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� Introduction

The paper is devoted to designing an interface preconditioner for a Schur complement
associated with Lagrange multipliers� After brief overview of the problem in Introduction�
in Section � we discuss a domain decomposition method with Lagrange multipliers on the
interface� In Section � we outline the general framework of the solution of saddle�point
systems which result from the above domain decomposition� Section � is devoted to the
construction of the interface preconditioner for the saddle�point Schur complement� which
is the main goal of the paper� In Section � we review the mosaic approximation to be used
in the preconditioner and analyze the mosaic preconditioner� In Section 	 we present
numerical experiments illustrating the basic properties of the interface preconditioner�

The main purpose of the domain decomposition is modularity� By modularity we im�
ply an ability to use only subdomain solvers while solving global problems� By subdomain
solvers one could understand either exact solvers 
direct or iterative� or a preconditioner�
The latter is more favorable because of its �exibility� From parallelization point of view�
the most attractive are non�overlapping domain decompositions� However� these meth�
ods require an additional problem dependent constituent� an interface preconditioner�
Designing an interface preconditioner is the key ingredient for many domain decompo�
sition techniques� There exists several ways of construction such a preconditioner� One
could solve auxiliary boundary value problems in subdomains �	� ��� �� �� �� �� ��� use an
approximate inverse of the interface Schur complement ��� ��� 	�� construct spectrally
equivalent interface operators �� ��� ���� In this paper we want to exploit trace normal�
izations ��� ���� in order to construct an interface preconditioner� The basic idea is to
approximate a dense matrix due to the trace normalization� by a sparse matrix whose
action on vector is easy�to�evaluate� In �D case of the substructuring domain decompo�
sition method� such an attempt was discussed in ���� Here� we address preconditioning
a dual Schur complement� that makes the problem easier even in �D case� The proposed
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preconditioner may be implemented as a gray box having on input the coe�cients of
the problem and the interface mesh� The mosaic approximation technique ��� used as a
gray box� is associated with the fast multipole methods ����

� Domain decomposition with Lagrange multipliers

Let a polyhedral domain � � R� with a Lipschitz boundary �� be decomposed into
m non�overlapping regular shaped polyhedral subdomains �i� � � i � m� i�e�� �� �
�mi�� ��i� �i � �j � �� � � i �� j � m� We assume this decomposition to be geometrically
conforming in the sense that if ��ij � ��i � ��j �� �� i �� j� then ��ij is either a common
vertex� a common edge� or a common face of �i and �j� We refer to S ��

Sf��ij � j �ij j��
�� � � i �� j � mg as the skeleton of the decomposition� The skeleton is decomposed

into faces �k� S �
KS
k��

��k� where each face �k is the entire open face of two adjacent

subdomains �M�k� and � �M�k�� � �M
k� �� �M
k� � m� i�e�� �k � �M�k�� �M�k��

Let �h
i be a conformal simplicial regular triangulation of �i� i � �� � � � �m� We

assume that the meshes �h
i match on the skeleton� �h

M�k�j�k � �h
�M�k�

j�k � k � �� � � � �K�

Therefore� the conformal triangulation of � may be de�ned as the union of �h
i �

�h �
m�
i��

�h
i �

We denote by V h
i and W h the spaces of P� conforming �nite elements on triangulations

�h
i and �h� respectively�
Let the bilinear form a
�� �� � V � V 	 R� and the functional l
�� � V 	 R are given

by

a
v� w� ��
mX
i��

ai
v� w�� ai
v� w� ��

Z
�i

�rv�rw��vw�dx� l
v� ��
mX
i��

Z
�i

fvdx� f 
 L�
���

For simplicity we assume that �
x� � �i � consti � �� �
x� � �i � consti � � in
�i� i � �� � � � �m� The �nite element problem is

Find w 
W h such that

a
w� v� � l
v�� v 
W h� 
��

In order to decompose the problem 
��� we introduce a pair of discrete spaces�

V h ��
mY
i��

V h
i and �h ��

KY
k��

�h
�k��

where

�h
�k� ��
n
v �

X
i�fN ��h

k
�g

�i�
xi�
o
� 
��

�



Here N 
�hk � is the set of all nodes of the mesh �hk on the entire face ��k� Notation �
x�
stands for the Dirac function�

The space V h is composed of decoupled subdomain spaces V h
i � and the space �h is

the space of Lagrange multipliers� The macro�hybrid primal variational formulation is�
Find 
u� 	� 
 V h � �h such that

a
u� v� � b
	� v� � l
v�� v 
 V h� 
��

b

� u� � �� 
 
 �h�

where

b

� v� ��
KX
k��

bk

� v�� bk

� v� ��� 
� v�J ��k �

v�J j�k �� vj� �M�k�
� vj�M�k�

� and � �� � ��k refers to the dual pairing� between H��
�k�

and H�
�k� � In spite of lack of a continuous closure� the following holds true in the
above discrete case ����

Lemma ��� Let w and u be the solutions of of ��� and ���� respectively�

�� There exists such �	 
 �h that the pair
n
fwj�igmi��� �	

o
is the solution of ����

	� The function �w 
W h� �wj�i � ui� is the solution of ����

The equivalence of 
�� and 
�� allows us to replace 
�� by 
��� The advantages of
such a replacement are discussed below�

� Block diagonal preconditioner

The �nite element problem 
�� results in the system of linear algebraic equations in the
saddle�point form�

�
A BT

B �

� �
u
	

�
�

�
f
�

�
� or

�
��������

A� � BT
�

� �
� �
� �

� Am BT
m

B� � � � Bm �

�
							


�
��������

u�
�
�
�
um
	

�
							

�

�
��������

f�
�
�
�
fm
�

�
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where the block representations of the matrices A and B are associated with the de�ni�
tion of the spaces V h and �h� while the matrices A�B and the vector f are speci�ed by
the bilinear form a
u� v�� b

� v� and the functional l
v�� respectively� Under the assump�
tions made� matrices Ai are symmetric positive de�nite� However� the whole matrix of
system 
�� may be singular� if the matrix B is not a full rank matrix� It is the so�called
redundancy case� the number of neighbor�subdomain pairs 
Lagrange multiplier degrees
of freedom� related to an interface node� may be larger than the minimum number of
ties providing continuity of a grid function at this node�

�We consider only discrete formulations� for which vj�M�k�
� H���k�� since v � V h

i �

�



Let us assume for the moment that the matrix B is a full rank matrix� In order
to solve the linear problem 
�� one can use the generalized Lanczos method with the
preconditioner

R �

�
RA �
� R�

�
� 
��

The symmetric positive de�nite matrix RA stands for a preconditioner for the subdomain
problems speci�ed by the matrix A� and R� stands for a preconditioner for the interface
problem associated with the matrix S � BA��BT �

Lemma ��� ����� 	
� Let the symmetric positive de
nite matrices RA and R� be spec�

trally equivalent to the matrices A and S � BA��BT � respectively� with positive constants

c�� c�� c�� c	� Then the boundaries of the segments d�� d��� d�� d	�� d� � d� � � � d� �
d	� that contain the spectrum of the matrix R��A� A �

�
A BT

B �

�
� depend only on the

values of c�� c�� c�� c	�

Corollary ��� Under the above assumption on the matrix R the convergence rate of the

preconditioned Lanczos method of minimal iterations does not depend on the dimension

of the matrix A if it is applied to the problem ����

In the case when the matrix B is not a full rank matrix� the convergence of the
iterative methods is understood in a subspace of the original discrete space� The subspace
is formed by the Lagrange multipliers from range
B��

In papers 	� ��� the matrix RA is proposed to be a block diagonal matrix such that
each block of RA serves as a preconditioner for the corresponding diagonal block Ai of
matrix A� These blocks are independent of each other and may be chosen taking the
advantage of properties of the subdomain meshes� approximations� operators� etc� The
challenge is the construction of an e�cient interface preconditioner R�� It should be
parallel� fast and robust with respect to bad parameters of the discrete problem and its
decomposition 
coe�cients� meshes� number of subdomains�� In the following we focus
on developing such an interface preconditioner�

Remark �� Construction of a preconditioner for the dual Schur complement S �
BA��BT is the basic issue for e�cient iterative solution of saddle�point problems ���
In particular� instead of the framework of Lemma ���� one could simply reduce the
problem 
�� to its interface Schur complement counterpart� assuming that matrices Ai�
i � �� � � � �m� may be factorized�

S	 � F� F � BA��f� 
	�

Problem 
	� is also referred to as the dual Schur complement problem� since the Schur
complement here is associated with the Lagrange multipliers rather than the trace of
a solution� Although the matrix S is dense� it is never generated as it is� Instead�
iterative techniques are used for the solution of 
	�� Computation of residual requires
only multiplication of S by a vector� which may be done easily once the matrices Ai

�



are factorized� Moreover� the multiplication is easy to parallelize� as well as recovering
the solution u � A��
f � BT	�� The condition number of S 
condS� is a�ected by the
number of nodes on the skeleton� the meshes in the subdomains� the coe�cients in the
bilinear forms� and the number of subdomains� Usually� the condition number of S is
large� and the preconditioning is inevitable�

Remark 	� In this work� we consider the case �i � �� It provides non�singularity of
matrices Ai� i � �� � � � �m� On the other hand� it may cause an additional dependence
of condS on �� The case �i � � is considered by the Finite Element Tearing and Inter�
connecting 
FETI� method� introduced by Farhat and Roux �� ��� Let Ay stand for the
pseudo�inverse of A� problem 
	� is reformulated as�

BAyBT	 � BAyf �BR�� 
��

where � has to be determined and matrix R spans the nullspace of A� range
R� � KerA�
If we denote G �� BR� P �� I �G
GTG���GT � problem 
�� is equivalent to

�
BAyBT	 � BAyf�

GT	 � RT f�

��

The FETI method is the solution of 
�� with a preconditioned projected CG method� In
other words� it is the PCG method where all guesses satisfy GT 
	k � 	
� � ��

� Interface preconditioner

For simplicity of presentation� we consider three cases� The case with severe topological
restrictions will be considered in detail� and an intermediate and a general case will be
just outlined�

��� Case �� no crossedges

Crossedges are de�ned to be the edges forming the skeleton S� Since the faces ��M�k�� �M�k��
k � �� � � � �m� do not intersect each other� we have as many degrees of freedom for
Lagrange multiplier space� as the number of ties to be imposed in order to get continuity
of the solution across the interfaces� It implies the non�redundancy and the full rank of
the matrix B� A very important feature of such a decomposition is that a normalization
of the discrete trace space on the skeleton may be derived explicitly ���� in construct to
a general case� Due to the topological restrictions and local nature of the matrix B� the
matrix S � BA��BT is spectrally equivalent to a block diagonal matrix blockdiagfSkg
�� each block Sk being associated with an entire face ��M�k�� �M�k�� k � �� � � � �K�

S  blockdiagfSkg� 
��

Moreover� nonzero entries of matrices Bi� i � �� � � � �m� are either � or ��� according to

��� Hence�

Sk � FM�k��kA
��
M�k��kF

T
M�k��k � F �M�k��kA

��
�M�k��k

F T
�M�k��k�

�



where matrix FM�k��k with entries � or � map the degrees of freedom in subdomain

�M�k� into Lagrangian degree of freedom N 
�hk �� Let we split the nodes in �h
M�k� into

two groups� the �rst is formed by the nodes lying on ��M�k�� �M�k� and the second is formed
by the remained nodes� Then the block representation of matrix AM�k� is

AM�k� �

�
Ak
M�k� AkI

M�k�

AIk
M�k� AI

M�k�

�
� 
���

and we readily get
Sk � Q��

M�k��k �Q��
�M�k��k

� 
���

Q��
M�k��k � Ak

M�k� �AkI
M�k�

�
AI
M�k�

��
AIk
M�k��

Q��
�M�k��k

� Ak
�M�k� �AkI

�M�k�

�
AI

�M�k�

��
AIk

�M�k��

Let nk be the number of nodes in N 
�hk �� ui be the entry of vector u associated with
a mesh node xi 
 N 
�hk �� hi be the mesh size at xi and matrix NM�k��k 
 Rnk�nk be
de�ned as


NM�k��ku�v� �
X

xi�N ��h
k
�

�i
�M�k�� �M�k��
X

xi ��xj�N ��h
k
�


ui � uj�
vi � vj�

jxi � xj j� h�i h
�
j

�
X

xi�N ��h
k
�

�i
�M�k�� �M�k��uivih
�
i � �u�v 
 Rnk � 
���

where

�i
�� �� �

�
�� ��� � h�i
�� ��� � h�i

�i
�� �� �

���
��

hi�� ��� � h�i

������� h�i � ��� � �
�� ��� � ��

Theorem ��� ���
�
NM�k��k  QM�k��k� 
���

The spectral equivalence takes place with constants independent of nk��� ��

Now� we assume that
��
��
 ��
��
 � � �  �m

�m
� 
���

and we have matrices Lk� k � �� � � � �K� such that

Lk  N �M�k��k�
�M
k� �

�
M
k�� �M�k� � � �M�k��
�M
k�� �M�k� � � �M�k��


���

with constants independent of �� �� Straightforward consequence of 
��� 
���� 
���� 
����

��� is the following

	



Theorem ��� Let ���� holds true and

L � blockdiagfLkg
and

c�Lk � N �M�k��k � c�Lk� k � �� � � � �K� 
�	�

Then

c�L
�� � S � c	L

��� 
���

where constants c�� c	 depend only on c�� c��

According to 
���� the preconditioning implies here just a vector multiplication by matrix
L� Hence� if the multiplication may be performed e�ciently� the goal of construction of
an interface preconditioner is achieved� In Section � the construction of matrices Lk and
veri�cation of 
�	� will be considered in detail�

��� Case �� no internal crossedges

As in the previous case the topological assumption implies the non�redundancy and
full rank of the matrix B� The dual Schur complement is not spectrally equivalent to
blockdiagfSkg where blocks Sk are associated with ��M�k�� �M�k�� However� we may ig�
nore the nondiagonal blocks of S and consider the above block diagonal preconditioner
L � blockdiagfLkg� where Lk satisfy 
�	�� In this case the constants in 
��� are not de�
pendent on c�� c� only� They depend on the mesh and the coe�cients as well� The depen�
dence on the mesh has a polylogarithmic character ��� Indeed� one of the basic properties
of the matrix S is that� up to a logarithmic factor� blockdiagfSg��  blockdiagfS��g

���Proposition � and ����� Coupled with 
�	�� it results in polylogarithmic dependence
of c	�c�� The dependence on the coe�cients may be derived as follows� If the entries
of nondiagonal blocks of S may be estimated by those of N �M�k��k� k � �� � � � �m� inde�
pendently of the coe�cients� then c�� c	 do not depend on the coe�cients� For instance

but not necessarily�� this is the case when there is a path through faces of neighbor�
ing subdomains such that the coe�cients are non�increasing or nondecreasing along the
path� Otherwise� the nondiagonal blocks are essential and may not be neglected in such
a fashion�

��� Case �� general case

In general case normalization of the skeleton trace space is unknown and the matrix B
is not a full rank matrix� The remedy is a combination of techniques responsible for
di�erent aspects of preconditioning� At the �rst step� we get rid of the dependence on �i
and number of subdomains m�

Let �i �� ��i n ��� n�i be the number of nodes of �hi �� ��h
i � �i� M�i 
 Rn�i�n�i

be the boundary mass matrix� di be the diameter of �i� i � �� � � � �m�
We introduce the matrix P�i � w���iw

T
���i

� where w���i �
�p
j�ij

e�i � e�i � � � � � ��T 

Rn�i � We note that 
M�iw���i � w���i� � �� and P�iM�i are the M�i�orthogonal projec�
tors� i � �� � � � �m� Let �i � c�i�d

�
i and let �Ai be a matrix generated on �h

i by the bilinear

�



form ai
u� v� with � � �i�d
�
i � The matrices Ai and �Ai have the block forms

Ai �

�
A�i A�iIi

AIi�i AIi

�
and �Ai �

�
�A�i

�A�iIi
�AIi�i

�AIi

�
�

where A�i �
�A�i 
 Rn�i�n�i �

Lemma ��� 	� ��� Under the assumptions made

�
�A�i � �A�iIi

�A��
Ii

�AIi�i

��
�

�

�idi
P�i 

�
A�i �A�iIiA

��
Ii
AIi�i

��
� 
���

The spectral equivalence takes place with constants independent of �i� �i� di�

The above Lemma is used for the construction of a preconditioner to BA��BT � since
BiA

��
i BT

i � B�i
A�i �A�iIiA
��
Ii
AIi�i�

��BT
�i
� where matrix B�i is the interface subblock

of Bi� Bi � 
B�i � O�� Using 
��� we have

BA��BT �
mX
i��

BiA
��
i BT

i 
mX
i��

�

�idi
B�iP�iB

T
�i �

�G� 
���

�G �
mX
i��

B�i

�
�A�i � �A�iIi

�A��
Ii

�AIi�i

��
BT
�i � 
���

Of course� since the matrix B may be not a full rank matrix� 
��� holds true for
vectors in range
B��

Theorem ��� ��� ��� Let B be a full rank matrix and let the symmetric positive de
nite

matrix D be such that the spectrum of D �G belongs to the interval c�� c��� � � c� � c�
and let

R� ��
mX
i��

�

�idi
B�iP�iB

T
�i �D��� 
���

Then
R�  BA��BT � 
���

The spectral equivalence takes place with constants independent of �i� �i� di� m and

dependent on c�� c��

Matrix R� is a modi�cation of D�� by a low rank matrix XXT �
mP
i��

�
�idi

B�iP�iB
T
�i

with X �

�
� � � � �p

�idij�ij
B�ie�i � � � �

�
� The solution of a system with matrix R� may be

found by evaluations of matrix D�

R��
� � D �DX
I��m �XTDX���XTD�

where Im 
 Rm�m is the identity matrix� Thus� in order to construct a good precondi�
tioner for BA��BT we have to �nd a preconditioner D to �G such that D �G  I and D is
easily multiplied by a vector�

�



If B is not a full rank matrix� both �G and D are to be singular but positive de�nite
in range
B�� If we assume that D is invariant in range
B�� 
���� 
��� are understood in
the subspace range
B��

Thus� we reduced the problem of construction of an interface preconditioner for the
dual Schur complement S to preconditioning matrix �G�

At the second step� we can apply the Dirichlet preconditioner for the FETI method
��� The basic idea is to replace the Schur complement associated with Dirichlet problem
by a matrix generating a trace norm on �i� Assumption �i � c�i�d

�
i allows us to carry

on the basic analysis �� for our case� However� there are still open algorithmic questions
within the above framework� They are to be discussed elsewhere�

� Mosaic preconditioner

The mosaic�skeleton method ��� ��� ��� constructs a speci�c 
 mosaic � partitioning
of a matrix in which most of blocks admit accurate low�rank approximation� For the
matrices coming from integral equations� these blocks correspond to a region where the
kernel is smooth enough and can be approximated by a degenerate kernel 
a short sum
of functional skeletons�� The method is an algebraic view of several fast approximate
multiplication approaches of the last decade �� ����

Assume that the mosaic�skeleton method is applied to matrices of the form

An � f
xin� yjn��� � � i� j � n�

where f
x� y� is a function of x and y from a bounded region S in the 
�dimensional
space� and xin and yjn are the nodes of some meshes�

First� we assume that f is asymptotically smooth� It means ��� that there exist
c� d � � and a real number g such that� for x �� y and all integer p � ��

j�pf
x� y�j � cp jx� yjg�p 
���

where
cp � c dp p! � 
���

Here� �p is any p�order derivative in y � 
y�� � � � � y���

�p �

�
�

�y�

�i�
� � �
�

�

�y�

�i�
� i� � � � � � i� � p�

Second� we assume the meshes are subject to the following resriction�

�n
S
�� � c

mesS�

mesS
n�

where S� is any subregion of S and �n counts how many nodes of the mesh with n nodes
fall into S�� and mes is the Riemann measure 
thus� S and S� are assumed measurable"
we could con�ne ourselves to those S� which are intersections of a �nitely many cubes
with S�" c � � does not depend on S� and n�

�



The next theorem is a reformulation of the results from ��� �	��
Theorem� Under the above two assumptions� for any � � � there are splittings An �
Tn �Rn where

mem
UnVn� � O
n log�� n�� jjRnjjF � O
n���� 
���

and mem is the lowest possible number of nonzero entries in any pair of matrices U and

V such that Tn � UV �
It is easy to verify that the entries of the above�proposed mosaic preconditioner are

generated� in e�ect� by an asymptotically smooth function 
such is any function of the
form jjx� yjj�s with s � ��� Thus� the premises of this theorem are ful�lled�

Note that the mosaic�skeleton approximations are constructed only from the matrix
entries and the corresponding meshes� The state�of�the�art software manifests a good
performance� For example� for the function f
x� y� � jjx�yjj�� on �� ��� �� �� the ratio
mem �n behaves as log� n� Here are some other characteristics 
the comression factor is
memory used over n���

Matrix Compression Memory Compression Time

Size Factor ��� �Gb� �sec�

���� �	
�� �
��� �
�

���	 	
�� �
�� ��
�

�	�� �
�� �
��� 	�
�

	��� �
� �
�� ���
�

�	���� �
�� �
�� ����
�

� Numerical experiments

In this section� we consider only speci�c case of domain decomposition� when the in�
ternal crossedges are absent� We focus on the arithmetical scalability of the mosaic
preconditioner� and the robustness of the trace normalization with respect to the oper�
ator coe�cients and the meshes� The arithmetical scalability will be presented in terms
of CPU time per mosaic preconditioner�vector multiplication� and the robustness will be
shown by the condition number of the operator NS� N � blockdiagfN �M �k��kg�

��� Arithmetical scalability of the mosaic preconditioner

Let � � � � � and we consider the simplest Helmholtz operator �#� I with Neumann
boundary conditions in a domain � which is a union of two similar tetrahedra �i sharing

��



one common face�

� �

�
x j

�X
i��

jxij � �

�
� x� � �� x� � �

�
� m � ��

�� � fx 
 �� x� � �g � �� � fx 
 �� x� � �g �
Let the mesh �h

� be a re�ection of a tetrahedral mesh �h
� � Therefore� the mesh �h is

symmetric� Since we evaluate the dual Schur complement S � B�A
��
� BT

� � B�A
��
� BT

�

via factorization of subdomain matrices Ai� i � �� �� we have to minimize the number
of elements in �h

i � On the other hand� in order to illustrate the arithmetical scalability
of the preconditioner� we have to increase the order of matrix S� and the number of
elements in the mesh �h � ��h

� � ��h
� � A natural solution is a shape regular mesh �h

re�ned geometrically towards � such that its trace on �� �h� is a uniform mesh� We
construct such a mesh by the bisection algorithm ��� ��� An example of the mesh is
shown in Fig���

Figure �� A mesh re�ned to the common face�

In Table � we present the CPU time per multiplication by a mosaic preconditioner as a
function of the order of S and number of levels of the mosaic preconditioner� The �rst
four columns point to an almost arithmetical scalability of the mosaic preconditioner�
Indeed� the increase of number of nodes in �h by factor � results in the increase of CPU

��



order of S� nk ��� �	� ���� ���� ���� ����

h�� �� 	� ��� ��	 ��� ��	

time� sec ����	 ����� ���� ���� ���� ���

number of levels $ � � � � � �

cond LS ���� ���� ���� ���� ���� ����

Table �� CPU time of one evaluation of the mosaic preconditioner L and the condition
number of LS�

time by factor �� The last two columns exhibit two important features of the mosaic
preconditioner� �� the larger order of matrix is� the larger number of levels should be used�
�� on moderate sizes of the matrices� lesser number of levels results in faster evaluation�

��� Trace normalization as a block diagonal preconditioner

Now we proceed to testing the robustness of the block diagonal preconditioner N �
blockdiagfN �M �k��kg� We consider the operator �r � �r � � with Neumann boundary
conditions� The domain � is a union of three similar tetrahedra �i sharing one common
edge�

� �

�
x j

�X
i��

jxij � �

�
� x� � ��

�
n fx j x� � �� x� � �g� m � ��

�� � fx 
 �� x� � �� x� � �g � �� � fx 
 �� x� � �� x� � �g �
�� � fx 
 �� x� � �� x� � �g �

A shape regular mesh �h
� is re�ected across the common faces between �� and ������

resp�� to obtain the meshes �h
� ��

h
� 
Fig����

In Table � we show the condition number of operator NS and the number of PCG
iterations needed to reduce the residual by a factor of ���� for uniform meshes and
di�erent distributions of coe�cients �i� �i� In Table � we present the condition number
of operator NS and the number of PCG iterations needed to reduce the residual by a
factor of ���� for the same coe�cients but meshes geometrically re�ned to a common
edge�

As it is seen from Tables �� �� both condNS and the number of PCG iterations
depend on the mesh very slightly� even for very small meshsteps� The dependence on
the coe�cient jumps is not observed either� except the case when the global problem is
almost decoupled 
�� � �� � �� � �� � ���� �� � �� � ��� In the latter case the only
o��diagonal blocks of S tie the problem as a whole� Skipping them changes the problem
dramatically and the price for that may be seen both in number of iterations and the
condition number of the preconditioned dual Schur complement�

��



Figure �� The domain consisting of � subdomains and its meshes� uniform 
left� and
re�ned 
right��
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Table �� Uniform meshes� condition number of NS 
number of PCG iterations��

Conclusion
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Table �� Locally re�ned meshes� condition number of NS 
number of PCG iterations��
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