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ABSTRACT

We consider the eigen and singular value distributions for m-level Toeplitz
matrices generated by a complex-valued periodic function f of m real vari-
ables. We show that familiar formulations for f € L., (due to Szego and
others) can be preserved so long as f € Ly, and what is more, with G. Weyl’s
definitions to be just a bit changed. In contrast to other approaches, the one
we follow in this paper is based on simple matrix relationships.

1 Introduction

Multilevel Toeplitz matrices arise naturally in multidimensional Fourier anal-
ysis. Given a complex-valued function f of m real variables which is 27-
periodic in each of them, assume that f is Lq-integrable on a cube 11" =
[0,27]™ and associate it with a Fourier series

f@)~ 30 aped®,

ke ™

where

k= (ki,....kn), x=(x1,....0m), (ko)=kei+.. .4 kntn.
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The multilevel (to be precise, m-level) Toeplitz matrices are introduced as
follows:

An:[ak—l]v
k:(kl,...,km), l:(ll,...,lm), n:(nl,...,nm),
O§kj,lj§nj—1, jzl,...,m.

The multiindices £ and [ satisfying the last inequalities will be referred to
as n-admissible. For further reference, recall that A, becomes a multilevel
(m-level) circulant if

Ag—] = Gk—[(modn),

where, by definition,
k(modn) = (ki(modny), ..., ky(modn,,)).

The matrices A, and C,, can be viewed as ones with a nested block
structure: A, consists of ny X n; blocks, every block consists of ny X ng
smaller ones, and so on. Obviously,

A, € VY where N = N(n) = nq1 ... ny.

The classical Szego theorem (see [2]) considers the case m = 1, and
states that for any real-valued periodic function f € L., the eigenvalues of
the (Hermitian) Toeplitz matrices A, are asymptotically distributed as the
values of f(x). The same is known as well in the case of arbitrarily many
dimensions (see [2, 4]).

Keeping in mind these well-known facts, one might be interested to ask
whether the same stands under relaxed requirements to f: for example, when
f € Ly or even when f € L.

Prior to thinking it over, we need to recollect the definitions. Let ¢ and
n denote the multiindices

= (T oytm)y N= (N1, Np).
Due to G. Weyl, a sequence of suites
{)\m}, 1§ij§nj, jzl,...,m,

is called distributed as f(x) if it enjoys the following properties:



(1) there exist numbers m < M such that m < A;,, < M for all ¢, n;

(2) for any continuous on [m, M| function F'(x),

5 e
nh_}rnoo N(n) = G /F(f(:z;))d:z; (%)

I

Here and further on, the multiindex tending to infinity is meant in the sense
that every its component tends to infinity:

n=My...,0pm) 200 & nj—o00,J=1,...,m.

It f € Ly then it does not follow from anywhere that the eigenvalues of
A, for all n belong to a common finite interval. Thus, to begin with we

should modify the definition.

Let us adopt the definition proposed in [6, 8]. A sequence of suites {A;,}
will be termed distributed as f(x) if (%) holds for any continuous function
F(x) with a finite support. In this case, we shall write A;, ~ f(x). If the
eigen or singular values of matrices A,, are distributed as f(x), we reflect this
by writing A(A,,) ~ f(z) or o(A,) ~ f(x), respectively.

It is proved in [6, 8] that if f(x) € IR and f € Ly then A(A,) ~ f(x),
while if f(2) € C and f € Ly then o(A,) ~ |f(x)| (for f € L it was proved
in [1, 3]). We now put a question: does the same hold for f € L7

Note yet that answering this question is only a formal purpose. Above all,
we want to present a new technique based on some easily detectable matrix
relationships.

Concerning the formal purpose, we should compare what we do with
some constructions from [2] that allow one, in principle, to treat those f
that are not necessarily in L.,. To this end, of course, there were some
new notions (besides G. Weyl’s definition) put forth in [2]. However, they
were used only in a new elegant proof of an analogue of the Szego theorem.
Natural interrelations between Toeplitz matrices and circulants discovered
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there seemed to be lost with L., replaced by L;. In this paper these relations
are rejuvenated with the help of low-rank correction matrices.

To prove that A(A,,) ~ f(x) (for real-valued f) we can build up a sequence
of multilevel circulants C,, such that

A(An) ~ A(C) (1)

and, simultaneously,
MCn) ~ f(x). (2)

Two sequences of suites {\;, } and {p;, } are referred to as equially distributed
if for any continuous function F'(x) with a finite support

> (F(Ain) = F(pin)

N(n)

lim =t = 0.

o N ()

Let C, be an optimal multilevel circulant (see [5]) for A, the one that
minimizes ||A, — C,||r over all multilevel circulants. Throught the paper, if
n = (n1,...,n,) then let a,, = o(n) signify that a,/N(n) — 0 as n — oo.
Then it can be proved [6] that

fely = [A-Cilli=0(n) = (1)
It can be also proved [6] that

feli = MC,)~ f(z)

In the case f € L; we are not aware yet how to prove the property (1).
In contrast to the Ly case, the key property (that entailed (1) previously)

147 = Cullfe = o(n)

is no longer valid for an arbitrary f € L; [9]. However, it will be shown
below that the above equation can be saved after “low-rank” corrections of
the matrices involved. It appears to be sufficient for the distribution results
under question to follow quite easily.



2 Equally Distributed Sequences

It f € L, then we ought to keep in mind that the multilevel Toeplitz matrices
A, can be not “close by norm” to the corresponding optimal multilevel cir-
culants C,. All the same, we will prove that these matrices are still “close”
but in a somewhat different sense. Results cited below suggest how to enrich
the standard view of closeness.

Theorem 1 [7]. Suppose A,, C, and A, are N(n) x N(n) matrices such
that

A, — Cn + ALll%: = o(n), rankA, = o(n).

Then
o(A,) ~ o(Ch),

and, moreover,

A(An%—An)N)\(Cn—I—Cn)’ )\<An_.An)N)\<Cn_.Cn)‘
2 2 21 21

We can reformulate the hypotheses in a more convenient form.

Theorem 2. The hypotheses of Theorem 1 are fulfilled if and only if for any
e > 0 there exist matrices A,(¢) such that

|An — Cn + An(e)H% <eN(n), rankA,(e) <eN(n)

for all n with sufficiently large components.

3 Preliminaries
We shall use a component-wise multiplication of two vectors:
hex=(hiay, ..., hpay),

where

h=(htyo o hm), @=(21,...,2Tm).

Given a multiindex n = (ny,...,ny,), we set

ny nm
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and denote by F), the m-level Fourier matrix

F = [e—i(hn~k,l)]

Y

where k£ and [ are n-admissible multiindices. Below we list some statements
which are well known or easy enough to prove.

1. Let ¢ be the first column of a multilevel circulant C',,. Then

C, = Frdiag (F,c)F,.

N(n)

Thus, the columns of a matrix

comprise a complete orthonormal set of the eigenvectors of C,,.

2. Suppose (), is the optimal m-level circulant for the m-level Toeplitz
matrix A,. Then (using the scalar product of a Hermitian space) we

have [5]

for any n-admissible multiindex k£. The quantities in the right-hand
side constitute a complete set of the eigenvalues of C,.

3. For any vector p = [pp]* there holds

(Anp,p) =

1 .
{ PRGN

t € IIm

4. f 7 = (m,...,7m) then the m-level matrices generated by functions
f(t) and f(t 4 7) are unitarily similar:

An(f(t47)) = Un(7) A(f@) UL(7),  Cu(f(147)) = Un(7r) Cal(f (1)) Uz(7),



where

U, (1) = diag {¢"}.

The first equation follows from the identity ax(f(t+7)) = *7ar(f(1)),
while the second one emanates from the former and from the for-
mulas for the elements of the optimal multilevel circulant {C,}y =
ﬁ > a,_s, where r, s run over all n-admissible multiindices subject to

r—s=k—1[(modn).

5. Given a sequence of splittings

An(f(1)) = An(f(1) + A2n([ (1)), Calf (1) = CralS (1)) + Can(S(1)),

for any 7 = (7,...,7) the matrices generated by f(f + 7) possess
the similar splittings preserving the ranks and any unitarily equivalent
norm of the splitting components.

6. If pgj), k= (ki,...,kn),is a column of the m-level unitary matrix P,
then
m sin? (LJ?HJ) n; 2

A = 11
k

- thjkj‘l'tj ’ nj
=1 n; sin — s

1

4 Basic Lemmas

Lemma 1. Let 0 < 6 < 7 and 11(6) denote a cube with the side length equal
to 26. Denote by 1, (I1(6)) the number of n-admissible multiindices k such
that

c1(0) 1

(n) i(k,t)|2 _
max |Zk:pk R N(n) where ¢1(6) e

oo

Then for an arbitrary n there exvists a cube I1(6) such that the following
inequality holds
4m

pn(1(6)) < 6eaN(n), Cy = —.

s



Proof. The statement of the lemma for the case m = 1 is proved in [9].
Thus, let y,,;(I1;) be the number of those indices 0 < k; < n; —1 that satisfy
the inequality

sin2 (hnﬂzj-l—tj) n; 1

2 hngk;j+t;
2

max

. 246"
t; € II; n; sin 5

ny sl D)

Then, as is proved in [9], for any n; it is possible to find an interval II; of
length 26 such that

4
iy (1) < 6 —mj.
s
It remains to verify that the choice
H6) =14 x ... x 11,

implies the desired estimate. O

Lemma 2. Suppose f € Ly, f(x) >0 and supp f C II(8) C [—7,x]|™.
Then for the (Hermitian) Toeplitz m-level matrices A, and corresponding
(Hermitian) optimal m-level circulants C,,, the splittings exist

An — Aln + A2n7 Cn — Cln + CQn
such that

max{|| A2, |Cinll2} < a(6)||fllz,, max{rank As,,rank Cy,} < 26c3N(n).

Proof. By the proposition 5 from the Preliminaries, we may assume that
for any n the cube II(6) is the very one for which the estimate on g, (I1(¢))
of Lemma 1 is guaranteed. Consider a column splitting

Pn - [P1n7P2n]7

relegating to the second submatrix the vectors pgj) with those k that are
counted in p,(11(6)), and set

c AP, 0

_ Py 0 P AL P,



Under the hypotheses of the theorem, every matrix A, is Hermitian, and all
its eigenvalues are nonnegative. Hence,

| Atnllz = Amax(Pr, AnPrn) <t (P, A Pr) < ()] fllz, -

n n

When taking up the analogous splittings for the optimal m-level circulants
C.,, the upper estimate on ||Cy,]|2 is retained the same as that for ||A,]|2,
because, due to the proposition 2 from Preliminaries, we conclude easily that

tr (Pl*nCan) = tr (Pl* Anpln) O

n

Lemma 3. Suppose f € Ly, f(x) > 0 and the Lebesgue measure of supp f
is equal to 0™. Then the statements of Lemma 1 are still valid with ¢, the
same and ¢3(6) dependent also on the structure of supp f.

Proof. Since the set supp f has the Lebesgue measure equal to 6, it can be
covered by a denumerable (and eventually finite) set of cubes with the sum
of their side lengths not greater than 26. For each cube we apply Lemma 1
and notice that the integral of a nonnegative function over supp f does not
exceed the sum of integrals over those cubes. O

5 Distribution of Eigenvalues

Lemma 4. Let f > 0 and f € Ly. Then for an arbitrary ¢ > 0 there exist
Hermitian matrices H, (&) such that

|An — Cn + Hn(e)H% <eN(n), rank H,(c) < eN(n)

for all n with sufficiently large components.

Proof. Take M > 0 and consider a cut-off function

fx 2 fx §M7
o= J 458

Set rar(x) = f(x) — fm(x). Then

A}[EHOO lras||l, =0 and A}[EHOO mes supp ray; = 0.



Take up any € > 0 and choose M’ > 0 such that

€
mes supp rar < —.
202

Now pick up M = M. > M’ such that ¢ (¢)||ra|n, < e. Take into account
that the inclusion supp ry; C supp ra implies that mes suppry, < 7 10
charm with Lemma 3, we can write

An(rm) = Avalrm) + A2o(ra),  Colrm) = Cralrar) + Can(rum),

where
max{ || A (rar)lz, |Cra(rar)l2} < e,
max{rank Ay, (ra ), rank Cy,(rar)} < eN(n).
Since far € Lo, we have ||[(A.(fa) — Cu(fm)||7 < eN(n) for all n with

sufficiently large components [6]. It means that if A, (¢) = Copn(rar) — Azn(rar)
then

1AS) = Culh) + Au@lE = (Au(far) = Calfar)) + (Aualrar) = Cralran))l| 7
20| An(far) = Calfan)|li + 20l Ava(rar) = Cralran)llE

<
< (26 +4e*)N(n).

At the same time, rank A, (¢) < 2eN(n). Since ¢ is arbitrary, that will do
the proof. O

We now abandon the assumption that f(z) is of a constant sign.

Lemma5. [f f(x) € IR and f € Ly then the statements of Lemma 4 remain
to be valid.

Proof. If f(z) = f*(z) — f~(x), where f£(x) > 0and ff € Ly, then,

obviously,

An(f) = A7) = Au(f7), Culf) = CulfT) = Culf7)

Choose an arbitrary ¢ > 0. On the strength of Lemma 3, there exist Hermi-
tian matrices H and H such that
[AL(fT) = Cul ) + H |I7 < eN(n),  rank H < eN(n);

1AL = Cald™) + H |3 < eN(n),  rank I < N(n),
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Consequently, if H, = Ht — H~ then we get
|A, — C, + H,||% < 4eN(n), rank H, < 2zN(n),

and this completes the proof. O
Corollary. Under the hypothese of Lemma 5, A(A,,) ~ A(C,,).

It follows from Theorem 2.
Theorem 3. If f(z) € R and f € Ly then A(A,) ~ f(x).
Proof. By the corollary of Lemma 5, A(A,) ~ A(C,). Besides, if f € L
then A(C,,) ~ f(x) [6]. O
Corollary. Under the hypotheses of Theorem 3, o(A,) ~ |f(x)].

It is sufficient to note that if F'(x) is continuous function with a finite
support, then F(|z|) is also such.

Theorem 4. Suppose f(x), g(x) € R and f, g € L1. Then A(A.(f+g)) ~
f(@) +g(x).

To prove this, we need to take into account that

MC(f+9)) ~ MCa(f) + Calg));

apart from this we have to apply several times Lemma 3 and Theorem 2. As
a matter of fact, it will be an evident modification of the proof of Theorem 3.

6 Distribution of Singular Values

Theorem 5. Let f(x) € C and f € Ly. Then for any ¢ > 0 there exist
matrices A, (g) such that the inequalities

|A» — Cr + An(e)H% <eN(n), rankA,(c) <eN(n)

hold for all n with sufficiently large components.
Proof. Consider the Hermitian splittings

An — Aln + iA2n7 Cn — Cln + iCQna

Aj, = AS Cin=0%, =12,

jno
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and note that C}, are the optimal multilevel circulants for the Hermitian
multilevel Toeplitz matrices A;,. The matrices Ay, C1, u Ay, Csy, are gen-
erated by the functions

Re f(z) = (f(z) + f(2))/2 and Im[f(z) = —i(f(x) = ["(2))/2,

respectively. Since Re f(z),Im f(z) € IR, it follows from Lemma 5 that for
any € > 0 there exist Hermitian matrices Hj, such that the inequalities

1 1
| Ak — Crn + Hin(8)||7 < ZSN(n), rank Hy,(g) < §€N(n), k= 1,2,

hold for all n with sufficientlt large components. It is easy to check that the
choice A, = Hy, +1H,, provides us with the inequalities we are after. O

Theorem 6. Suppose f(x) € C and f € Ly. Then

Ay + A

5 ) ~ Re f(x), A (%) ~ Im f(z).

oA ~ @) A (

Proof. The statements of the theorem are fulfilled if we replace A, by C,
[6]. Now the distribution results under question follow immediately from
Theorems 1 and 5. O
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