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Abstract. Dense large-scale matrices coming from integral equations and tensor-product grids
can be approximated by a sum of Kronecker products with further sparsification of the factors via
discrete wavelet transforms, which results in reduced storage and computational costs and also in
good preconditioners in the case of uniform one-dimensional grids. However, irregular grids lead to
a loss of approximation quality and, more significantly, to a severe deterioration in efficiency of the
preconditioners that have been considered previously (using a sparsification of the inverse to one
Kronecker product or an incomplete factorization approach). In this paper we propose to use non-
standard wavelet transforms related to the irregular grids involved and we show, using numerical
examples, that the new transforms provide better compression than the Daubechies wavelets. A
further innovation is a scaled two-level circulant preconditioner that performs well on irregular grids.
Our proposed approximation and preconditioning techniques have been applied to a hypersingular
integral equation modelling flow around a thin aerofoil, and make it possible to solve linear systems
with more than 1 million unknowns in 15-20 minutes even on a personal computer.

1. Introduction. Integral equation methods inevitably require numerical treat-
ment of matrices that are dense and usually possess no explicit structure (like that
of Toeplitz matrices). The main difficulty in many practical problems is that the
dimensions of these matrices may be very large – several hundred thousands or even
millions. In spite of several modern approaches to solving problems on these scales
[7, 8, 10, 13, 16, 20, 21], there is still a great need for faster practical algorithms.

All the cited approaches capitalize, explicitly or implicitly, on approximation of
the original matrices by “simpler” matrices of hierarchical block multilevel structure.
Thus, the original matrix never appears as a full array of its entries and is dealt with
only through a procedure of fast approximate matrix-vector multiplication. Such a
procedure may need relatively little storage for data coming from the original matrix,
and methods of acquisition of these data are often referred to as data-compression
procedures.

We consider here the cases where the problem domain is the tensor-product of
lower dimension domains. In these cases it is possible to avoid any complicated block
structures by using Kronecker-product approximations [23, 24] implemented using
the incomplete cross approximation algorithm [21] (see matrix theory arguments in
[6, 5], an adapted version in [4], a similar algorithm with interpolation arguments in
[1]). Moreover, the corresponding Kronecker factors can be further compressed by
the block low-rank constructions of [9] or by wavelet sparsification [4], which results
in almost linear matrix-vector complexity and superlinear compression rate.

In this paper we pursue the approach of [4] and propose better data-compression
procedures in the case of irregular one-dimensional grids (twice better in the numerical
examples considered here). The new procedures are based on non-standard wavelet
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transforms constructed for the given irregular grids [12].
We also present a scaled two-level circulant preconditioner with good performance

on irregular grids (where the preconditioners of [4] proved to be very inefficient).
The logic of our approach is very simple. Given a linear system Ax = b (by which

we mean, “given b and a procedure to calculate any entry of A”) and an allowed bound
ε on the relative error (in the Frobenius norm), we perform the following steps:

(A) Approximate A with a sum of Kronecker products 1

B =
r∑

k=1

Uk ⊗ Vk, (1.1)

||B −A||F ≤ ε||A||F , (1.2)

where Uk and Vk are of dimensions p× p and q × q respectively, and n = pq
is the dimension of matrix A. For simplicity, we assume below that p = q =
n1/2.

(B) Apply the non-standard wavelet transform with a prescribed number of van-
ishing moments m to each Kronecker factor:

Pk = WUkW
T , Qk = WVkW

T , 1 ≤ k ≤ r. (1.3)

Here W is the matrix of a non-standard wavelet transform of degree m. Pk

and Qk are pseudo-sparse matrices. Selecting an appropriate threshold τ =
τ(ε, Pk, Qk) and setting to zero all elements in Pk and Qk that are smaller in
modulus that τ , we finally approximate B with a matrix

C = W−T ⊗W−TDW ⊗W ≈ B,D =
r∑

k=1

P τ
k ⊗Qτ

k, (1.4)

that approximates B with a desired accuracy ε :

||B − C||F ≤ ε ≤ ||B||F . (1.5)

(C) Construct a preconditioner M−1 for the matrix A. There are several options.
In this paper we use a block circulant preconditioner with scaling.

(D) Apply GMRES to solve

CM−1y = b. (1.6)

Output M−1y as an approximation to the exact solution x.
It is expected that r � n. Thus, the format (1.1) requires storage of only 2rn�

n2 numbers. Step (A) allows us to store an approximation to A in operative memory.
Formulation and proof of upper estimates on r were first proposed in [23, 24] and

then, under different assumptions, in [9]. Kronecker approximations of low Kronecker
rank can be computed efficiently by a version of LU decomposition with a special
dynamic choice of pivots (the approach was presented in [21] and an adapted detailed
description can be found in [4]). Since only the entries of some O(r) rows and columns
of A are used during this algorithm, we call it the incomplete cross approximation
algorithm.

1[ukl] ⊗ V is a block matrix of the form [uklV ].

2



The purpose of step (B) is two-fold: to decrease the memory required to store
matrix B and to reduce matrix-by-vector multiplication costs. Indeed, the multipli-
cation of B by a vector takes O(n3/2) operations, which is already much better than
a standard O(n2) rule, but still time consuming (even for n of several thousands).
Steps (A) and (B) allow us to multiply A by a vector with any desired accuracy very
quickly. But, since the number of GMRES iterations can be large (especially in the
case of irregular grids), we should find an appropriate preconditioner to reduce it.
This is the purpose of step (C).

This paper can be viewed as a natural sequel to [4]. A major innovation is the
adoption of non-standard wavelet transforms [12] specially constructed for the given
irregular grids. These transforms are presented in Section 2. Numerical tests in
[12] and application of these transforms to the Kronecker factors in Step (B) prove
that the non-standard wavelet transforms provide better data compression with the
same level of accuracy even for uniform grids. Another novelty is a scaled circulant
preconditioner described in Section 3.

In Section 5, we apply the above steps (A)-(D) to solve a hypersingular integral
equation modelling a flow around a thin rectangular-shaped aerofoil [2, 11]. Theory
and proof for numerical schemes for this equation are still not complete. So numerical
experiments with increasing grid sizes may help to find a better numerical scheme and
show up what should be expected and then might be proved. Such experiments have
not been conducted previously and are possible now only due to the new computation
techniques presented in this paper.

2. Non-standard wavelet transforms. Classical wavelets and their applica-
tion in multiresolution analysis of data are inherently related to uniform grids and
the Fourier transform. However, in real-life applications non-uniform grids are often
required. In the irregular grid cases, construction of functions and transforms with
properties analogous to classical wavelets (for example, wavelets of the Daubechies
family [3]) requires a totally different approach.

The non-standard wavelets that we use here are constructed in the following way
(see [12] for more details). Given a grid xi, i = 1, . . . , n + k + 1, on an interval and
a subgrid x̃i, i = 1, . . . , N + k + 1, with N < n, we introduce B-splines (see, for
example, [15, 25]) of order k as follows:

Bi(x) = [xi; . . . ;xi+k+1](y − x)k
+, i = 1, . . . , n,

B̃i(x) = [x̃i; . . . ; x̃i+k+1](y − x)k
+, i = 1, . . . , N.

The square brackets symbolize the divided differences in the y variable, and (z)+ = z
if z ≥ 0 and 0 otherwise.

Define V and Ṽ as the spans of Bi, i = 1, . . . , n, and B̃i, i = 1, . . . , N , respec-
tively. Notice that V and Ṽ are merely the spaces of spline functions on the grids xi

and x̃i. Since x̃i is a subgrid of xi, we conclude that Ṽ is a subspace V . Consequently,

B̃i =
∑

s

risBs. (2.1)

The coefficients ris are called refinement coefficients. The wavelet space W is defined
as a complement of Ṽ in V . Let us take any convenient space W with the known
basis

ψ̃i =
∑

s

βisBs, i = 1, ..., n−N, (2.2)
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and then “improve” it (redefine ψ̃i) using the lifting scheme of Sweldens [17]:

ψ̃i =
∑

s

βisBs −
j=jmax∑
j=jmin

αijB̃j , i = 1, . . . , n−N.

To define the unknown coefficients αij (the so-called lifting coefficients) we demand
that the functions ψ̃i have a prescribed number (say, m) of vanishing moments:∫

ψ̃ix
pdx = 0, p = 0, . . . ,m.

To make the number of equations be equal to the number of unknowns, set

jmax = jmin +m.

The prescription for m vanishing moments gives us a linear system for the lifting
coefficients, which is explicitly solved in [12].

Theorem 2.1.

αij =
∑

s

βis[xi; . . . ;xi+k+1]Pj(x), (2.3)

where Pj(x) is a polynomial of degree m+ k + 1 such that

Pj(x̃r) =

{
qj(x̃r), jmin ≤ r ≤ j,

0, j < r ≤ jmax + k + 1,
(2.4)

qj(x) =

{
(x̃j − x̃j+k+1)

∏j+k
l=j+1(x− x̃l), k ≥ 1,

(x̃j − x̃j+1), k = 0.

This theorem directly yields the following algorithm for the lifting coefficients.

Algorithm 2.1. Given
• a grid xi, i = 1, . . . , n+ k + 1,
• a subgrid x̃i, i = 1, . . . , N + k + 1,
• arrays jmin(i), i = 1, . . . , n−N , and βis, i = 1, . . . , n−N, s = s0, . . . , s1,

calculate the lifting coefficients by the following FORTRAN-like code:

do i = 1, n−N
do j = jmin(i), jmin(i) +m

do r = jmin(i), jmin(i) +m+ k + 1
Calculate qj(x̃r).

end do

Calculate Pj(x) using Newton interpolation formulae.

Calculate αij =
∑s1

s=s0
βis[xi; ...;xi+k+1]Pj(x).

end do
end do

Also we need to calculate the refinement coefficients. They satisfy linear equations∫
B̃ix

pdx =
s1∑

s=s0

∫
risBsx

pdx, p = 0, . . . , s1 − s0 − 1,
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which coincide with those for the lifting coefficients. Hence, the refinement coefficients
can be found by the same algorithm.

To construct the discrete transform, we take a vector

a = [a1, . . . , an]�

and relate it to an expansion of some function f ∈ V :

f =
n∑

i=1

aiφi,

where the φi, i = 1, . . . , n, represent a dual basis to the basis of Bi ∈ V . Denote by
ϕi and ψi the dual bases for B̃i and ψ̃i, respectively. Then

f =
n∑

i=1

aiφi =
N∑

i=1

ciϕi +
n−N∑
i=1

diψi, (2.5)

and the sought-after transform reads

a→ (cT , dT )T ,

c = [c1, . . . , cN ]�, d = [d1, . . . , dn−N ]�.

Algorithm 2.2. (One level of wavelet transform.) Given
• vector components ai, i = 1, . . . , n,
• number of vanishing moments m,
• spline order k,
• arrays of coefficients
ris, i = 1 ≤ i ≤ N , αij , 1 ≤ i ≤ N , βis, 1 ≤ i ≤ n−N ,

• array of indices jmin(i), 1 ≤ i ≤ n−N ,
calculate the transformed vector components zi, i = 1, . . . , n, as follows:

do i = 1, N

zi =
∑

s risas.

end do

do i = 1, n-N

zi+N =
∑

s βisas −
∑jmin(i)+m

j=jmin(i) αijzj.

end do

Algorithms (2.1) and (2.2) implement a one-level transform. For computation
of the l-level transform, these algorithms should be applied l times, provided the
sequence of embedded grids is supplied.

We need also the inverse wavelet transform and inverse transposed transform.
In the general case, the transform given by the algorithm 2.2 cannot be inverted
explicitly. Consider in more detail the case k = 1. Assume for simplicity that the
total number of points is odd and x̃i = x2i−1, βis = δ(2i−1)s, N = (n− 1)/2. In this
case,

B̃i = ri1B2i−1 + ri2B2i + ri3B2i+1.
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The matrix of the transform can be written as

W = LRP,

where P is a permutation matrix such that

P [a1, . . . , an]� = [a2, a4, . . . , an−1, a1, a3, . . . , an]�,

R is a block matrix

R =
[
D B
0 I

]
, D = diag (r12, ..., r(n−1)2),

B is a bidiagonal matrix of dimension N × (n−N) with the entries

Bii = ri1, Bi,i+1 = ri3, i = 1, . . . , N.

The matrix L is a block matrix of the form

L =
[
I 0

−A I

]
where the non-zero entries of A are the lifting coefficients:

Aij = αij , i = 1, . . . , n−N, j = jmin(i), ..., jmin(i) +m.

The inverse transform has the following form:

W−1 = P�R−1L−1,

L−1 =
[
I 0
A I

]
, R−1 =

[
D−1 −D−1B

0 I

]
.

The inverse transposed transform is

W−� = L−�R−�P, L−� =
[
I A�

0 I

]
, R−� =

[
D−1 0

−B�D−1 I

]
. (2.6)

The matrices D, A, B are all banded. Therefore, W , W−1, W−T can each be multi-
plied by a vector in O(n) operations.

The matrix transform of a p× p matrix Z is defined to be

Z̃ = WZW�. (2.7)

Now, consider B =
∑r

k=1 Uk ⊗ Vk. We apply the wavelet transform to each
Kronecker factor:

Pk = WUkW
�, Qk = WVkW

�.

Then, we select a threshold τ and replace matrices Pk and Qk with sparse matrices
P τ

k and Qτ
k respectively, and come to an approximation to matrix B:

C =
(
W−1 ⊗W−1

)( r∑
k=1

P τ
k ⊗Qτ

k

)(
W−� ⊗W−�) . (2.8)
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It can easily be verified that

||
r∑

k=1

Pk ⊗Qk −
r∑

k=1

P τ
k ⊗Qτ

k||F ≤ εW ||
r∑

k=1

Pk ⊗Qk||F , (2.9)

where

εW =
∑r

k=1(||Pk − P τ
k ||F ||Qk||F + ||Pk||F ||Qk −Qτ

k||F )
||
∑r

k=1 Pk ⊗Qk||F

is easy to compute. The non-standard transform is not orthogonal, therefore we should
write

||C −B||F ≤ γεW ||B||F , (2.10)

where γ is a “non-orthogonality factor”. Numerical experiments show that it is of
order of tens. When using an orthogonal transform like that of Daubechies, γ = 1.
But the εW appears to be much smaller in the case of non-standard transform, and
the overall error is smaller.

If B is an approximation to A such that

||B −A||F ≤ εK ||A||F ,

the error of approximation of A by C is estimated as

||C −A||F ≤ (εK + γεW + γεKεW ). (2.11)

Selecting r and τ properly, we can maintain a desired approximation accuracy for
A. An important result of Step (B) is better data compression, but this appears
as a by-product. The main purpose of this step is reduction of the matrix-vector
multiplication costs. If ν denotes the number of non-zero entries in all P τ

k and Qτ
k,

then C can be multiplied by vector in O(ν
√
n) operations.

3. Scaled circulant preconditioners. Using the above constructions, we can
multiply A by a vector rapidly and with sufficient accuracy. Thus, applying GMRES
or PCG to solve a given a linear system with the coefficient matrix A, we can imple-
ment any single iteration in a fast way. However, the number of GMRES iterations
is observed to become especially large when we get to irregular grids, and we really
need to find a suitable preconditioner.

Two options (called ILUT and IKT) were considered in [4], both using the for-
mat (1.1) as the starting point for constructing a preconditioner. The ILUT is the
incomplete factorization with dynamic thresholding in the spirit of [14]. The IKP
is a sparsified inverse to one (most significant, in effect) Kronecker-product term in
the sum. For irregular grids, however, the IKP appears to be ineffective while ILUT
requires too much memory.

Another idea is to construct a preconditioner using the matrix A directly, but us-
ing only O(n) of its entries. We propose to rejuvenate and adapt the well-known con-
structions of multilevel circulant preconditioners (see [19, 18, 22]). However, straight-
forward application of circulants is efficient only for uniform grids. A novelty with
irregular grids is that the circulants remain useful when constructed for a suitably
scaled matrix. Thus, we begin with a scaling

Â = D1AD2 (3.1)
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using appropriate diagonal matrices D1 and D2. If the diagonal entries of A are
positive, we can choose D1 = D2 so that all the diagonal entries of Â are equal to 1
(other possibilities are related with equalizing the norms of columns and rows of Â).

The optimal two-level circulant preconditioner Q for Â is a block circulant with
circulant blocks satisfying

||Â−Q||F = min
Q̂∈T

||Â− Q̂||F , (3.2)

where T is the set of all two-level circulants with the same dimensions as those of Â.
Since Â is a two-level matrix, its entries âij can be pointed to by multi-indices (i1, j1)
and (i2, j2), where (i1, j1) positions a block containing aij , whereas (i2, j2) specifies a
place inside a block. Then, the first column entries q(i1,i2) (indexed in the same way)
of Q are given by the formulae [19]

q(i1,i2) =
1
n

(
p−1∑
l=0

p−1∑
k=0

â(l,i1+l),(k,i2+k)

)
, (3.3)

where the entries of Â are thought of as periodic in all four indices.
A difficulty is that computation of Q via (3.3) needs O(n2) operations, which

is unacceptable. We propose to construct an approximate optimal preconditioner.
According to (3.3), we compute the mean values for all entries belonging to the i2-
th periodical diagonal in each block along the i1-th periodical block diagonal. This
suggests that we can replace the mean value of the sequence of length n by the mean
value of some subsequence, in the hope that it approximates the true mean value.

When Q is constructed, we come up with a preconditioner of the form

M = D−1
1 QD−1

2 . (3.4)

Two-level circulants are diagonalized by the 2D Fourier transform:

Q =
1
n

(F ∗ ⊗ F ∗)Λ(F ⊗ F ), (3.5)

where F is the Discrete Fourier Transform matrix and Λ is a diagonal matrix of the
eigenvalues of C. Consequently,

M−1 =
1
n
D2(F ∗ ⊗ F ∗)Λ−1(F ⊗ F )D1 (3.6)

is an explicit preconditioner for matrix A. Using the Fast Fourier Transform, we can
multiply F by a vector in O(n log n) operations, and hence, M−1 can be multiplied
by a vector in O(n log(n)) operations.

4. Examples of function-related matrices. In this section we illustrate the
improved compression properties of the new, grid-based wavelet transform by means
of some example matrices defined on irregular 1-D grids. In each case, we compare the
compression achieved using standard Daubechies transforms with that obtained using
the non-standard transforms of Section 2 with k = 1 and m = 4. To do this we set to
zero entries that fall below a threshold of 10−6 and then compare the numbers of non-
zero entries in each matrix. The computational complexity of transforming vectors
and matrices using the non-standard wavelets is approximately the same (actually a
little less) as for a Daubechies order 3 transform, but the Daubechies transform has
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fewer vanishing moments and so we would expect poorer compression even on a regular
grid. We anticipate that the order 4 Daubechies transform would give compression
similar to that of the non-standard wavelets on a regular grid (but at somewhat higher
computational cost) and to perform rather less well on irregular grids.

Fig. 4.1. Function-related matrix from Example 1 with p = 1. Top left: original matrix;
top right: Daubechies order 3 ransform; bottom left: new, nonstandard transform with 4 vanishing
moments; bottom right: Daubechies order 4 transform.

4.1. Example 1. Figure 4.1 shows the n× n matrix

aij =
{

0.0 if i = j
1/|xi − xj |p otherwise (4.1)

(with p = 1) defined on the grid xi = 1 − cos(iπ/2n), together with its image under
three different wavelet transforms. The smoothness of the original matrix (top left in
the diagram) gives rise to a large proportion of small entries when a wavelet transform
is applied. The non-standard transform (bottom left) has a a larger proportion of very
small entries than either the Daubechies 3 (top right) or Daubechies 4 (bottom right)
transforms.

We can see the improved compression more clearly by comparing the sparsity
patterns of approximations to the transformed matrices when a threshold of 10−6 is
imposed. Figure 4.2 shows matrices approximated using Daubechies and non-standard
wavelets. The number of non-zero entries using non-standard wavelets is less than
two thirds of that using the Daubechies order 4 transform and only about half of
that using Daubechies 3 wavelets. This is typical of other function-related matrices
defined on this grid. In particular, we tested matrices of the form (4.1) for p =
1/2, 1, 3/2, 2, 5/2. In each case, the non-standard wavelet transform gave substantially
better compression for a given approximation accuracy. Figure 4.3 illustrates this by
showing the Frobenius norm of the error (obtained by applying an inverse transform to
the sparsified matrix and comparing with the original dense matrix), plotted against
the compression rate (i.e. the fraction of non-zero entries in the sparse matrix). here
we can see that, even after taking into account the “non-orthogonality factor”, the
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Fig. 4.2. Approximations to the wavelet-transforms of the function-related matrix from Example
1, with p = 1. Left: new, nonstandard transform with 4 vanishing moments; centre: Daubechies
order 3 transform; right: Daubechies order 4 transform.

non-standard wavelets give savings in storage of about 40%. Other values of p give
similar results.
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Fig. 4.3. Frobenius norm a posteriori error plotted against compression ratio for function-
related matrix from Example 1 with p = 1/2, using non-standard (NS) and Daubechies order 3
(Db3) wavelets.

4.2. Example 2. Consider the n× n matrix

aij =
{

0.0 if i = j
− ln |xi − xj | otherwise.

defined on the grid xi = ln(i)/ ln(n). Figure 4.2 shows the approximate matrices
(with a threshold of 10−6) using Daubechies 3 (left) and non-standard wavelets. The
number of non-zero entries using non-standard wavelets is less than half of that using
the Daubechies transform. Experiments using different functions defined on this grid,
gave similar results with savings of 50% in the number of non-zero entries when the
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non-standard wavelets are used being typical. Even when a “non-orthogonality factor”
of 10 is included (i.e. the non-standard transformed matrix is approximated using a
threshold of 10−7) the savings in storage when using the non-standard transform are
between 30% and 40%.
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Fig. 4.4. Approximations to the wavelet-transforms of the function-related matrix from Ex-
ample 2. Left: new, nonstandard transform with 4 vanishing moments; right: Daubechies order 3
transform.

5. Application to a hypersingular integral equation on a plate. Let us
apply our proposed method to numerical solution of the following hypersingular inte-
gral equation on a plate (modelling a flow around a thin rectangular-shaped aerofoil):∫

Π

∫
u(−→x )

|−→x − −→x0|3
dx = f(−→x0), −→x0 ∈ Π = [0, 1] × [0, 1]. (5.1)

The right-hand side f is given and u is unknown. The integral in (5.1) has a strong
singularity and should be treated as the Hadamard finite part integral [2, 11].

Following [2, 11], we discretize (5.1) by the collocation method: take a rectangular
grid zi, i = 1, . . . , (p + 1)2, on Π as the Cartesian product of one-dimensional grids
xi, i = 0, . . . , p, and yi, i = 0, . . . , p, n = p2, and select the collocation points

wi = (wk(i), wl(i)), i = (k(i) − 1)p+ l(i)

with uniquely defined integers k(i), l(i) in the range from 1 to p. Node wi belongs to
[xk(i)−1, xk(i)]× [yl(i)−1, yl(i)]. In the result, we approximate the function u(−→x ) with a
piece-wise constant function and derive a linear system for the unknowns u(wi) = ui:

Au = f, (5.2)

u = [u1, ..., un]�, f = [f(w1), ..., f(wn)]�,

aij =
∫
Πj

∫
1

|x− wi|3 dx, Πj = [xk(j)−1, xk(j)] × [yl(j)−1, yl(j)].
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The integrals can be calculated analytically [2, 11]:

aij = −
√

(wk(i) − xk(j))2 + (wl(i) − yl(j))2

(wk(i) − xk(j))(wl(i) − yl(j))
+

√
(wk(i) − xk(j)−1)2 + (wl(i) − yl(j))2

(wk(i) − xk(j)−1)(wl(i) − yl(j))

+

√
(wk(i) − xk(j))2 + (wl(i) − yl(j)−1)2

(wk(i) − xk(j))(wl(i) − yl(j)−1)
−
√

(wk(i) − xk(j)−1)2 + (wl(i) − yl(j)−1)2

(wk(i) − xk(j)−1)(wl(i) − yl(j)−1)
.

Further, we take the same grids in both directions and select the grid wi so that it is
the Cartesian product of one-dimensional grids denoted by wi, i = 1, ..., p.

Consider the following cases:
(a) Uniform grid:

xi = i/p, i = 0, . . . , p, (5.3)

wi = (i− 0.5)/p, i = 1, . . . , p. (5.4)

(b) Chebyshev grid:

xi = (1 − cos
πi

p
)/2, i = 0, . . . , p, (5.5)

wi = (1 − cos
π(i− 0.5)

p
)/2, i = 1, . . . , p. (5.6)

The choice of Chebyshev grids is inspired by theory for the analogous one-dimensional
equation. In the two-dimensional case, theory is not well-developed. It is only known
that the quadrature formula of rectangles (which was used) for the uniform grid ap-
proximates the hypersingular integral and the estimate

|I(−→x0) − Iapp(−→x0)| ≤ Cδ|h lnh|,

(h = 1/p is a grid step and δ is a distance between −→x0 and the border of the rectangle
Π) is valid. The constant Cδ tends to infinity as −→x0 approaches the border. There
are no theorems about the convergence of particular numerical schemes (even for the
uniform grid). Therefore, numerical treatment for small h (and large n) would give a
better insight into properties of approximation techniques for this problem.

Table 5.1
Numerical results on the irregular grid.

n 16129 65025 261121 1046529
r 20 22 25 20
ε 9.7 · 10−8 8.4 · 10−8 9.8 · 10−8 8.1 · 10−6

Matrix-by-vector time 0.3 sec 1.6 sec 7.7 sec 15.6 sec
Number of iterations 28 30 33 38

Prec. construction time 4.0 sec 16.4 sec 1.1 min 4.4 min
Solution time 11.2 sec 59.4 sec 5.7 min 14.5 min

Relative solution error 5.8 · 10−7 1.1 · 10−6 9.9 · 10−7 2.8 · 10−5

Table 5.1 presents some numerical results for the Chebyshev (irregular) grid. “The
relative solution error” is the error of the solution of the linear system. To measure
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it, we set the right-hand side of the algebraic equation to be the sum of the first,
fifth and tenth columns of A, so we know the exact solution and can report on the
accuracy in the most reliable way.

In Table 5.2 we compare the performance of GMRES with scaled (approximate
optimal) two-level circulant preconditioner and without it.

Table 5.2
Scaled circulant preconditioner for the Chebyshev grid.

n 16129 65025 261121 1046529
Number of iterations(without prec.) 137 336 > 600 > 600

Number of iterations(with prec.) 28 30 33 38

Let us compare the convergence of the approximate solution to the exact solution
of the initial integral equation. In order to do this, we set f to be the right-hand side
for u = (−→x )1. The point-wise errors of the solution on the uniform and Chebyshev
grids (p = 255) are given in Fig. 5.1.

Irregular grid
Uniform grid
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Fig. 5.1. Point-wise error of the solution for different grids

The L2 and maximum errors of the approximate solution are plotted in Fig. 5.2.
Clearly, the irregular grid gives much better convergence. (Theoretical estimates of
the convergence rate are lacking.)
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Fig. 5.2. L2 and maximum errors against p
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Fig. 5.3. Solution on the irregular grid (p = 63, 127, 255, 511).

The tests above show that the irregular grid is better than the uniform grid. But,
the right-hand-side was very special (it was not even bounded), so the results obtained
do not fit completely the physical problem (although they are very encouraging). From
physics of the problem, it is known that the solution u should tend to zero for any
bounded f . All the results below are obtained for f = 1. We plot −u instead of
u. Fig. 5.3 contains the results for the irregular grid and different numbers of grid
points. In Fig. 5.4 analogous results are given for the uniform grid.

It can be seen, that in both cases the numerical solution stabilizes. To give some
numerical estimate of the convergence rate, we plot the L2 solution norm in Fig. 5.5
for both grids. It is clear that the irregular grid furnishes much better convergence.
Notice an interesting difference in the behavior of L2 norms: in the case of uniform
grids it decreases as p increases, whereas in the case of irregular grids it increases.

6. Conclusion. We have developed an approximation technique that allows cer-
tain dense matrices to be stored using only a small fraction of the memory that would
be required for their explicit representation. We have been concerned with matrices
that are defined in terms of a function on a multi-dimensional grid. Provided that
the grid can be expressed as the tensor product of two or more 1-dimensional grids,
the matrix can be approximated by a sum of Kronecker products by means of the
Incomplete Cross Approximation algorithm of Tyrtyshnikov [21]. A further reduction
in storage requirements can be achieved by applying a suitable wavelet transform and
setting to zero entries that fall below a chosen threshold.
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Fig. 5.4. Solution on the uniform grid (p = 127, 255, 511).
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Fig. 5.5. L2-norm of the solution

For regular 1-D grids standard wavelets, such as the (orthogonal) Daubechies
family give satisfactory results [4], but when the underlying grids are non-uniform
these are considerably less effective. In this paper we make use of the algorithm of
Oseledets [12], which enables custom-built biorthogonal wavelets to be designed to
give good approximation of functions defined on any given 1-D grid. In experiments,
we have confirmed that these new wavelets give improved compression of matrices
derived from functions on irregular 1-D grids with a reduction in storage requirements
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of up to 50% compared with using Daubechies wavelets with similar computational
complexity.

Having thus expressed the matrix as a sum of Kronecker products of sparse ma-
trices, we can solve the corresponding linear system by an iterative method such as
GMRES or PCG. The Kronecker product representation enables each matrix-vector
product to be computed at low cost, but a preconditioner is required in order to keep
the number of iterations in check. Preconditioners that were developed previously for
regular grids [4] are ineffective in the non-uniform case, so we have instead adapted
the multilevel circulant preconditioners first proposed in [19].

The most important new features in our approach are:
• the use of non-standard wavelets, designed to suit the underlying 1-D grids,

to improve compression of the Kronecker factors;
• adaptation of multilevel circulant preconditioners for matrices on non-uniform

grids by introducing a diagonal scaling.
Our combination of Kronecker-product approximation, non-standard wavelet com-

pression and scaled block circulant preconditioning provides an efficient method of
solving dense systems of equations arising from discretization on nonuniform grids.
We have demonstrated its effectiveness by solving a hypersingular integral equation
using finer grids than has previously been possible. In this example the ability to use
irregular grids is important, since the (irregular) Chebyshev grid gives much better
convergence than does a uniform grid.

We are confident that the ideas presented in this paper will be useful in solving a
wide range of problems involving integral equations over multi-dimensional domains.
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