem 2.1.

Proof. Let φ = φ1. It is sufficient to prove that c1n ≤ n∑
i=1

|φ(xin)|2 ≤ c2n for

some positive c1 and c2. The second inequality follows from the boundedness
of φ. The first one stems from the demand that the grids are quasi-uniform
and φ has only a finite number of zeroes. With these assumptions, there is
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δ > 0 such that the number of the indices i for which |φ(xin)| > δ is bounded
from below by c(δ)n. Hence, we can take c1 = δ2 c(δ). Now, since Vn is
unitary, we deduce

1 =
n∑

i=1

|(Vn)i,1|2 = θ2
n

∑
i=1

|φ(xin)|2

Therefore the relation 1/
√
c1n ≤ θn ≤ 1/

√
c2n is proved and consequently,

due to the uniform boundedness of fj , the inequalities max |(Vn)i,j| ≤M/
√
n

hold true with M absolute constant. �

Using Theorem 2.1, we now conclude that the matrices Vn in Theorem 2.1
are partially equimodular (PE).

For the p-level case, matrix algebras {V ∗
nDnVn}, where n = (n1, . . . , np),

are constructed through the Kronecker products of p sequences of unilevel
matrix algebras {V ∗

nk
Dnk

Vnk
} so that

Vn =
⊗

1≤k≤p

Vnk
, Dn =

⊗
1≤k≤p

Dnk
.

Formally, Vnk
may correspond to different p sequences of quasi-uniform grids

W (k)
nk

on I and functions Φ(k)
nk

, though we usually assume that there is no
dependence on the upper index.

3 Rank bounds for ε-closeness

When choosing Cn to be ε-close to a given An, we are interested to know
how the rank bounds may behave. For this we propose now a new version of
Theorem 1.1 in order to mellow the assumption that Cn are QE-based. We
can consider now arbitrary PE-based Cn (rather than QE-based).

Theorem 3.1 Assume that An and Cn are ε-close by rank with the rank
bound r(n, ε) and, for any ε > 0, let An have ρ(n, ε) columns of the Euclidean
length not greater than ε. Let ||An||2 be bounded uniformly in n. Assume also
that:
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(a) the singular values σ1(An) ≥ . . . ≥ σn(An) behave so that for any
0 < d < 1, there is a positive q(d) providing that

S(d, An) ≡
∑

dn≤j≤n

σ2
j (An) ≥ q(d)n

for all sufficiently large n;

(b) Cn = UnDnVn are PE-based matrices.

Then r(n, ε) �= o(ρ(n, ε)).

Proof. We may assume that ||Cn||2 are bounded uniformly in n. If it is not
the case, we pass to another matrices C̃n satisfying the same premises with
r(n, ε) being possibly replaced by 2 r(n, ε). Indeed, the number of singular
values for Cn that are greater than ||An||2 + ε can not exceed r(n, ε), and we
may thus get to C̃n by cutting off the largest diagonal entries of Dn in the
equation Cn = UnDnVn.

By contradiction, assume that r = r(n, ε) = o(ρ(n, ε)) and show, based
on this, that for any ε > 0 there must be a column in Cn whose 2-norm is
less than or equal to ε for any n large enough.

Let En ε contain ρ = ρ(n, ε) the columns of In that correspond to ε-small
columns of An. By contradiction again, let us suppose that for some δ > 0
independent of n, every column of CnEn ε is greater than δ in the 2-norm for
infinitely many n. Therefore,

δ ρ < ||CnEn ε||F = ||An + (Cn −An)En ε||F
≤ ||AnEn ε||F + ‖(Cn −An)En ε||F
≤ ερ+ ‖(Cn − An)En ε||F
≤ ερ+ σ1 (Cn −An)r + ε(ρ− r)

= O (r + ε ρ) ,

which is at odds with r = o(ρ).
Thus, from r(n, ε) = o(ρ(n, ε)) we infer that for any ε > 0, for all suf-

ficiently large n there exists a column eε n of In such that ||Cneε n||2 ≤ ε.
Moreover, from r(n, ε) = o(n), it follows that An and Cn have the same
clusters [17, 19] and therefore for any positive δ we have

S(d, An) = S(d, Cn) + o(n).
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Finally, taking into account that Vn are partially equimodular with the con-
stants c and d, we deduce that

ε ≥ ||Cneε n||2 = ||DnVneε n||2

≥
√
c2

n
S(d, Cn) =

√
c2

n
(S(d, An) + o(n))

≥
√
c2

n
(q(d)n+ o(n) ≥ c

√
q(d) + o(1),

which is impossible due to the arbitrariness of ε. �

Theorem 3.2 Under the hypotheses of Theorem 3.1, assume that

lim
n→∞ ρ(n, ε) = ∞ ∀ ε > 0.

Then the singular values of An − Cn can not have a proper cluster at zero.

Proof. If r(n, ε) is bounded uniformly in n, then r(n, ε) = o(ρ(n, ε)), which
contradicts the conclusion of Theorem 3.1. �

Theorem 3.3 Under the hypotheses of Theorem 3.2, consider any matrices
Pn such that Pn +An and Pn +Cn are nonsingular and Pn +An is uniformly
bounded in n in the spectral norm. Then the matrices Pn + Cn can not be
optimal preconditioners for Pn + An.

Proof. By direct application of Proposition 1.3, if the singular values of
An − Cn have not a proper cluster at zero then the preconditioner Pn + Cn

is not optimal for Pn + An. It remains to apply Theorem 3.2. �

In Theorem 3.1, the assumption that An has many small columns indi-
cates the direction in which we may seek for negative results. This assump-
tion is not easy to reconcile with some structural requirements on An. To this
end, it might be useful to present a modification of Theorem 3.1 that allows
us to consider An with no small columns. A price for this is that we require
of Vn a bit more than PE property, though still less than QE property.

Let us say that matrices An are ε-zeroed on ρ(n, ε) columns of matrices
Zn if AnZn has ρ(n, ε) columns of Euclidean length not greater than ε for
all sufficiently large n. Also, matrices Zn will be referred to as uniformly
sparse if the number of nonzeroes in every column of Zn is upper bounded
uniformly in n.
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Theorem 3.4 Assume that An and Cn are ε-close by rank with the rank
bound r(n, ε) and Cn are ε-zeroed on ρ(n, ε) columns of uniformly sparse
unitary matrices Zn. Let ||An||2 be bounded uniformly in n. Assume also
that:

(a) the singular values σ1(An) ≥ . . . ≥ σn(An) behave so that for any
0 < d < 1, there is a positive q(d) providing that

S(d, An) ≡
∑

dn≤j≤n

σ2
j (An) ≥ q(d)n

for all sufficiently large n;

(b) Cn = UnDnVn are PE-based matrices and, in addition, the maximal in
modulus entry of Vn does not exceed M/

√
n, where M does not depend

on n.

Then r(n, ε) �= o(ρ(n, ε)).

Proof. Denote by k the maximal number of nonzeroes in any column of Zn.
Then, since Zn are uniformly sparse, k < +∞. Allowing for the entries of Vn

being not greater in modulus than M/
√
n, we conclude now that the entries

of ZnVn in modulus do not exceed kM/
√
n. Since ZnVn are unitary as a

product of unitary matrices, they are partially equimodular by Theorem 2.1.
Now, ρ(n, ε) columns of Bn ≡ Z∗

nAnZn are ε-small, and it remains to apply
Theorem 3.1 to the matrices Bn and arbitrary PE-based Cn. �

3.1 What is the best for multilevel Toeplitz matrices

We start with a remark on the assumption (a) used in Theorem 3.1. In the
case of multilevel Toeplitz matrices generated by f(z), it reduces to some
assumption on f(z). Note that the inequality S(d, An) ≥ q(d)N(n), for any
d ∈ (0, 1), takes place if f(z) does not vanish in a subset of [−π, π]p of
positive measure; in other words, f(z) is at most sparsely vanishing [16, 5].
Remarkable that the same property of f accounts for the assumption (a) in
the previous Theorem 1.1. It means that the stronger assumption we have
introduced does not seem to affect the construction of ”bad examples”.
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Consider a p-variable symbol of the form

f(x1, . . . , xp) =
1

2
exp{ik1x1 + . . . ikpxp}, kj ≥ 1, j = 1, . . . , p,

and the corresponding p-level Toeplitz matrices An = An(f), n = (n1, . . . , np).
Since |f | = 1/2, the assumption (a) of Theorem 3.1 is fulfilled. Moreover,
the number ρ(n) of zero columns of An is easily estimated as follows:

ρ(n) ≥ cf N(n)
p∑

k=1

1

nk

, (1)

where cf > 0 is independent of n. Thus, we come up with the following
negative results.

Theorem 3.5 For In +An, any suboptimal preconditioner of the form In +
Cn, where Cn is a p-level PE -based matrix, provides the singular value cluster
for which, for some c(ε) > 0 and infinitely many n, it holds

γn(ε) ≥ c(ε) ρ(n), (2)

where ρ(n) is defined by (1).

Corollary. There exist Hermitian p-level Toeplitz matrices for which any
suboptimal PE-based preconditioner with Un = V ∗

n provides the singular value
cluster with the number of outliers γn(ε) subject to (2).

These results witness that some well-known suboptimal precondition-
ers are ”optimal” for the whole class of multilevel Toeplitz matrices. Let
f(x1, . . . , xp) > 0 belong to the Wiener class. Then, by a direct extension of
R.Chan’s arguments for the unilevel case, it was shown in [20] that multi-
level circulant preconditioners of G.Strang’s and T.Chan’s type provide the
general clusters with the number of outliers

γn(ε) ≤ kf N(n)
p∑

k=1

1

nk
(3)

with kf > 0 independent of n. In [13, 11, 6] it was found that the same
yet for T.Chan’s circulants holds true for any positive continuous symbol
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and, what is more, for all known trigonometric matrix algebra precondition-
ers. Therefore, we can say that this preconditioning technique, unless not
very satisfactory for large p, is the best we may count on when PE-based
preconditioners {V ∗

nDnVn} are considered.
Note that the trigonometric matrix algebras other than circulants re-

quire a different technique [13]. Given a matrix An, we choose a precondi-
tioner Cn = UnDnU

∗
n of Hermitian pattern so that it minimizes ||An −Cn||F

over all diagonal matrices Dn. It is clear that the minimum is attained at
Dn = diagU∗

nAnUn. Assume that we have p sequences of grids Wnk
= {xi nk

}
and functions Φnk

= {φj nk
}. Consider the vector functions ψnk

(xk) =
[φ1 nk

(xk), . . . , φnk nk
(xk)]

∗ and, with the notation x = (x1, . . . , xp), set

σn(f ; x) = ψ∗Anψ, ψ =
⊗

1≤k≤p

ψnk
(xk).

Obviously, Dn consists of the values of σn(f ; xi1 n1, . . . , xip np), where 1 ≤
ik ≤ nk, k = 1, . . . , p. The crucial observation is now that, in the case
of p-level Toeplitz matrices An = An(f), the ε-closeness of Cn and An can
be naturally related to the closeness of functions f(x) and σn(f ; x). Since
a continuous periodic function is uniformly approximated by trigonometric
polynomials, it is sufficient (for continuous symbols) to study the case when
f is a trigonometric polynomial.

Instead of the case study of different algebras, when following the above
lines it is possible to propose a unifying approach that covers at once all cases
of interest. It is based on a matrix interpretation of Korovkin’s results in the
approximation theory (see [13]) allowing us to study the latter problem only
for a finite set of very simple polynomials.

4 Negative results for Hermitian

multilevel matrices

Consider PE-based matrices of Hermitian pattern (Un = V ∗
n ) and symbols of

the form

f(x1, . . . , xp) =
1

2
exp{ik1x1 + . . . ikpxp},

kj ≥ 1, for j = 1, . . . , p. Let re(f) and im(f) denote the real and the
imaginary part of f . It is obvious that for any real value s at least one of the
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two Hermitian Toeplitz matrices An(s + re(f)) and An(s + im(f)) does not
admit an optimal PE-based preconditioner. Therefore, for any fixed positive
integer k, for any j = 1, . . . , p and for any real value s one of the two matrices

An(s+ cos(kxj)) or An(s+ sin(kxj))

cannot be optimally preconditioned. Still, we can not say definitely which
of the two. Yet it is reasonable to think that both. If fact, it is easy to see
that An(s + cos(kxj)) is similar to An(s + cos(k(xj + v)) through a unitary
diagonal transformation. Choosing v = − π

2k
we have An(s+cos(k(xj +v)) =

An(s+ sin(kxj)) and, therefore, by supposing that the considered PE-based
matrices V ∗

nDnVn possess no structural symmetries, we do not see a special
motivation for which An(s+sin(kxj)) should be better than An(s+cos(kxj))
or vice-versa. It remains to give a rigorous proof of the preceding qualitative
argument and this will be the subject of a future research.
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