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1 Introduction

About 15 years have passed since the claim made by Colton and Kress in their
book [3] that the development of the integral equation methods for the direct
scattering problem 1s close to completion. However, till present it has not been
completed by any stretch, at least concerning the vector 3D problems for screens
and nonsmooth scatterers.

When solving the monochromatic scattering problem on surfaces of arbitrary
shape, one usually applies the so-called electric field integral equation. Its theory
is given in [3] only for closed surfaces. And even for them, in the 3D case this
theory is not sufficient to prove the convergence of the Galerkin method (the basic
means to solve such equations numerically). As a matter of fact, for screens we
had no rigorous background till 1994 [9].

It can be argued that we still have some algorithms that work quite success-
fully. However, we can not prove this. Moreover, we can not produce any reliable
estimate of how accurate is the solution obtained. The splitting theory [9] is the
only basis visible at present to move these questions from the standstill.

When discussing the Galerkin schemes, everybody cares first about the ap-
proximation property of the basis functions. This is yet half the matter. One
should not forget to prove as well the stability property. The latter is granted
for many problems, since it follows immediately from the strong ellipticity prop-
erty [4, 5, 10]. But this is not the case for the vector 3D electric field equation.
Due to the splitting theory we know that the principal part of the electric field
operator can be split into two parts, one being ” positive definite” and other ”neg-
ative definite” when considered on relevant functional spaces. Consequently, the
state-of-the-art algorithms should somehow match this splitting. This claim and
an underlying theorem was the principal result we presented in the talk at the
Oxford conference.

In this paper, we discuss both properties: the stability one and the approxi-
mation one.

Nevertheless, we found it worthy to begin with a detailed sketch of the split-
ting theory for the electric field integral equation. Then, in section 5, we discuss
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the stability property and prove the convergence theorem based in essence on
the splitting theory.

In section 6, we turn to discussing the practical algorithms. We show that the
Rao-Wilton-Glisson functions [8] possess rather poor approximation properties.
At the same time, we note that these functions can be viewed as a particular
case of Nedelec’s functions [7] exploited successfully in finite elements for solving
the Maxwell equations [1]. Once this is noted, it seems easy to devise some new
sets of basis functions with better approximation estimates.

In this paper we propose some functions that keep the same simplicity as
the Rao-Wilton-Glisson functions but provide much higher accuracy. This is
confirmed numerically. Being of Nedelec’s type, the new functions can be applied
to screens and nonsmooth scatterers just as the Rao-Wilton-Glisson ones.

2 The Electric Field Integral Equation

Consider the scattering problem for monochromatic (with the e~%? dependence
upon time) incident fields E° H® on a system Q of thin perfectly conducting
screens located in the free space with the wave number k, provided that Im
k> 0,k # 0 and all the field sources lie outside the screens. Then the scattered
fields £/, H can be sought in the vector potential form:

E= %(grad div (Au) + k*Au), H = rot (Au),

where )
1 etkle—yl

Av=— | ——— d Q
U 471_/ =l u(y)ds, x ¢Q,
Q

and u(y) designates the tangential vector field on Q.

Note that u(y) can be thought about as the density of the electric current
on 2. The fields £ and H defined by the above formulas satisfy the Maxwell
equations in R3\Q and the Sommerfeld like radiation conditions at infinity.

Using the Stokes theorem and some regularity assumptions we can rewrite
the expression for F as

E= %(grad A(divu) + k2 Au), = ¢ Q,

where divu means the surface divergence of u and we use the same symbol A
when applying the operator to vector and as well to scalar functions.

The tangential components of F (and the normal components of ) are
continuous up to €2 except for the edge points. Consequently, since the tangential
components of the full electric field must vanish on €2 we obtain

grad_ A(divu) + k*A,u= f =ik El|q, = €Q. (2.1)

Equation (2.1) is known as the electric field integral equation.
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3 Relevant Functional Spaces

For 2D scattering problems, the Galerkin method theory appeared simple and
clear many thanks to the right choice of functional spaces in which the operator
considered was both invertible and strongly elliptic (cf. [4, 5, 10]). We may not
have that much in the general 3D case.

It is still possible to choose the functional spaces which secure only the Fred-
holm property. For surfaces of arbitrary shape, the spaces large enough to contain
all solutions of physical interest were recognized and studied in [9].

Assume that

is a union of disjoint screens, each ; is part of a closed connected compact
surface M;, and M; N M; = ) for i # j. We thus have Q; C M; for all i and

QC M= |J M;. Any screen boundary 9Q; = Q;\Q; is assumed in [9] to be an

infinitely s,Zml()oth closed curve with no self-intersection but we dare state that
much of the analysis can be extended to the case of piecewise smooth boundaries.

Consider a bounded open domain U, C IR? and denote by H*(U,) the
completion of functions from Cg§°(U,), i.e., supported on U, functions from
C*(IR.?), with respect to the norm

171l = { / (14 €2 [F(©)Pde),
h2

where &€ = (&1,8), |€] = (Jé1)* + |€2|2)% and f(f) is the integral Fourier transform
of f(z), x = (x1,22). If functions f are vector-valued, say, f = (f!, f?), then
we use the same notation H?*(Uy,) for those functions whose scalar components
f1 and f? belong to the previously defined H*(U,). In this case we adopt the
definition

1£1ls = (P + 1202,

We want to consider functions defined on M. To this end we take up a
one-to-one mapping v, : Us — IR? which yields a bounded open domain on
M. Thus, any function f € H*(U,) can be considered as a function defined on
Ya(Us) C M. We suppose that domains yo(Uy), «=1,..., N, make up a finite
covering of M. Let {p,})_, be a partition of unity subordinate to this covering.
Then any function f defined on M can be written in the form

N
f= Zfom
a=1

where f, = ¢o f can be considered as a function defined on U, C R2 If
f e C®(M), then f, € C§° (Uy). We now define the Sobolev space H*(M) as
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the completion of C*° (M) with respect to the norm

N 1/2
1/1ls = (ZHfa”?) ~
a=1

As previously we use the same notation H*(M) for scalar and vector-valued
functions. We also introduce two more spaces as follows:

Q) = {fla: feH (M)},
{f € H*(M) : supp fCQ}.

o
B
|

The last space can be viewed as the completion of C§°(2) with respect to the
same norm || . ||s. Note that scalar products on H*(M) and on H*(2) are defined
in a natural way. The norm on H*() is introduced as

91|y = ml{[[flls = f € H (M), fla =g}

Since the parallelogram identity is fulfilled for this norm we can easily use it to
construct the scalar product on H*(Q).
Consider the operator from (2.1):

Au = grad, A(divu)+ k*A u.

It will become clear later that .4 can be applied to any function u such that
u € ﬁ_l/z(Q) and div u € lff_l/z(Q) and this suggests how to define the space
of origins. Specifically, the space W = W () is introduced as the completion of
C§° () with respect to the norm

lullw = (ullyyo + lidiv ull2y0)' 2.
This is the Hilbert space with the scalar product
(v, v)w = (u,v)_1/2 + (divu,dive)_q/s.
It can be proved [9] that
W={ueH Q) : divue H*Q)},

where the operation divu is extended over all u € f]‘l/z(Q) with the help of
the Fourier transform. It can be also proved [9] that W is located strictly in

between f]l/z(Q) and f]‘l/z(Q):
HY2(Q) c W c H Y2(Q),

and the inclusion mappings are continuous.
The operator A transforms the origins from W into images which bear the
meaning of the tangential electric field components. The Maxwell equations
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state that the magnetic field 1s proportional to rot £ and therefore the energy
boundedness considerations suggest that £ and rot £ should be square-integrable
over any bounded region of IR®. We may thus anticipate that some ”restrictions”
of ¥ and rot ¥ on M should belong to H_l/Z(M). The role of these ”restrictions”
will be played by the tangential component of £ and the normal component of
rot E.

Thus, the space W/ = W/(Q) of images will be defined as

W' ={fla : feH Y M), rot, fe H *(M)},

where rot, f is the ”surface rotor” (the normal component of rot f, the vector
field f being the extension of the surface vector field over a neighborhood of M;
it is easy to see that any extension produces the same value of rot, f).

It can be proved that W' is antidual to W with respect to the L? scalar
product sesquilinear form. This means that (similar to the Riesz theorem) any
bounded linear functional f(u) on W can be written in the form

f@):/ﬁa@z(%v)

Q

for some uniquely determined v € W’. We have
H'?(Q) c W' c H2(Q),

and Au € W for all w € W [9].
However, we have not shown yet that A is correctly defined on all of W.
Using vector analysis formulas we have

(Au, v) = —(A(divu), dive) +k? (A;u, v) forany wu, v € C5°(Q).

Since C§°(2) is dense in W, it is sufficient to verify that the sesquilinear form
(Awu, v)isbounded on W and then we can define the action of A on an arbitrary
u € W by the continuity property.

It is sufficient to prove that the forms (Aw, v) and (A,u, v) are bounded
on W, which is a relatively simple task because this time we are to deal with
the well-familiar weakly singular integral operator A applied to scalar functions.
Anyway we know (see [9, 10]) that the operators

A HY2(Q) — HY*(Q),
A, HY2(Q) — HY?2(Q)

are bounded Fredholm operators with index zero. It remains to note that the
form (w, v) is bounded when w € H'/?(Q) and v € f]‘l/z(Q).

We thus proved that the form (Awu, v) is indeed bounded on W and hence
for any u € W the element Au can be identified with a bounded linear functional
on W, which in its turn can be uniquely represented by some element from W’.
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The equality in (2.1) should be understood as the equality of two elements from
W'. Equivalently, we can call u € W a (generalized) solution to the equation

(2.1) if [9]

— (A (divu),div v) + k% (A;u, v) = (f, v) forall veC5. (3.1)

4 The Operator Splitting

Any sufficiently smooth vector field supported on a bounded region in IR?® can be
uniquely expanded into the divergence-free and the rotor-free (potential) compo-
nents. The same applies to vector fields defined on manifolds in IR [9]. Denote
by W1 and Ws the completions of W = { v € C§° () : div u = 0} and
W ={ueC (Q) : u=grad h, h € C§ ()}, respectively, with respect
to the W-norm. Then W; and W, are closed linear manifolds, and W 1s their
direct sum:

W =W, ¢ Ws,.

Analogously, we have

W' =w/aeWw,,
where
Wi={feW :divf=0} and Wio={feW : rot, f=0}.

The subspace W] is antidual to W and W} is antidual to W5. The projection
operator on Wi in parallel to W5 is bounded in W while the projection operator
on Wi in parallel to W3 is bounded in W’. Moreover, the W-norm on Wi is
equivalent to the ﬁ]‘l/z(Q)—norm while the W-norm on W is equivalent to the
f[l/z(Q)—norm, and, similarly, the W/-norm on W/ is equivalent to the H'/2(Q)-
norm while the W’-norm on W3 is equivalent to the H~'/2(2)-norm. All these
facts were proved in [9].

The operator A can be split quite naturally:

A =AW 4 k2 A®)

where

AWMy =grad, A (div u), A® u=A, u
Allowing for W = W1&W2 and W/ = W/1&W’2, we will benefit by representing

the operators in the 2 x 2 matrix form

where Agf) . W; — W/ are bounded linear operators (i, j, k =1,2).

K3
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It is easy to verify that

0 0
A = [ ] .
0 AlY

Somewhat more difficult is to prove that A(le) : Wy — W) can be split into
A(le) = —A(ll) + A(Zl), where A(ll) : Wy — W) is a strongly elliptic and hence
continuously invertible operator while A(Zl) is a compact operator [9]. From the
theory of pseudodifferential operators,

A:A1+A2+A3a

where Aj 1s a pseudodifferential operator of order —1, A, is a pseudodifferential
operator of order —2, and As is an operator with the infinitely smooth kernel.
Consequently, we can set

APy = —grad Ay (divu), APu=grad (As + A3) (divu),  u € Ws.

Since divu € ﬁ]‘l/z(Q) we have (As+ Az)(divu) € H3/?(Q), and finally A(Zz)u €
H'Y?(Q). Taking into account that the inclusion mapping HY?(Q) C H=Y?(Q)
is compact and recollecting that the TW/-norm on W3 is equivalent to the H~1/2(Q)-
norm, we conclude that A(Zz) 1s a compact operator.

Similar arguments permit us to prove that the operators A(lzz), A(Zzl), and
A(Zzz) are compact and that A(lzl) = A(lz) + A(ZZ), where A(lz) W = W
is a strongly elliptic and hence continuously invertible operator while A(Zz) s a
compact operator.

Combining all the above operator decompositions we can formulate the fol-
lowing key-note theorem [9].

Theorem 1. The operator A : W — W' can be split into
A=D+C,
where C' 1s ¢ compact operator while D allows for the diagonal matriz represen-

tation
k2 D, 0
o= 0, ]

with the strongly elliptic operators Dy : Wo — Wi and Dy : Wy — W/,
Clearly, for k£ # 0 the operator A is a Frefholm operator with the zero index.

If Im k£ > 0, k # 0 and all the screens are open then A is in fact a continuously
invertible operator from W to W’ [9].
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5 The Galerkin Method in the Vector 3D Case

The expounded above theory lays a firm ground for work with the electric field
integral equation Au = f. Since A possesses the Fredholm property, for non-
resonant wave number values we may assume that A is a continuously invertible
operator. This is automatically fulfilled if all the screens are open.

Consider an n-dimensional space V,, C W and let us approximate u by an
element u, € V,. The Galerkin method suggests that w, is sought from the
Galerkin equations

(Aun,v) = (f,v) Vo€ V. (5.1)

Obviously, these equations define a finite dimensional operator A, ; V,, — V!,
where V)] is antidual to V,,.

The convergence property (u, — u as n — oo) follows immediately from the
following two assumptions.

The approximation property. For any v € W there exist v, € V,, such that
vy, — v for n — oo.

The stability property. There exists ¢ > 0 such that for n sufficiently large,
[|A pullws > e||u]|lw for all u € V,, uniformly in n.

If these two properties are fulfilled then

|lun — ullw < C inf [Jv—ullw,
VEV,

which is considered usually as the quasioptimal convergence. The derivation
of the convergence rate estimates reduces thus to the standard problem of the
approximation theory.

The stability property is guaranteed if A is strongly elliptic, i.e.,

(Av,0) > c(v,0) Vv E W,
or, in a generalized form, if A satisfies the Garding inequality
Re (A+ K)v,v) > c||v]lw Vv eW

for some compact operator K [5].

The principal difficulty with the electric field equation consists in that 4 is
no longer strongly elliptic. This implies immediately that there exists a sequence
of subspaces V,, C W such that the solutions u,, to the Galerkin equations do not
converge to u. Moreover, it can be shown that such spaces V,, can be spanned
by truncations up to nth element of some orthogonal basis of W [4].

However, we are now able to propose some Galerkin schemes which are guar-
anteed to converge.
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Theorem 2. Let the electric field integral equation be such that the operator A
1s wnvertible, and assume that n-dimensional subspaces

view, and VZCWs

possess the approzimation property in Wy and W, respectively. Then the Galerkin
method on subspaces V,, = V.1 + V.2 is guaranteed to converge.

Proof. Consider the splitting A = D + C, where D is the continuously
invertible operator and C'is the compact operator. When applied to the equation
Du = f, the Galerkin method under question reduces to solving simultaneously
the pair of equations k?Djul = f') —Dou? = f2, where f = f* + f2, fl € Wy
and f? € Wj.

Since the operators Dy and D, are strongly elliptic, the Galerkin method
converges for Du = f. From the theory of projection method [4] it follows that
the Galerkin method converges also for any invertible operator of the form D+ K,
where K is a compact operator. Setting K = C' we complete the proof.

It should be emphasized that even for the operator D the standard Galerkin
method with V,, that do not match the splitting of theorem 1 may not converge.

6 Practical Numerical Algorithms

Practical solution of the electric field integral equation on a surface €2 begins
with approximating € by a polyhedron €2, very often with triangular panels
(let h denote their maximal diameter).

Similarly, when solving the Maxwell equations in the 3D case, one uses finite
elements supported on tetrahedrons. Nedelec’s elements conforming in H(div)
seem to be a good choice in that case. For the surface equation (2.1), the solution
space W can be viewed as H~/?(div). The Rao-Wilton-Glisson functions [8]
are thus the ”surface finite elements” conforming in W.

Consider a triangular element 7" with vertices 75, ¢ = 1, 2, 3. All that per-
tains to the side opposite to T; will be marked with the index i. Let I; and h;
denote the length of the corresponding side and height dropped on it from 7;.
Let n; be the outward normal vector to the 7th side.

For any point (z,y) € T let & = &(x,y) denote the ratio of the distance
between (z,y) and T; to h;. Thus, &, 1,2, 3, are the so-called barycentric
coordinates of (z,y) (they are interdependent, for & + & + & = 1 for any
(z,y) €T).

Consider a piecewise continuous vector field v on a surface, assuming that all
discontinuities belong to boundaries of curvilinear triangles. Then v € W (v €
W') is guaranteed whenever the normal component (the tangential component)
of v 1s continuous along these boundaries. Thus, the ”surface finite element” on
T will be conforming in W if its degrees of freedom provide the continuity of the
normal component.
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To this end, it 18 convenient to construct the edge elements on T i.e.; the
vector functions on 7" whose normal component is zero on all the edges except
for one (cf. [1, 7]).

Consider a vector field f and its polynomial approximation
. [ pi(z,y) ]
p2(2,y)

on T'. Let p enjoy the following properties:
(p(Ti),nj) = fij = (F(Ti),mg),  J#i.
It can be proved that p does indeed if 1t is of the form
3
p= Z > Lioijeis,
R

where ¢;; are the very edge elements:

eij = &N &, i£ G kE G kAT

2
Ve = 625 :
N
_1’ if (Z,j) € {(1’2)’ (2’3)’ (3’ 1)}a
035 = Lot (Z’j) € {(1’3)’ (2’ 1)’ (3’2)}a

0, otherwise.

Choosing f;; = ¢; we have 3 degrees of freedom (¢1, ¢2, and ¢3). It is easy to
verify that the functions

€13 — €23, €32 — €12, €21 — €31

are the familiar Rao-Wilton-Glisson functions on 7.

These functions can be regarded as Nedelec-like elements of the zero order.
Using the Bramble-Hilbert lemma [2] we can state that the Rao-Wilton-Glisson
functions approximate functions from H' with the O(hl/z) accuracy in the W-
norm.

We can be better off with maintaining all 6 degrees of freedom (the basis
functions on 7" will be the above o;;¢;5, ¢ # j). In this case, the same Bramble-
Hilbert lemma implies that functions from H? are approximated with the O(h3/2)
accuracy.

One may speculate about twice the number of unknowns for the same number
of triangular patches. However, the error in the solution is expected to fall down
more than twice.
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This was confirmed numerically. We considered the scattering of the plane
wave with & = 1 on the sphere of radius 1. The comparison of our method with
the Rao-Wilton-Glisson one is given in the following table:

The Rao-Wilton-Glisson Method

The number of unknowns | 72 162 288 450

The relative Lo-error 0.151 0.108 0.100 0.098
Our Method

The number of unknowns | 144 324 576

The relative Lo-error 0.100 0.048 0.028

The choice of the Lo-norm is typical for practice. The W-norm of the above
theory is of course different but too difficult to calculate.

Both methods (the Rao-Wilton-Glisson and ours) do not match the operator
splitting of theorem 1. However, the method with 6 degrees of freedom can be
easily modified to match it yet in part. Instead of functions o;;e;; we can take
up their linear combinations

e13tes3, e3zztern, ea1 Eesr.

It is easy to check that the functions with the plus sign are divergence-free. The
functions with the minus sign are the familiar Rao-Wilton-Glisson functions
(which are not rotor-free). Such a version of basis functions does not provide
any additional gain in accuracy. All the same, it can be useful because it gives
naturally an idea of some practical procedure of the error estimation.
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