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1 Introduction

The paper is devoted to designing an interface preconditioner for a Schur complement
associated with Lagrange multipliers. After brief overview of the problem in Introduction,
in Section 2 we discuss a domain decomposition method with Lagrange multipliers on the
interface. In Section 3 we outline the general framework of the solution of saddle-point
systems which result from the above domain decomposition. Section 4 is devoted to the
construction of the interface preconditioner for the saddle-point Schur complement, which
is the main goal of the paper. In Section 5 we review the mosaic approximation to be used
in the preconditioner and analyze the mosaic preconditioner. In Section 6 we present
numerical experiments illustrating the basic properties of the interface preconditioner.
The main purpose of the domain decomposition is modularity. By modularity we im-
ply an ability to use only subdomain solvers while solving global problems. By subdomain
solvers one could understand either exact solvers (direct or iterative) or a preconditioner.
The latter is more favorable because of its flexibility. From parallelization point of view,
the most attractive are non-overlapping domain decompositions. However, these meth-
ods require an additional problem dependent constituent, an interface preconditioner.
Designing an interface preconditioner is the key ingredient for many domain decompo-
sition techniques. There exists several ways of construction such a preconditioner. One
could solve auxiliary boundary value problems in subdomains [16, 14, 4, 5, 7, 8, 9], use an
approximate inverse of the interface Schur complement [17, 11, 6], construct spectrally
equivalent interface operators [1, 18, 20]. In this paper we want to exploit trace normal-
izations [18, 19], in order to construct an interface preconditioner. The basic idea is to
approximate a dense matrix due to the trace normalization, by a sparse matrix whose
action on vector is easy-to-evaluate. In 2D case of the substructuring domain decompo-
sition method, such an attempt was discussed in [21]. Here, we address preconditioning
a dual Schur complement, that makes the problem easier even in 3D case. The proposed
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preconditioner may be implemented as a gray box having on input the coefficients of
the problem and the interface mesh. The mosaic approximation technique [23] used as a
gray box, is associated with the fast multipole methods [27].

2 Domain decomposition with Lagrange multipliers

Let a polyhedral domain @ C R? with a Lipschitz boundary 09 be decomposed into
m non-overlapping regular shaped polyhedral subdomains Q;, 1 < i < m, ie., Q =
U, Q, NQ; =0,1 <i# 4 <m. We assume this decomposition to be geometrically
conforming in the sense that if ©;; = Q; N Q; # 0,5 # j, then ©;; is either a common
vertex, a common edge, or a common face of ; and Q;. We refer to S := J{O;; : | ©;; |#

0,1 < i # j < m} as the skeleton of the decomposition. The skeleton is decomposed
K
into faces yx: § = U 7, where each face v, is the entire open face of two adjacent

=1 _
subdomains QM(k) and QM(k)? 1 S M(k) ;é M(k) S m, i.e., YE = @M(k),M(k)
Let Q7 be a conformal simplicial regular triangulation of Q;, i = 1,...,m. We
assume that the meshes QP match on the skeleton: Q’j/[(k)m = Q’;;[(k)m, k=1,...,K.

Therefore, the conformal triangulation of Q2 may be defined as the union of Q%:
m
o=
i=1

We denote by Vih and W the spaces of P, conforming finite elements on triangulations
Q? and Q" respectively.

Let the bilinear form a(-,-) : V x V' — R, and the functional [(-) : V' — R are given
by

a(v,w) = izzlai(v,w), ai(v,w) :z/[va-Vw—i—evw]dm, I(v) := lzzl/ﬂz fvdz, f € La().

3

For simplicity we assume that e(z) = & = const; > 0, p(z) = p; = const; > 0 in
Q;,1=1,...,m. The finite element problem is
Find w € W" such that
a(w,v) =1(v), veWh (1)

In order to decompose the problem (1), we introduce a pair of discrete spaces:
m K
vh .= H V;h and A" := H A (),
i=1 k=1

where

M) = {o= Y )} (2)

€N ()}
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Here NV (y?) is the set of all nodes of the mesh 4/ on the entire face J;. Notation §(z)
stands for the Dirac function.
The space V" is composed of decoupled subdomain spaces Vih, and the space A" is

the space of Lagrange multipliers. The macro-hybrid primal variational formulation is:
Find (u,\) € V" x A" such that

a(u,v) +b(A\,v) = I@), veVh (3)
b(p,u) = 0, [2S Aha
where

K
b(,u,v) = Z bk(:uav)a bk(:uav) =<, [U]J >’yka
k=1

W]rl = vlage, — vloyw,, and <, >, refers to the dual pairing! between H~'(v;)
and H'(y;) . In spite of lack of a continuous closure, the following holds true in the
above discrete case [10]:

Lemma 2.1 Let w and u be the solutions of of (1) and (3), respectively.
1. There exists such A € AP that the pair {{w|9i}§’;1, 5\} is the solution of (3);
2. The function 1 € W", |, = u;, is the solution of (1).

The equivalence of (1) and (3) allows us to replace (1) by (3). The advantages of
such a replacement are discussed below.

3 Block diagonal preconditioner

The finite element problem (3) results in the system of linear algebraic equations in the
saddle-point form:

[ Ay 0 Bl 17wl [A]
A BT U
B S R
0 Am BZL Um fm
| By . . . B, 0 | [ X | . 0 |

where the block representations of the matrices A and B are associated with the defini-
tion of the spaces V" and A", while the matrices A, B and the vector f are specified by
the bilinear form a(u, v), b(u, v) and the functional [(v), respectively. Under the assump-
tions made, matrices A; are symmetric positive definite. However, the whole matrix of
system (4) may be singular, if the matrix B is not a full rank matrix. It is the so-called
redundancy case: the number of neighbor-subdomain pairs (Lagrange multiplier degrees
of freedom) related to an interface node, may be larger than the minimum number of
ties providing continuity of a grid function at this node.

"We consider only discrete formulations, for which vlay g, € H' (), since v € V.



Let us assume for the moment that the matrix B is a full rank matrix. In order
to solve the linear problem (4) one can use the generalized Lanczos method with the

preconditioner
R 0
n= R | )

The symmetric positive definite matrix R4 stands for a preconditioner for the subdomain
problems specified by the matrix A, and Ry stands for a preconditioner for the interface
problem associated with the matrix S = BA~'B”.

Lemma 3.1 ([11, 6]) Let the symmetric positive definite matrices Ra and Ry be spec-
trally equivalent to the matrices A and S = BA™' BT, respectively, with positive constants
1, 2, ¢3, ¢4. Then the boundaries of the segments [dy, do], [ds, d4], dy < dy <0 < d3 <
A BT

dy, that contain the spectrum of the matriz R™'A, A = B 0

], depend only on the

values of c1, co, c3, C4.

Corollary 3.1 Under the above assumption on the matriz R the convergence rate of the
preconditioned Lanczos method of minimal iterations does not depend on the dimension
of the matriz A if it is applied to the problem (4).

In the case when the matrix B is not a full rank matrix, the convergence of the
iterative methods is understood in a subspace of the original discrete space. The subspace
is formed by the Lagrange multipliers from range(B).

In papers [6, 11] the matrix R4 is proposed to be a block diagonal matrix such that
each block of R4 serves as a preconditioner for the corresponding diagonal block A; of
matrix A. These blocks are independent of each other and may be chosen taking the
advantage of properties of the subdomain meshes, approximations, operators, etc. The
challenge is the construction of an efficient interface preconditioner Ry. It should be
parallel, fast and robust with respect to bad parameters of the discrete problem and its
decomposition (coefficients, meshes, number of subdomains). In the following we focus
on developing such an interface preconditioner.

Remark 1. Construction of a preconditioner for the dual Schur complement S =
BA~'BT is the basic issue for efficient iterative solution of saddle-point problems [3].
In particular, instead of the framework of Lemma 3.1, one could simply reduce the
problem (4) to its interface Schur complement counterpart, assuming that matrices A;,
1 =1,...,m, may be factorized:

SA\=F, F=BA'f. (6)

Problem (6) is also referred to as the dual Schur complement problem, since the Schur
complement here is associated with the Lagrange multipliers rather than the trace of
a solution. Although the matrix S is dense, it is never generated as it is. Instead,
iterative techniques are used for the solution of (6). Computation of residual requires
only multiplication of S by a vector, which may be done easily once the matrices A;



are factorized. Moreover, the multiplication is easy to parallelize, as well as recovering
the solution u = A~!(f — BT)). The condition number of S (condS) is affected by the
number of nodes on the skeleton, the meshes in the subdomains, the coefficients in the
bilinear forms, and the number of subdomains. Usually, the condition number of S is
large, and the preconditioning is inevitable.

Remark 2. In this work, we consider the case ¢; > 0. It provides non-singularity of
matrices A;, 1 = 1,...,m. On the other hand, it may cause an additional dependence
of condS on . The case ¢; = 0 is considered by the Finite Element Tearing and Inter-
connecting (FETT) method, introduced by Farhat and Roux [4, 5]. Let A stand for the
pseudo-inverse of A, problem (6) is reformulated as:

BA'BTX = BA'f + BRa, (7)

where a has to be determined and matrix R spans the nullspace of A: range(R) = KerA.
If we denote G := BR, P:=1— G(GTG)"'GT, problem (7) is equivalent to

BA'BTX = BA'f,
GTx = RTf. (8)

The FETI method is the solution of (8) with a preconditioned projected CG method. In
other words, it is the PCG method where all guesses satisfy GT (A, — Ag) = 0.

4 Interface preconditioner

For simplicity of presentation, we consider three cases. The case with severe topological
restrictions will be considered in detail, and an intermediate and a general case will be
just outlined.

4.1 Case 1: no crossedges

Crossedges are defined to be the edges forming the skeleton S. Since the faces © M k), (k)
k = 1,...,m, do not intersect each other, we have as many degrees of freedom for
Lagrange multiplier space, as the number of ties to be imposed in order to get continuity
of the solution across the interfaces. It implies the non-redundancy and the full rank of
the matrix B. A very important feature of such a decomposition is that a normalization
of the discrete trace space on the skeleton may be derived explicitly [19], in construct to
a general case. Due to the topological restrictions and local nature of the matrix B, the
matrix S = BA™!'B” is spectrally equivalent to a block diagonal matrix blockdiag{S}}

[J, each block Sy being associated with an entire face © ) 7y, k= 1,- .., K:

S ~ blockdiag{Sy}. (9)
Moreover, nonzero entries of matrices B;, ¢ = 1,...,m, are either 1 or -1, according to
(2). Hence,

-1 T -1 T
Sk = Funr(e) e Anr oy o Fvrce) ke En1 () kA 70y 6 F 01 () 0



where matrix Fjr), with entries 1 or 0 map the degrees of freedom in subdomain
Qarr) into Lagrangian degree of freedom N (fy,}j) Let we split the nodes in Q}]f/[(k) into

two groups, the first is formed by the nodes lying on © M (k), F(k) and the second is formed
by the remained nodes. Then the block representation of matrix Ay, is

k kI

A —
M l Al Alrry

and we readily get
—1 -1
Sk = Quitkyk + it i (11)

- k k -1k
QJ\/[l(lc),k = Ay + Azé(k) (Aﬂxl(k)) Ag/l(k)v

-1 ok kI I -k
Qs = Ain + A (Ahw) Al

Let ny be the number of nodes in N(’y,’j), u; be the entry of vector « associated with
a mesh node z; € N'(7}), h; be the mesh size at z; and matrix Ny, € R™ ™ be
defined as

— = U — U )\V; — U5
(Nuy k@ @) = Y cilpmgyemp) D ( il J)hz?h;

3
z; EN('y;CL) zitT; GN(')’,’:) |mz Z 5 |
+ Z ﬁz‘(PM(k),ffM(k))Uz'vih?, Vi, v € R, (12)
1716./\/’(7,’;)
where )
0, p/e <h;
a;(p,€) =
;) { p, ple>h;
hie, ple < h?
Bi(p,e) =< (pe)'/?, W2 <ple <1
£, ple > 1.
Theorem 4.1 ([19])
Narey g ~ Quik) k- (13)

The spectral equivalence takes place with constants independent of ng,p, €.

Now, we assume that
€1 €2 Em

pPL P2 Pm (14)
and we have matrices L, k =1,..., K, such that
’ M(k), prmky < Por(k):
L, ~ Ny , M(k)= - 15
g M(k) (k) { M(k),  pumk) > Prik)s (15)

with constants independent of ¢, p. Straightforward consequence of (9), (11), (13), (14),
(15) is the following



Theorem 4.2 Let (1}) holds true and
L = blockdiag{ Ly}

and

e1Lg < Ny < 2L, k=1,... K. (16)

(k)
Then
L' < S < e L7, (17)

where constants c3, c4 depend only on ci, ca.

According to (17), the preconditioning implies here just a vector multiplication by matrix
L. Hence, if the multiplication may be performed efficiently, the goal of construction of
an interface preconditioner is achieved. In Section 5 the construction of matrices L; and
verification of (16) will be considered in detail.

4.2 Case 2: no internal crossedges

As in the previous case the topological assumption implies the non-redundancy and
full rank of the matrix B. The dual Schur complement is not spectrally equivalent to
blockdiag{Sy} where blocks Sj are associated with C:)M(k),M(k)' However, we may ig-
nore the nondiagonal blocks of S and consider the above block diagonal preconditioner
L = blockdiag{ Ly}, where Ly satisfy (16). In this case the constants in (17) are not de-
pendent on ¢1, co only. They depend on the mesh and the coefficients as well. The depen-
dence on the mesh has a polylogarithmic character [1]. Indeed, one of the basic properties
of the matrix S is that, up to a logarithmic factor, blockdiag{S}~! ~ blockdiag{S~'}
([1],Proposition 2 and [18]). Coupled with (16), it results in polylogarithmic dependence
of ¢4/c3. The dependence on the coefficients may be derived as follows. If the entries
of nondiagonal blocks of S may be estimated by those of NM(k),k’ k=1,...,m, inde-
pendently of the coefficients, then c3, ¢4 do not depend on the coefficients. For instance
(but not necessarily), this is the case when there is a path through faces of neighbor-
ing subdomains such that the coefficients are non-increasing or nondecreasing along the
path. Otherwise, the nondiagonal blocks are essential and may not be neglected in such
a fashion.

4.3 Case 3: general case

In general case normalization of the skeleton trace space is unknown and the matrix B
is not a full rank matrix. The remedy is a combination of techniques responsible for
different aspects of preconditioning. At the first step, we get rid of the dependence on ¢;
and number of subdomains m.

Let T'; := 09Q; \ 09, nr, be the number of nodes of T? := 90" N T;, My, € R "
be the boundary mass matrix, d; be the diameter of Q;,2=1,...,m.

. . _ T _ 1 _ T
We introduce the matrix P, = w1, Wi, where wy p;, = ﬁepi, er; =[1...1]" €

R"Ti. We note that (Mr,wr,, wir;) = 1, and Ppr, Mr, are the Mr-orthogonal projec-
tors,i=1,...,m. Let g; < cpi/d% and let A; be a matrix generated on Qi‘ by the bilinear



form a;(u,v) with € = p;/d?. The matrices A; and A; have the block forms

o AFi AFiIi A AFi Arili
Az — l A[i ] and Az = l AIZ-FZ- AL‘ ] )

where Ar,, Ar, € R"Ti*""Ts

Lemma 4.1 [6, 11] Under the assumptions made

1 1
Pr, ~ (AFZ — AFiIiA;ilAIiFi) . (18)

(Ar, = Av A7 Ar) ™+

The spectral equivalence takes place with constants independent of p;, €;, d;.

The above Lemma is used for the construction of a preconditioner to BA~'B”', since
BiAi_lBiT = Br,(Ar, — ApiIiAI_ilAjipi)*lBITi, where matrix By, is the interface subblock
of B;, B; = (Br,, O). Using (18) we have

m

m
1 _
BA™'BT =N "B;A7'BT ~ Br.Pr.BL + G, 19
1::2; 1470 2 ggzdz r; 4 Pr; ( )
_ m _ _ _ -1
G = Z BFi (AFI — AFiL‘A[:lAL‘Fi) BIY\; (20)
i=1

Of course, since the matrix B may be not a full rank matrix, (19) holds true for
vectors in range(B).

Theorem 4.3 [12, 13] Let B be a full rank matriz and let the symmetric positive definite
matriz D be such that the spectrum of DG belongs to the interval [c1,ca], 0 < ¢1 < ¢
and let

m
1
R,:=SN — Br.P-.BL + D', 21
A ;&'di r; T Pr; ( )
Then
Ry ~ BA'BT. (22)

The spectral equivalence takes place with constants independent of p;, €;, d;, m and
dependent on ¢, ca.

m
Matrix R) is a modification of D~! by a low rank matrix X X7 = ﬁBFiPpiBIZ;

=1

with X = < . meiepi, .. ) The solution of a system with matrix Ry may be

found by evaluations of matrix D:
R'=D-DX(1,) + X"DX)'XTD,

where I, € R™*™ is the identity matrix. Thus, in order to construct a good precondi-
tioner for BA~!' BT we have to find a preconditioner D to G such that DG ~ I and D is
easily multiplied by a vector.



If B is not a full rank matrix, both G' and D are to be singular but positive definite
in range(B). If we assume that D is invariant in range(B), (21), (22) are understood in
the subspace range(B).

Thus, we reduced the problem of construction of an interface preconditioner for the
dual Schur complement S to preconditioning matrix G.

At the second step, we can apply the Dirichlet preconditioner for the FETI method
[8]. The basic idea is to replace the Schur complement associated with Dirichlet problem
by a matrix generating a trace norm on I';. Assumption ¢; < cp;/ d? allows us to carry
on the basic analysis [8] for our case. However, there are still open algorithmic questions
within the above framework. They are to be discussed elsewhere.

5 Mosaic preconditioner

The mosaic-skeleton method [23, 24, 25] constructs a specific ("mosaic”) partitioning
of a matrix in which most of blocks admit accurate low-rank approximation. For the
matrices coming from integral equations, these blocks correspond to a region where the
kernel is smooth enough and can be approximated by a degenerate kernel (a short sum
of functional skeletons). The method is an algebraic view of several fast approximate
multiplication approaches of the last decade [?, 27].

Assume that the mosaic-skeleton method is applied to matrices of the form

where f(z,y) is a function of z and y from a bounded region S in the p-dimensional
space, and z;, and y;, are the nodes of some meshes.

First, we assume that f is asymptotically smooth. It means [24] that there exist
¢,d > 0 and a real number g such that, for  # y and all integer p > 0,

0°f (z,9)] < ¢ lo—y['™" (23)
where
cp <cd'pl. (24)
Here, 0P is any p-order derivative in y = (y1,...,y,):

9\ a\" . .
ap:<a_y1> (8_%) it i =

Second, we assume the meshes are subject to the following resriction:

mes S’

n

!
<
() < e mesS

where S’ is any subregion of S and 7, counts how many nodes of the mesh with n nodes
fall into S’, and mes is the Riemann measure (thus, S and S’ are assumed measurable;
we could confine ourselves to those S’ which are intersections of a finitely many cubes
with S); ¢ > 0 does not depend on S’ and n.



The next theorem is a reformulation of the results from [24, 26].
Theorem. Under the above two assumptions, for any § > 0 there are splittings A, =
T, + R, where

mem (U, Vy) = O(nlog"*' n), ||Rallr = O(n™"), (25)

and mem 1is the lowest possible number of nonzero entries in any pair of matrices U and
V' such that T,, =UV.

It is easy to verify that the entries of the above-proposed mosaic preconditioner are
generated, in effect, by an asymptotically smooth function (such is any function of the
form ||z — y||™* with s > 0). Thus, the premises of this theorem are fulfilled.

Note that the mosaic-skeleton approximations are constructed only from the matrix
entries and the corresponding meshes. The state-of-the-art software manifests a good
performance. For example, for the function f(z,y) = ||z —y||=3 on [0, 1] x [0, 1] the ratio
mem /n behaves as log? n. Here are some other characteristics (the comression factor is
memory used over n?).

Matrix Compression  Memory Compression Time
Size Factor (%) (Gb) (sec)
1024 16.22 0.001 1.9
4096 6.39 0.008 11.5
16384 2.39 0.050 62.3
65384 0.83 0.278 307.1
262144 0.27 1.448 1411.5

6 Numerical experiments

In this section, we consider only specific case of domain decomposition, when the in-
ternal crossedges are absent. We focus on the arithmetical scalability of the mosaic
preconditioner, and the robustness of the trace normalization with respect to the oper-
ator coefficients and the meshes. The arithmetical scalability will be presented in terms
of CPU time per mosaic preconditioner-vector multiplication, and the robustness will be
shown by the condition number of the operator NS, N = blockdiag{NM(k),k}.

6.1 Arithmetical scalability of the mosaic preconditioner

Let p = ¢ = 1 and we consider the simplest Helmholtz operator —A + I with Neumann
boundary conditions in a domain  which is a union of two similar tetrahedra €2; sharing
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one common face:
3 1
Q:{x|2|xi|<§,$1>0,m2>0}, m =2,
i=1

O ={z€Quzs>0}, Qo={re,z3<0}.

Let the mesh Q% be a reflection of a tetrahedral mesh Q?. Therefore, the mesh Q" is
symmetric. Since we evaluate the dual Schur complement S = By A7'BT + ByA;'BY
via factorization of subdomain matrices A;, i = 1,2, we have to minimize the number
of elements in th On the other hand, in order to illustrate the arithmetical scalability
of the preconditioner, we have to increase the order of matrix S, and the number of
elements in the mesh ©" = QP N Qf. A natural solution is a shape regular mesh Q"
refined geometrically towards © such that its trace on ©, ©", is a uniform mesh. We
construct such a mesh by the bisection algorithm [15, 2]. An example of the mesh is
shown in Fig.1.

Figure 1: A mesh refined to the common face.

In Table 1 we present the CPU time per multiplication by a mosaic preconditioner as a
function of the order of S and number of levels of the mosaic preconditioner. The first
four columns point to an almost arithmetical scalability of the mosaic preconditioner.
Indeed, the increase of number of nodes in ©" by factor 4 results in the increase of CPU

11



order of S, ny 153 561 | 2145 | 8385 || 2145 | 8385

ht 32 64 | 128 | 256 | 128 | 256

time, sec 0.016 | 0.040 | 0.19 | 1.04 || 0.27 | 24
number of levels ? 3 3 3 4 4 3

cond LS 19.3 | 19.8 | 19.8 | 19.9 || 19.8 | 19.9

Table 1: CPU time of one evaluation of the mosaic preconditioner L and the condition
number of LS.

time by factor 5. The last two columns exhibit two important features of the mosaic
preconditioner: 1) the larger order of matrix is, the larger number of levels should be used,
2) on moderate sizes of the matrices, lesser number of levels results in faster evaluation.

6.2 Trace normalization as a block diagonal preconditioner

Now we proceed to testing the robustness of the block diagonal preconditioner N =
blockdiag{NM(k) «}- We consider the operator —V - pV + ¢ with Neumann boundary
conditions. The domain €2 is a union of three similar tetrahedra €2; sharing one common
edge:

3
1
Q=Sz | |zl <z, 23>0, 0\ {z|z2> 0,23 >0}, m=3,
i=1 2

QIZ{$EQ,$2<0,$3<0}, QQZ{I‘EQ,J?2<0,$3>0},
93:{$EQ,$2>0,$3<0}.

A shape regular mesh QF is reflected across the common faces between ; and 05,03,
resp., to obtain the meshes QF, QF (Fig.2).

In Table 2 we show the condition number of operator NS and the number of PCG
iterations needed to reduce the residual by a factor of 108, for uniform meshes and
different distributions of coefficients p;, ¢;. In Table 3 we present the condition number
of operator NS and the number of PCG iterations needed to reduce the residual by a
factor of 105, for the same coefficients but meshes geometrically refined to a common
edge.

As it is seen from Tables 2, 3, both cond NS and the number of PCG iterations
depend on the mesh very slightly, even for very small meshsteps. The dependence on
the coefficient jumps is not observed either, except the case when the global problem is
almost decoupled (p2 = €2 = p3 = €3 = 103, p1 = €1 = 1). In the latter case the only
off-diagonal blocks of S tie the problem as a whole. Skipping them changes the problem
dramatically and the price for that may be seen both in number of iterations and the
condition number of the preconditioned dual Schur complement.

12



Figure 2: The domain consisting of 3 subdomains and its meshes, uniform (left) and

refined (right).

order of S, ng 45 153 561
h~! 16 32 64
pras =1 22.7 (21) | 23.5 (26) | 28.3 (29)
€123 =1
pros =1 21.7 (15) | 22.7 (17) | 22.4 (18)
£123=10""
pl=e =1 | 17.3(20) | 17.1(21) | 17.1 (22)
pe =gy =103
ps = e3 = 103
pl=e =1 | 172 (21) | 17.3 (22) | 17.5 (25)
pe =gy =103
ps =e3 =103
pL=e1 =1 | 14012 (65) | 16706 (87) | 18108 (94)
po = g9 =103
ps = e3 = 103

Table 2: Uniform meshes: condition number of NS (number of PCG iterations).

Conclusion
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order of Si, ng 152 320 660

h! 64 128 256
pr23=1 20.6 (24) 21.0 (26) 21.6 (26)
€123 =1
pras=1 22.4 (15) 22.5 (16) 22.5 (17)

€123 = 10~*
pL=e =1 | 122(20) | 12.1(22) | 122 (22)

p2 = €9 = 1073

pP3 = €3 = 103

pr=c =1 | 16.1 (24) | 15.4 (24) 16.2 (23)
p2 = €9 = 1073
p3 = €3 = 1073

pr=c1 =1 | 13774 (87) | 13626 (108) | 13468 (114)
P2 = &9 = 103
pP3 = €3 = 103

Table 3: Locally refined meshes: condition number of NS (number of PCG iterations).
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