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Krylov subspace methods and minimal residuals

E. Tyrtyshnikov∗

Abstract — We give a concise introduction to some recent developments of Krylov subspace methods
(in particular, the method of minimal residuals) and tendencies in the design and analysis of good
preconditioners.

Keywords: Krylov subspaces, method of minimal residuals, iterative methods, preconditioners, spec-
tral clusters.

1. INTRODUCTION

When solving a linear system Ax = b by a direct method, one can be unsatisfied with
accuracy or time or both. A general advice in this case is to use iterations. Appealing
advantages read as follows:

• iterations can be matrix-free, and

• time strongly depends upon accuracy.

The ways for iterations and convergence analysis are many and in this short note
we do not indend to mention even those that otherwise deserve it (many good refer-
ences can be found in [5,11,26]). Instead, we focus on one idea which is probably
simplest, most free from constraints and most popular in applications. A “geomet-
rical” implementation of this idea was probably first presented by G. Marchuk and
Yu. Kuznetsov [13].

Let us build up a sequence of subspaces

L1 ⊂ L2 ⊂ ·· · ⊂ Lm, dimLk = k, k = 1, . . . ,m, (1.1)

in the n-dimensional space and define xk ∈ Lk as the minimizer of the residual func-
tional

R(x) = ||b−Ax||22 (1.2)

on the manifold x0 +Lk. If m is sufficiently large then for some k we obtain the exact
solution x∗ = xk and quit. Here are still the two issues to be specified:
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• How do we move to Lk+1 from Lk?

• How do we minimize R(x) on Lk?

Take an arbitrary initial vector x0, set r0 = b−Ax0 and consider the following
Krylov subspaces:

Lk = span{r0,Ar0, . . . ,A
k−1r0}, k = 1, . . . . (1.3)

For unification, let L0 be zero space.
It is easy to prove that Lk = Lk+1 if and only if xk = x∗. Let m be the minimal

index such that Lk = Lk+1. Then we consider Lk only for k � m.
In computations with the Krylov subspaces, we construct some bases other than

those in the definition (1.3). Let

Lk = span{p1, . . . , pk}. (1.4)

In fact, we can choose any vectors pk such that

pk ∈ Lk, pk /∈ Lk−1. (1.5)

On the kth iteration we do not change p1, . . . , pk−1. In practical algorithms, we
take a probe vector pk satisfying (1.5) and then modify it to fit one of the following
options:

(1) keep p1, . . . , pk orthogonal;

(2) keep Ap1, . . . ,Apk orthogonal.

Option (1) is associated with a somewhat “algebraic” approach to minimization
of the residual rk = b−Axk. Option (2) provides a “geometric” approach to the same
minimization: by the theorem of Pyphagoras, the minimality of length of rk means
that

rk ⊥ ALk. (1.6)

This is a framework for several algorithms: GMRES [16] (algebraic approach);
ORTHOMIN, ORTHODIR [17](geometrical approach). Without the latter names,
the geometrical approach was probably first described in [13]. Quite naturally, the
framework is called the method of minimal residuals. Details of implementation are
easy to find elsewhere (perhaps the reader can suggest one more version).

An important case is when A is Hermitian positive definite. Using the same
subspaces Lk, now we can pick up xk ∈ Lk as the minimizer of the error functional

E(x) =
1
2
(A(x− x∗),x− x∗). (1.7)

Eventually we come up with the famous method of conjugate gradients.
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One may rejoin that what we discuss pretends to be iterations in a formal way but
is actually a direct method (as it quits with the exact solution). However, a common
practice is to check how close xk comes to x∗ (at least by the residual) and stop when
a prescribed accuracy is reached. To this end, we need some “convergence analysis”
and error estimates.

2. ERROR ESTIMATES

Minimization properties allow us to estimate how ||rk||2 decreases as k grows. How-
ever, we have to impose some additional assumptions on A: it is not difficult to pro-
duce an example of A for which the minimal residual method yields the same values
of ||rk||2 till the final step with zero residual.

Despite the above observation, we need not be too pessimistic. Since the kth
residual is minimal on the search space, we have

||rk||2 � min
α

||rk−1 −αArk−1||2
= |α |2(Ark−1,Ark−1)−2re(α(Ark−1,rk−1))+ (rk−1,rk−1).

Assume that α is real. Then the minimum of the right-hand side is attained at

α =
re(Ark−1,rk−1)
(Ark−1,Ark−1)

,

which implies that

||rk||1 �

√
1− (re(Ark−1,rk−1)/(rk−1,rk−1))

2

(Ark−1,Ark−1)/(rk−1,rk−1)
||rk−1||2. (2.1)

Now consider the following strong ellipticity (coercitivity) assumption:

|re(Ax,x)| � τ(x,x) ∀ x, τ > 0, (2.2)

and note that
(Ark−1,Ark−1)/(rk−1,rk−1) � ||A||22.

Consequently, we arrive from (2.1) at the Elman estimate [7]

||rk||2 �
√

1− τ2

||A||22
||rk−1||2. (2.3)

This very form of estimate appeared for the first time in [10] (however, in the context
of symmetric positive definite matrices).
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The coercitivity condition (2.2) means, in fact, that

re(Ax,x) � τ(x,x) ∀ x, τ > 0, (2.4)

or, alternatively,
re(Ax,x) � −τ(x,x) ∀ x, τ > 0. (2.5)

If (2.2) is fulfilled, then the inequalities of (2.4) and (2.5) may not occur both for
some different values of x. This is an obvious corollary from the Toeplitz–Hausdorff
theorem on the convexity of the field of values, defined as the set of values (Ax,x)
for all x on the unit sphere ||x||2 = 1.

Let S(τ ,σ), σ � τ > 0, be a domain on the complex plane with complex num-
bers ζ with the two properties:

reζ � τ , |ζ | � σ . (2.6)

As is readily seen, all the eigenvalues of A lie in S(τ ,σ) with σ = ||A||2. However, if
λ ∈ S(τ , ||A||2) for any eigenvalue λ of A, then this alone is not enough to guarantee
(2.3). To make it true we should add some extra condition: for example, it is valid if
A is a normal matrix.

Remark that (2.3) is an estimate for a one-dimensional minimization along rk−1
and should be rough as it does not reflect advantages of the Krylov spaces. Shortly
we can see that, at least for normal matrices and many others, a way more optimistic
estimate should hold.

2.1. Using polynomials

Since we use the Krylov subspaces, rk is of the form

rk = fk(A)r0, (2.7)

where fk(ζ ) is a degree k polynomial such that fk(0) = 1. For shortness, let us write
fk ∈ Fk, where Fk is the set of such polynomials. The minimality of length of rk
can be interpreted in the following way:

||rk||2 � || fk(A)||2 ||r0||2 ∀ fk ∈ Fk. (2.8)

Let Γδ be a boundary of S(τ −δ ,σ +δ ) for some δ such that 0 < δ < τ . Then,
for any polynomial fk(ζ ), one can express fk(A) via the so-called resolvent of A, a
matrix function of the form (A−ζ I)−1 of complex variable ζ , as follows:

fk(A) =
1

2πi

∫
Γδ

(A−ζ I)−1 fk(ζ ) dζ . (2.9)

Hence,
||rk||2
||r0||2 � |Γδ |

2π
Tk(Γδ ) R(A,Γδ ), (2.10)
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where
Tk(Γδ ) ≡ min

fk∈Fk

max
ζ∈Γδ

| fk(ζ )|, (2.11)

R(A,Γδ ) ≡ max
ζ∈Γδ

||(A−ζ I)−1||2, (2.12)

and |Γδ | is the length of Γδ . Thus, we can separately estimate |Γδ | (an easy matter),
Tk(Γδ ) (a fabulous problem of complex analysis and function approximation theory
related to the name of P. L. Chebyshev), and R(A,Γδ ) (difficult in general but quite
feasible in many cases of particular interest).

2.2. Resolvent and field of values

Assume that S(τ ,σ) contains the field of values of A. Denote the latter by Φ(A). In
this case we can prove that (cf. [6])

R(A,Γδ ) � 1
δ

. (2.13)

The proof is based on the following general inequality:

||(A−ζ I)−1||2 � 1
d(ζ ,Φ(A))

, (2.14)

where
d(ζ ,Φ(A)) = min

ξ∈Φ
||ζ −ξ ||2. (2.15)

There exist unit-length vectors x and y with the property

(A−ζ I)−1y = ||(A−ζ I)−1||2 x.

It follows that

|(Ax,x)−ζ (x,x)| = |((A−ζ I)x,x)| = |(y,x)|
||(A−ζ I)−1||2 � 1

||(A−ζ I)−1||2 ,

which obviously proves (2.14) and, hence, (2.13).

2.3. Normal matrices

In the case of normal matrix A, (2.13) emanates directly from the claim that all the
eigenvalus of A are located in S(τ ,σ). We know that the field of values of a normal
matrix coincides with the convex hull of its eigenvalues and take into account that
S(τ ,σ) is a convex set.

Moreover, if A is normal then it possesses an orthonormal system of eigenvec-
tors. Consequently,

A = QΛQ−1,
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where Q is a unitary matrix (Q∗Q = I) and Λ is a diagonal matrix of the eigenvaues
of A. Observe that

|| fk(A)||2 = ||Q fk(Λ)Q−1||2 = || fk(Λ)||2,
because the spectral norm is unitarily invariant. Assume that all the eigenvalues of
A belong to a domain S with boundary Γ. Then,

||rk||2
||r0||2 � min

fk∈Fk

max
ζ∈S

| fk(ζ )| = min
fk∈Fk

max
ζ∈Γ

| fk(ζ )|. (2.16)

2.4. Asymptotic convergence rate

Consider the following ansatz for the convergence estimate:

||rk||2 � cqk||r0||2, 0 < q < 1, c > 0. (2.17)

This can be easily deduced from (2.3) with a specific value for q. However, that
value of q is far from the true characteristic of asymptotic convergence rate. A
smaller q (with a greater value of c, alas) can arise from a thorough study of the
behaviour of Tk in (2.10).

We need not stick to a particular case of the curve Γδ and consider Tk(Γ) for an
arbitrary smooth (or piece-wise smooth) curve Γ that subdivides the complex plane
into two open subdomains, one of which is bounded and another one unbounded;
denote the latter by Ω. Consider a polynomial

p(z) = a
n

∏
i=1

(z− zi)

with the roots zi inside the bounded domain and define a function

gp(z) = log |p(z)|1/n.

This is a real-valued function of a complex variable z ∈ Ω. This is also a function of
real-valued variables x and y such that z = x+ iy. It is easy to verify that

Δgp(z) = 0 ∀ z ∈ Ω,

where Δ is the Laplace operator

Δgp(z) =
∂ 2g
∂x2 +

∂ 2g
∂y2 , z = x+ iy.

Besides that, at the infinity

gp(z) = log |z|+ γ +o(1), γ = log |a|1/n = const.
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It is less trivial to prove that for sufficiently large n the roots can be chose so that
gp(z) � 0 on Γ and, moreover, gp(z) ≈ 0 for z ∈ Γ [9]. The proof involves the
following boundary value problem:

(a) Δg(z) = 0, z ∈ Ω,

(b) g(z) = 0, z ∈ Γ,

(c) g(z)− log |z|− γ = o(1), z → ∞.

(2.18)

Then, polynomials p(z) are constructed so that gp(z) ≈ g(z) for z ∈ Γ. Eventually
this leads to the following (cf. [4,14])

Theorem 2.1. Let 0 ∈ Ω and g(z) satisfy (2.18). Then

limsup
k→∞

(Tk)1/k = e−g(0). (2.19)

In several particular cases g(0) can be obtained analytically:

• If Γ is a circle of radius 0 < r < a with center at a on the real axis. then

g(0) = log
a
r
. (2.20)

• If Γ is an ellipse with center at a on the real axis and half-axes 0 < r1 < a and
r2, then

g(0) = log

√
a2 − r2

1 + r2
2 +a

r1 + r2
. (2.21)

2.5. Recent improvement of the Elman estimate

Theorem 2.2. [2] Let A be a matrix satisfying (2.4), and let

sin β =

√
1− τ2

||A||22
, β ∈ (0,π/2),

be the convergence rate factor in the Elman estimate (2.3). Then for the kth relative
residual of the method of minimal residuals (GMRES) we have

||rk||
||r0|| � (2+ 2/

√
3)(2+ γβ )γk

β , k � 1, (2.22)

where

γβ := 2sin(
β

4−2β/π
) < sin(β ).
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3. SUPERLINEAR CONVERGENCE AND SPECTRAL CLUSTERS

Assume that all the eigenvalues of A lie in a small disc. Then, according to (2.20)
and Theorem 2.1, the asymptotic convergence rate for the residuals is the faster the
smaller the disc is. However, this fastness might look a bit too abstract as A is of
some finite order, n, and we never take k greater than n.

All the same, a small spot of eigenvalues suggests an idea of spectral cluster.
It does not make any rigorous sense for one matrix and applies only to a sequence
of matrices of increasing orders. Thus, let An be of order n and consider An for a
strictly increasing sequence of n. Of course, An are associated with one common
application.

Let K be a set on the complex plane and Kε be a larger set (ε-extension of K )
including any z such that

inf
ζ∈K

|z−ζ | � ε .

Let γn(ε) count how many eigenvalues of An fall inside Kε . We call K an eigen-
value cluster for An if

γn(ε) = o(n) ∀ ε > 0. (3.1)

A cluster is called proper if

γn(ε) = O(1) ∀ ε > 0. (3.2)

Now, we consider a sequence of linear systems with coefficient matrices An and
apply the method of minimal residuals. These residuals certainly depend on n and,
hence, c and q in (2.17) must depend on n.

In effect, a spectral cluster at K allows us to take q = q(ε) as Tk(Kε). The price
we pay is a somewhat larger value of c = c(ε ,n). If a cluster consists of one point,
then q can be made arbitrarily small. This is the so-called superlinear convergence.

Assume that m eigenvales of An are outside K and denote them by λ1, . . . ,λm.
Then, for k > m, we can take

fk(ζ ) = fk−m(ζ )
m

∏
i=1

(
1− ζ

λi

)

and be sure that fk ∈Fk. For simplicity, suppose that matrices An are normal. Then,
obviuosly,

||rk||2
||r0||2 � min

fk−m∈Fk−m

max
ζ∈K

| fk−m(ζ )|
(

1+
rmax

rmin

)m

, (3.3)

where rmin and rmax are the minimal and maximal moduli of the eigenvalues of An,
respectively.

Roughly speaking, the iterations behave as if all the eigenvalues were in K , the
price for having m outsiders being m additional iterations. The latter observation is
well known due to the semenal papers [1] and [20] where it was made for the case of
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symmetric matrices. The definitions for general and proper clusters were introduced
in [21] and then used and studied in many subsequent papers (cf. [18,19,24,25]).

If the convergence is slow for a particular problem, we can try to replace the
problem with a better one with better convergence properties. The procedure itself
is called preconditioning. Ususally it consists in getting from An to AnP−1

n for a
suitably chosen preconditioner Pn. Then, a good preconditioner has everything to
do with the following properties:

(a) AP−1 is conditioned uniformly in n;

(b) AP−1 has an eigenvalue cluster at unity.

At least for Hermitian positive definite matrices and under some additional assump-
tions in the general case, property (a) indicates the linear convergence and (b) ac-
counts for superlinear convergence (cf. [23,25]).

The existence of cluster is related to decompositions of the form [21]

An = Pn +Rn +En, (3.4)

where Rn is of small rank and En is of small norm.

Theorem 3.1. [21] Let An and Pn be two sequences such that for any ε > 0 there
exists a decomporition (3.4) with

||En||2F = o(n), rankRn = o(n). (3.5)

Then the singular values of An and Pn have the same clusters. If An and Pn are
Hermitian then the eigenvalues of An and Bn have the same clusters as well.

Thus, as long as we have

AnP−1
n = In +R′

n +E ′
n

with
||E ′

n||2F = o(n), rankR′
n = o(n),

it means that this method of preconditioning provides a cluster at 1.

Historically, decompositions (3.4) were considered first in the context of Toeplitz
matrices and circulant preconditioners and used, in effect, to prove superlinear con-
vergence properties [3]. However, a new paradigm suggested in [15] is to use (3.4)
directly for construction of Pn. It is shown in [15] that this approach results in the
best of circulant preconditioners in comparison with all those discussed in the liter-
ature. A supporting approximation theory was recently presented in [27].

Concerning the eigenvalue clusters for non-Hermitian matrices, we have a
smaller room for two matrix sequences to be considered as “close sequences”. In
this case Theorem 3.1 modifies as follows.
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Theorem 3.2. [22] Assume that An and Pn are diagonalizable via the eigenvec-
tor matrices Xn and Yn, respectively, and let

cond2
2 Xn cond2

2Yn ||An −Pn||2F = o(n).

Then the eigenvalues of An and Pn have the same clusters.

This theorem obviously applies to normal matrices. However, in the nonnormal
case we have a substantial result only for special clusters consisting of one point.
If the singular values are clustered at zero, then this is generally true also for the
eigenvalues [24,25].

Let An have the singular values σ1(An) � ... � σn(An) and the eignevalues λi(An)
ordered so that |λ1(An)| � ... � |λn(An)|. Using the Schur theorem and the interlac-
ing properties, one can fastly arrive at the following Weyl inequalities:

l

∏
i=1

|λi(An)| �
l

∏
i=1

σi(An), 1 � l � n.

Now assume that zero is the singular value cluster for An. Define

k = k(δ ,n), m = m(ε ,n)

in the following way:

σk(An) � δ > σk+1(An) and |λm(An)| � ε > |λm+1(An)|.
From the Weyl inequalities,

εm � ||An||k2 δ m−k ⇒
( ε

δ

)m
�

( ||An||2
δ

)k

(3.6)

and, evidently, ( ε
δ

)m/n
�

( ||An||2
δ

)k/n

. (3.7)

In the case of general singular value cluster at zero we have

k(δ ,n)/n → 0.

Hence, if m(ε ,n)/n → 0, then the left-hand side of (3.7) can be made arbitrarily
large by choosing a sufficiently small δ > 0. It implies that the right-hand side
cannot be uniformly bounded for all n and all sufficiently small δ > 0.

If the singular value cluster is proper, then k(δ ,n) � c(δ ) ∀n. Let us fix an
arbitrary ε > 0 and admit that m(ε ,n)→ ∞ as n → ∞. Then, for any fixed δ > 0 and
all sufficiently large n we obtain m(ε ,n) > k(δ ,n). Choosing, for instance, δ = ε/2,
we conclude from (3.6) that ||An||2 → ∞. The same reasoning can be applied to a
subsequence of m(ε ,n) and the corresponding subsequence of ||An||2. It means that
the unboundedness of m(ε ,n) implies that the norms ||An||2 are not bounded. Thus,
we have proved the following
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Theorem 3.3. Let the singular values of An be clustered at zero with the number
of δ -distant values k(δ ,n) and assume that for some c > 0

| ln ||An||2| � c
n

k(δ ,n)

for all n and sufficiently small δ > 0. Then the eignevalues of An are clustered at
zero. If the spectral norms of An are uniformly bounded in n and the singular value
cluster at zero is proper, then the eigenvalue cluster at zero is also proper.

The observation that the singular value cluster at zero implies the eigenvalue
cluster at zero was first presented in [24]. The proof was based, as above, on the
inequality (3.7). The proper cluster case is based on the preceeding inequality (3.6)
and certainly is within the lines of the same proof. However, this case was not men-
tioned explicitly in [24] and was remarked later in [19].

4. SHORT RECURRENCES

In contrast to the Krylov subspace methods for Hermitian matrices, in the non-
Hermitian case we seem to have to store complete bases for the Krylov subspaces.
A natural question actively discussed in the late 1970s is whether this can be avoided
through some “short recurrences” in the non-Hermitian case.

To begin with, the very question should be specified in mathematical terms.
Given a system Ax = b with a nonsingular (non-Hermitian) matrix, we choose an
initial guess x0, find the initial residual r0, set p1 = r0 (of course, if r0 = 0) and
successively add a new vector to the previously obtained bases p1, . . . , pk in the
Krylov subspaces

Lk = L(r0,Ar0, . . . ,A
k−1r0) = L(p1, . . . , pk)

in such a way that the constructed vectors satisfy the formal A-orthogonality condi-
tions

(Api, pj) = 0, i = j, 1 � i, j � k; (Api, pi) = 0, 1 � i � k.

As soon as Lk is found, we look for xk in the form xk = x0 + y, y ∈ Lk. However,
we need to sacrifice something in favor of “short recurrences”. This will be the
minimization property of the residuals rk = b−Axk. Instead, we will define y by the
projection property

rk ⊥ Lk.

It follows that
xk = xk−1 + αk pk, rk = rk−1 −αkApk,
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where αk is defined by the projection property.

If rk = 0, then the solution is already obtained. If rk = 0, then we seek pk+1 in
the form

pk+1 = rk + γ11 p1 + · · ·+ γk1 pk ⇒ γ jk = −(rk,A
∗pj)/(Apj, pj).

Thus, using a formal A-orthogonal basis p1, . . . , pk in Lk, we can readily find pk+1
retaining the formal A-orthogonality properties (Apk+1, pj) = 0, 1 � j � k.

Despite the case of Hermitian positive definite matrices, now we cannot take it
for granted that (Apk+1, pk+1) = 0. This is what we should assume; in particular, we
assume that (Ar0,r0) = 0. If the residuals r0, r1, . . . ,rk−1 are nonzero and the formal
A-orthogonal basis p1, . . . , pk Lk is built up, then let us agree to say that the process
does not break down at the kth step. If rk = 0 then let us say that the process quits
successfully at the kth step.

Lemma 4.1. If the process does not break down at the kth step, then the resid-
uals r0, . . . , rk−1 produce an orthogonal basis in Lk.

Proof. Since rj ∈ L j+1 ⊂ Lk for 0 � j � k−1 and due to the projection property,
we have rj ⊥ r0, . . . , r j−1. �

The question about “short recurrences” can be set up as follows. Let us fix 1 �
s � n−1 and suppose that

γ jk = (rk,A
∗pj) = 0 for 1 � j � k− s (4.1)

whenever the process does not break at the kth step. This means that pk+1 is ex-
pressed through s last vectors of the Krylov basis via short recurrences

pk+1 = rk +
k

∑
j=k−s+1

γ jk p j. (4.2)

In order to have (4.2), what properties should A have?
To this end, in 1970s V. V. Voevodin proposed to consider matrices with the

following property:

A∗ =
s−1

∑
j=0

ajA
j. (4.3)

It gets easy to prove that the property (4.3) is sufficient to guarantee (4.1) and,
therefore, (4.2).

Lemma 4.2. The matrix property (4.3) implies (4.1), the latter being valid for
any initial residual r0 = 0 with no break-down at the kth step.
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Proof. In line with (4.3), A∗pj is a linear combination of p1, . . . , pj+s. From
the projection property we deduce that rk ⊥ p1, . . . , pj+s for j+ s � k, which makes
(4.1) evident. �

Does the same property (4.3) is necessary for short recurrences? A principal
positive answer was first given in [28]. The proof of [28] was astonishingly simple;
however, it used an additional assumption that n � 2s + 1. Later the necessity of
(4.3) was established in [8] by remarkably complicated techniques. Recently, the
elementary technique of [28] has got a new life in [12], where the authors found a
way to pursue the same lines of proof without assuming that n � 2s+ 1.

The elementary proof of [28] starts from the following observation.

Lemma 4.3. Assume that an initial residual r0 = 0 is such that the process does
not break at the nth step and the equalities (4.1) are vaild for all 1 � k � n. Then
for some α j = α j(r0) we obtain

A∗r0 =
s−1

∑
j=0

α jA
jr0.

Proof. The claim that the process does not break at the nth step means orthog-
onality of the residuals r0, . . . , rn−1 and linear independence of vectors

r0, Ar0, . . . , An−1r0.

The equalities (Ark, pj) = 0 for 1 � j � k− s ensure that (Ark,r j) = 0 for 0 � j �
k − s− 1. Consequently, A∗r0 ⊥ rk for k � s− 1 ⇒ A∗r0 is a linear combina-
tion of vectors r0, . . . , rs−2. It follows that A∗r0 is a linear combination of vectors
r0, Ar0, . . . , As−1r0. �

The final result on short recurrences is formulated as follows.

Theorem 4.1. Let 1 � s < n and let A be such that the process does not break at
the nth step for at least one intitial residual r0 = 0. Then, the necessary and sufficient
condition for short recurrences (4.1) to hold for all initial residuals with the same
property is that A possesses the property (4.3).

Proof. The sufficiency of (4.3) is established in Lemma 4.2; thus, it remains to
prove necessity. Linear independence of vectors r0, Ar0, . . . , An−1r0 means that the
minimal polynomial for the matrix A is of degree n ⇒ any eigenvalue has exactly
one Jordan block. Let

x = Alr0, y = Amr0, 0 � l < m < l +n. (4.4)
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Clearly, if the initial residual is equal to x or y, then the process does not break at the
nth step. Moreover, for any initial residual of the form x+ γy the process can break
before the nth step only for a finite number of values of γ (which does not exceed
the number of Jordan blocks for A). According to Lemma 4.3, we obtain

A∗x =
s−1

∑
j=0

α jA
jx, A∗y =

s−1

∑
j=0

β jA
jy, A∗(x+ γy) =

s−1

∑
j=0

ϕ jA
j(x+ γy).

Taking into account (4.4), we can write

A∗(x+ γy) =
s−1

∑
j=0

ϕ jA
l+ jx+ γ

s−1

∑
j=0

ϕ jA
m+ jy

=
s−1

∑
j=0

α jA
l+ jx+ γ

s−1

∑
j=0

β jA
m+ jy.

If l + s � m and m+ s− l � n then the vectors

Alr0, ...,A
l+s−1r0, Amr0, ...,A

m+s−1r0

are part of the basis
Alr0, ...,A

l+n−1r0.

Therefore,
α j = β j = γ j, 0 � j � s−1. (4.5)

This is exactly the main point of the proof of [28]. To complete the proof, we con-
sider the sequence of integers

0, s+ 1, 1, s+ 2, 2, s+ 3, ...

and succesively choose l and m as the pairs of neigboring integers in this sequence.
Obviously, if n � 2s+ 1 then we obtain (4.5) for each of these pairs and eventually
deduce that the coefficients αj do not depend on l if x = Alr0.

In [12] it is shown how to get rid of the above assumption. It is suggested to take
x = r0 and y = Ar0. Then the equation

α0x +
s−1

∑
j=1

(α j + γβ j−1)Ajx + βs−1Asx = ϕ0x +
s−1

∑
j=1

(ϕ j + γϕ j−1)Ajx + ϕs−1Asx

implies that

ϕ0 = α0; ϕ j + γϕ j−1 = α j + γβ j−1, 1 � j � s−1; ϕs−1 = βs−1.

Subtract the first equation from the second one multiplied by γ :

ϕ1 = α1 + γ(β0 −α0).
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Multiply the resulting equation by γ and subtract it from the third equation:

ϕ2 = α2 + γ(β1 −α1)− γ2(β0 −α0).

And so on. In the end we obtain

ϕs−1 = βs−1 = αs−1 +γ(βs−2−αs−2)−γ2(βs−3−αs−3)+ · · ·+(−1)sγs−2(β0−α0)

⇒
s−2

∑
j=0

γs−2− j(β j −α j)(−1)s− j = 0.

The latter equation should hold for infinitely many values of γ ⇒ αj = β j for all
0 � j � s−1. Hence, the equality

A∗z =
s−1

∑
j=0

α jA
jz

holds true with the same values of αj for all vectors z = x, Ax, . . . , An−1x. Since this
is a basis in C

n, we arrive at the matrix equality (4.3) with aj = α j. �
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