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Abstract

An algorithm is proposed to �nd the inertia of Toeplitz expanded matrices� i�e� those
expressed as a sum of two�term products of Toeplitz triangular matrices� Using elementary
eliminations the algorithm spends only �m � ��n� multiplications and as many additions�
and can be performed through O�n� parallel steps� where m is the number of summands
and n is matrices order� As to memory� it requires only m vectors of size n and one vector
of size m to be retained� For m 	 
 an ameliorated version is suggested along with one
possible systolic algorithm� Special pivoting is advocated for numerical stability� Presented
are the results of the roundo� analysis� that can be interpreted as an evidence that actually
computed values form the true LDLT decomposition of some matrix which di�ers from A�
the original matrix � by a matrix whose norm is proportional to the unit rounding error and
a condition number of A�

� Introduction

While studying the spectra of large symmetric matrices one may be interested in the eigen�
value distribution rather than individual eigenvalues by themselves� To this end it is obvi�
ously su�cient to �nd the inertia indices for a sequence of shifted matrices� In the paper�
we propose a fast and parallel algorithm to determine the inertia for symmetric Toeplitz
expanded matrices� i�e� those expressed as a sum of products of Toeplitz matrices�
So� suppose a real symmetric matrix A of order n is given such that

A 	 L�D�L
T
� 
 � � �
 LmDmL

T
m �����

where Lj is Toeplitz lower triangular and Dj is diagonal�

Lj 	 �lp�q���j �
n
p�q��� lp�q���j 	 � if p� q � ��� ���
�

Dj 	 diag�dj � � � � � dj��

A notable example of Toeplitz expansion like ����� is the Gohberg�Sementsul formula ��� for
the inverses of Toeplitz matrices� Toeplitz expansion properties were by and large examined
in ��� ��� In particular� ����� takes place for any symmetric matrix� though m may be
comparable with n� In what follows we assume thatm is arbitrary� However� actual e�ciency
can be talked about only when m is small in regard to n�

�



We will assume that A is strongly regular� that is� all its leading minors are distinct from
zero� It means that A admits the LDLT factorization �see� for example� �����

A 	 LDLT �����

where L is lower triangular and D is diagonal� By ����� A and D are congruent� and thence
have the same inertia�
Some existing algorithms can be easily tailored to obtain the signs of A�s leading minors�

and hence the inertia� One such algorithm is that from ��� developed to calculate the Toeplitz
expansion for A��� The derivation of a similar algorithm through a general bordering
scheme is given in ���� These algorithms require O�mn�� arithmetic operations� but have
poor parallel properties�
In order to design a parallel inertia �nder in this paper we adapt a technique advanced

in ���� However� unlike ��� we do without circular and hyperbolic rotations� opting for
elementary transformations like those in the Gauss elimination method� Numerical stability
is supported here by pivoting� We suggest a simple means to check whether the process can
be continued or should be halted� Should the latter occurs� we have to settle for the inertia
computed for some leading submatrix of the original matrix� In our numerical tests there
has been no case of delivering wrong inertia �for the matrix or submatrix� in any variant of
termination�
Our algorithm take �m���n� multiplications and as many additions� which is less than it

could be got when dealing with algorithms from ������ More signi�cant still� in contrast with
previous algorithms it grows possible to have only c�m�n parallel steps� where c�m� 	 O�m�
or even less in some appropriate modi�cations�
The LDLT decomposition of matrix A� in principle� is available via presented here al�

gorithms� Columns of L are computed successively� and once a column is found� it is never
touched again� This makes it possible to involve but a small amount of active memory�
Though� in the context of �nding the inertia� the LDLT decomposition by itself is not the
goal of computation� As a consequence� overall computation can be implemented within the
basic memory whose size is rather moderate� only m vectors of size n and one vector of size
m are needed to be stored�
In section 
 a theory is evolved necessary to construct our algorithms� It is summed

up by Theorem 
��� This theorem establishes the existence of �simple� transformations
which eventually result in the LDLT decomposition when starting from the given Toeplitz
expansion of a real symmetric strongly regular matrix A�
In section � a general scheme is formulated to carry out these �simple� transformations

so as to dispense with �redundant� arithmetic and memory�
In section �� a pruned down version of the general scheme is proposed �Algorithm ����

to specially handle Toeplitz matrices� and matrices ����� with m 	 
� Also here described
is a systolic array with very simple processor elements to implement Algorithm ���� The
corresponding systolic algorithm is couched in the spirit of algorithmic descriptions from
Chapter � of the book ����
Section � is devoted to the analysis of rounding errors in Algorithm ���� The prime result

can be interpreted as that showing that the actually computed LDLT decomposition may
di�er from A by a matrix whose norm is proportional to the unit roundo� and a condition
number of A� Finally� we demonstrate that pivoting is essential for numerical stability�

� Theoretical background

Everything will be based on the next simple lemma�
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Lemma ��� Let P be a real nonsingular matrix of order mn� and suppose that

�L�� � � � � Lm�P 	 ��L�� � � � � �Lm� �
���

�L�D�� � � � � LmDm�P
�T 	 ��L�

�D�� � � � � �Lm
�Dm� �
�
�

there Li� �Li� Di� �Di � Rn�n � Then

L�D�L
T
� 
 � � �
 LmDmL

T
m 	 �L�

�D�
�LT
� 
 � � �
 �Lm

�Dm
�LT
m �
���

Proof� The right �hand side of �
��� equals

��L�� � � � � �Lm�� �L�
�D�� � � � � �Lm

�Dm�
T

while the left�hand side is

�L�� � � � � Lm��L�D�� � � � � LmDm�
T 	 ��L�� � � � � Lm�P ���L�D�� � � � � LmDm�P

�T �T � �

The main idea we are going to exploit consists in choosing P so as to have �L� 	 � � � 	
�Lm 	 �� Important is that P can be built up by piecemeal� that means that it will be
expressed as a product of �simple� matrices� Speci�cally� if

P 	 P� � � � PN �
���

then
P�T 	 P�T� � � � P�TN �
���

Every Pi may account for obtaining new zeroes in �L�� � � � � �Lm so that all preceding zeroes
are kept unchanged�

Lemma ��� Suppose real numbers p� q and vectors u 	 �u� � � � un�
T � v 	 �v� � � � vn�

T are
given such that

u� �	 �� �
���

u��p
 v
�
�q �	 �� �
���

Then there exists a nonsingular matrix

E 	

�
� r�
r� �

�
�
���

such that
�u� v�E 	 ��u� �v�� �
���

�up� vq�E�T 	 ��u�p� �v�q�� �
����

where �u 	 ��u�� � � � � �un�
T � �v 	 ��v�� � � � � �vn�

T and

�v� 	 �� �
����

�p 	
p

g
� �q 	

q

g
� g 	 �� r�r�� �
��
�
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Proof� Due to �
���� �
��� p �	 �� so set

r� 	 �
v�
u�
� �
����

r� 	 �
v�
u�
��
q

p
�� �
����

Then
u�r� 
 v� 	 �� �
����

� u�pr� 
 v�q 	 �� �
����

At the same time�

g 	 det E 	 �� r�r� 	 � 

v��
u��

q

p
	
�

u��p
�u��p
 v

�
�q� �	 ��

According to �
��� and �
��
� we have

E�T 	
�

g

�
� �r�
�r� �

�
� �
����

Hence� �
���� is equivalent to the matrix equality�
p �
� q

� �
� �r�
�r� �

�
	

�
� r�
r� �

� �
p �
� q

�
� �
����

which obviously emanates from �
����� �
����� �
From now on� by a simple matrix P �k� l� E�� used as Pi� will be meant a matrix which coin�

cides with the identity matrix everywhere� except four positions �k� k�� �k� l�� �l� k�� �l� l�� k �
l� housing 
� 
 matrix E being either of the form �
��� or the permutation matrix

J 	

�
� �
� �

�
�

If E is determined in accordance with Lemma 
�
 by values u�� v�� p� q then we will write
E 	 E�u�� v�� p� q��

Lemma ��� Let A be a real symmetric strongly regular matrix of order n� given by Toeplitz
expansion ����� where Lj � Dj are of the form ������ Then there is a product P of simple

matrices� which obeys ����� and ����� where �Dj are scalar matrices� �Lj are Toeplitz lower

triangular� and �L�� � � � � �Lm have only zeroes along the main diagonal�
Moreover� matrix

�A � �L�
�D�
�LT
� 
 � � �


�Lm
�Dm
�LT
m �
����

of order n� � where

�L� �

�
����

�l�� �
�l�� �l��

� � �
� � �

�ln���� �ln���� � � � �l��

�
���� �

�Lj �

�
����

�l�j �
�l�j �l�j

� � �
� � �

�ln�j �ln���j � � � �l�j

�
���� � j 	 
� � � � �m� �
�
��

�Dj � diag� �dj � � � � � �dj�� j 	 �� � � � �m�

is strongly regular�

�



Proof� Since A is strongly regular� we �nd

a�� 	 l���d� 
 � � �
 l
�
�mdm �	 �� �
�
��

If it were for all � � i � j � m that

l��idi 
 l
�
�jdj 	 �� �
�

�

then by summing these equations we would obtain

X
��i�j�m

�l��idi 
 l
�
�jdj� 	 �m� ��a��� �
�
��

and therefore a�� 	 �� Thus� it follows from the strong regularity that there exist indices
i� j such that

l��idi 
 l
�
�jdj �	 �� �
�
��

Assume that l�i �	 �� Then in chime with Lemma 
�
 we may bring in matrix

E 	 E�l�i� l�j � di� dj�� �
�
��

and take up

P� 	

nY
k��

P ��i� ��m
 k� �j � ��m
 k�E�� �
�
��

Set
�L

���
� � � � � � L���

m � � �L�� � � � � Lm�P�� �
�
��

d
���
i 	

di
det E

� d
���
j 	

dj
det E

� d
���
k 	 dk� k � f�� � � � �mgnfi� jg� �
�
��

By Lemma 
�


A 	 L
���
� D

���
� �L

���
� �

T 
 � � �
 L���
m D���

m �L
���
m �

T � �
�
��

where
D

���
j 	 diag�d

���
j � � � � � d

���
j ��

By virtue of our de�nition of P� matrices L
���
� � � � � � L

���
m remain Toeplitz lower triangular� and

L�
j thus acquires the zeroed main diagonal and will be ignored in subsequent transformations�
Next� we again seek for indices i� j such that

l
���
�i �	 �� �l

���
�i �

�d
���
i 
 l

���
�j �

�d
���
j �	 ��

then construct the corresponding matrix E and de�ne P� by �
�
��� Clearly� it will take
t � m� � steps to arrive at

�L�� � � � � L�� � �L�� � � � � Lm�P� � � � Pt�

where for some i l�i �	 �� and for all j � f�� � � � �mgnfig l�j 	 �� If i 	 � then we have
already achieved the new Toeplitz expansion of A we are after� If i �	 � then setting

Pt�� �

nY
k��

P �k� �i� ��m
 k� J�� �
����

we obtain
��L�� � � � � �L�� � �L�� � � � � Lm�P� � � � Pt��� �
����

�



where matrices �L�� � � � � �L� possess all desired properties� and each of P�� � � � � Pt�� is a product
of simple matrices�
It only remains to verify that �A of the form �
���� is strongly regular� If we write down

A 	

�
���

a�� a�� � � � an�
a��
� � � B
an�

�
��� � �
��
�

then in accordance with �
��� and �
����

B 	 �d�

�
�
�l��
� � �
�ln�

�
� ��l�� � � � �ln�� 
 �A� �
����

Further� �
����

� �
�a��

a��

� � �
� � �

�an�
a��

� �

�
����A 	

�
���
a�� a�� � � � an�
�

� � � �B
�

�
��� �
����

where

�B 	 B �
�

a��

�
� a��
� � �
an�

�
� �a�� � � � an��� �
����

On the strength of �
���� it is clear that A�s strong regularity entails strong regularity of �B�
At the same time� by �
���� the �rst column of A is of the form

��l�� � � � �ln��
T �d��l���

and hence

�

a��

�
� a��
� � �
an�

�
� �a�� � � � an�� 	 d�

�
�
�l��
� � �
�ln�

�
� �l�� � � � �ln��� �
����

Combining �
����� �
����� and �
���� we conclude that �A 	 �B� and that completes the proof�
�

Theorem ��� Suppose A is a real symmetric strongly regular matrix of order n� given by
Toeplitz expansion ����� where Lj � Dj are of the form ������ Then there exist simple matrices

whose product P is such that ����� and ����� hold with �L� 	 � � � 	 �Ln 	 �� and �L� is lower
triangular� �D� is diagonal�

Proof� We will use the induction on n� Matrix �A� obtained with the help of Lemma 
���
enjoys all hypotheses of the theorem� but is of order n � �� Assume there is a product
�Q 	 �Q� � � � �QN of simple matrices of order m�n� ��� such that

��L�� � � � � �Lm� �Q 	 ��L� �� � � � � ��� � �L�
�D�� � � � � �Lm

�Dm� �Q
�T 	 ��L �D� �� � � � � ���

Denote by Qj the matrix of order mn which is the same as the identity matrix everywhere�
save for m�n� �� positions �k� l� �M �

M � f
� � � � � kmgn

m	
i��

fin� �g�

�



housing �Qj � Matrices Q�� � � � � QN are clearly simple� If P designates the product of simple
matrices raised when applying Lemma 
�� to A� then with Q 	 Q� � � � QN

�L�� � � � � Lm�PQ 	 �L� �� � � � � ��� �L�D�� � � � � LmDm�P
�T

Q�T 	 �LD� �� � � � � ���

where

L 	

�
�
�l�� � � � � �
� � �
�ln� �L

�
� � D 	

�
�d� �

� �D

�
�

Here �l��� � � � � �ln� and �d� are values emerged in the course of application of Lemma 
�� to A�
The proof is completed� �

� General scheme

We are now in a position to present our algorithm for �nding inertia� Theorem 
��� in fact�
indicates a way to calculate all components of the LDLT decomposition of A�Apparently�
consecutive steps should be performed� each having the Toeplitz expansion of some new
matrix of decreased by � order to be computed� We need not therefore compute and store
all elements of dense matrices� and matrix operations described in the preceding section
should be carried out� no doubt� implicitly� To determine inertia we need only signs of the
entries of D 	 diag�d�� � � � � dn�� Following Theorem 
�� we can get d�� � � � � dn successively�
To do this and avoid super�uous memory tra�c we should erase those already found LDLT

components which would not be refered to in the sequel� Among other things� we incorporate
in the algorithm some pivoting for the sake of numerical stability�
Thus� we introduce two�dimensional array L�� � n� � � m� and one�dimensional array

D�� � m�� No other memory is needed�

Algorithm ��� Given the components of the Toeplitz expansion ������ ����� of matrix A �
Rn�n �L��� j� is the �rst column of Lj � and D�j� 	 dj � j 	 �� � � � �m� suppose that dj �	 � for
all j� The algorithm computes the order nu of the biggest strongly regular leading submatrix
in A and the number ne of negative eigenvalues for this submatrix�

ne � �� nu � n
FOR k 	 � � n

m� � the number of nonzero components among L�k� � � m�
IF m� � � THEN

FOR j 	 
�m�

Find indices i�� j� such that
jL�k� i��j 	 jL�k� j��j 	 ��
L�k� i��� L�k� j��� D�i��� D�j�� �	 ��
if there is no such indices� then set nu � k � � and quit�
r� � �L�k� j���L�k� i��
r� � �r�D�j���D�i��
g � �� r�r�

�L�k � n� i��� L�k � n� j���� �L�k � n� i��� L�k � n� j���

�
� r�
r� �

�

D�i��� D�i���g
D�j��� D�j���g

END
ENDIF

�



IF �D�i�� � �� ne � ne 
 �
IF k � n THEN

U�k 
 � � n� i��� U�k � n� �� i��
ENDIF

END

The correctness of Algorithm ��� follows from Theorem 
��� The arithmetic work does
not exceed 
�m���n�� with equal parts for multiplications and additions� Algorithm ��� has
a salient vectorized structure� and can be implemented through cn parallel steps� where c 	
O�m�� Obviously� there is an option to deal with independent pairs �i�� j��� �i

�

�� j
�

��� �i
��

� � j
��

� ��
and so on� allowing the concurrent treatment of corresponding columns�
The inequality

jL�k� i��j 	 jL�k� j��j �����

serves as a criterion for pivoting� Of course� the choice of i�� j� may be subjected to some
additional requirements�

� Toeplitz matrix case

Algorithm ��� becomes especially elegant when A is Toeplitz� or when m 	 
� that is�

A 	 d�L�L
T
� 
 d�L�L

T
� � �����

If d� and d� take on the same sign then A is sign�de�nite� and so the case is trivial from the
inertia �nding point� Therefore� later on we assume that signs of d� and d� di�er� Without
loss of generality let us agree that

d� 	 �d�� ���
�

Lemma ��� Suppose A is a real symmetric strongly regular matrix with Toeplitz expansion
�	��� which is subject to �	���� Then on each step of Algorithm 
�� the following is ful�lled�

D�
� 	 �D���� �����

r� 	 r�� �����

jr�j � �� � � g � �� �����

jL�k� ��j �	 jL�k� 
�j� �����

jL�k� ��j � jL�k� 
�j 
 i� 	 �� j� 	 
� �����

jL�k� ��j � jL�k� 
�j 
 i� 	 
� j� 	 �� �����

Proof� The inequality ����� is maintained via assignments D�i�� � D�i���g� D�j�� �
D�j���g� ����� directly implies ������ Next� by our principle of pivoting jr�j � �� using �����
we can write g 	 �� r�� � and so � � g � �� With this�

g 	 ��
L�k� j��

�

L�k� i���
�

and hence g 	 � is equivalent to jL�k� i��j 	 jL�k� j��j� We thus obtain ����� and� as a
consequence� ������ ������ and ������ �

�



Algorithm ��� Given the components of Toeplitz expansion �	��� of matrix A � Rn�n with
�	��� being held� suppose that �rst columns of L� and L� reside in L�� � n� �� and L�� � n� 
��
Algorithm 	�� computes the order nu of the biggest strongly regular leading submatrix in A
and the number of negative eigenvalues in this submatrix�

ne � �� nu � n
FOR k 	 � � n

IF jL�k� ��j 	 jL�k� 
�j THEN
nu � k � �
RETURN

ENDIF
IF jL�k� ��j � jL�k� 
�j THEN

ik � �� jk � 

ELSE

ik � 
� jk � �� ne � ne 
 �
ENDIF
rk � �L�k� jk��L�k� ik�

�L�k � n� ik�� L�k � n� jk��� �L�k � n� ik�� L�k � n� jk��

�
� rk
rk �

�

IF k � n THEN
L�k 
 � � n� ik�� L�k � n� �� ik�

ENDIF
END

This algorithm requires n� multiplications and as many additions� It also calls for only
O�n� parallel steps� All needed memory is two vectors of order n�
Algorithm ��� has an entirely regular structure� and thus can be well executed in parallel�

It can be easily implemented on diverse systolic arrays� Bellow described will be one such
array consisting of fairly simple processor elements P�� � � � � Pn of two kinds� C and B�
Processor element P� is of kind C� and the others are of kind B�
All B�like elements must have memory to retain three real numbers and one logical value�

Apart from some logic� each B�like element must perform the following action�
B� IF logic 	 �TRUE� THEN

�uloc� vloc�� �vloc� uloc�
ENDIF

�uloc� vloc�� �uloc� vloc�

�
� r
r �

�

while P� is prescribed to additionally store two integer numbers and execute the next state�
ments�

C� IF julocj 	 jvlocj THEN
quit

ELSE
nu � nu 
 �

ENDIF
IF julocj � jvlocj THEN

logic� �FALSE�
ELSE

logic� �TRUE�
�uloc� vloc�� �vloc� uloc�
ne � ne 
 �

ENDIF

	



r � � vloc
uloc
� uloc � uloc 
 vlocr

In terms of actions C and B� Algorithm ��� can be encapsulated by a graph� Below this
is done for n 	 ��

C� � B� � B� � B� � B	 � B


� 
 � 
 � 
 � 
 � 

C� � B� � B	 � B
 � B�

� 
 � 
 � 
 � 

C	 � B
 � B� � B�

� 
 � 
 � 

C� � B� � B


� 
 � 

C
 � B��

� 

C��

Subscripts indicate the points in time at which the corresponding action starts running�
To design a systolic array we� in e�ect� regard the projection of the above graph along the
�main diagonal� direction �

C �� B �� B �� B �� B �� B

Thus� processor elements will be aligned in a chain�

� P�  � P�  � � � Pn��  � Pn �

Let the global clock be set with ticks t� Then� pursuing the terminology and style of the
book ���� we suggest the following

Algorithm ��� Suppose processor elements P�� � � � � Pn are connected to form a systolic
chain� If each processor executes the following node program� then upon completion P�
houses the order nu of A�s biggest strongly regular leading submatrix and the number ne of
its negative eigenvalues�

loc� init��n� 	 	 my�id� right� left� uloc 	 L�	� ���
vloc 	 L�	� 
��
r 	 ��
logicloc 	 �FALSE��
if 	 	 � then fne 	 �� nu 	 �g�

FOR t 	 � � 
n� �
IF 	 	 � THEN

IF i is odd THEN
IF t �	 � RECEIVE�vloc� right�
PERFORM ACTION C

ELSE
SEND�frloc� logicloc� rightg�

ENDIF
ELSE

IF 	 � t � 
n� 	 THEN
IF 	
 t is even THEN

RECEIVE�frloc� logiclocg� left�

�




IF �t � 	 and 	 �	 n� RECEIVE�vloc� right�
PERFORM ACTION B

ELSE
SEND�frloc� logiclocg� right�
SEND�vloc� left�

ENDIF
ENDIF

ENDIF
END
quit

The understanding of how it works can be alleviated by observing the following chart
which shows the functioning of processor elements with time �n 	 �� �

t P� P� P� P� P	 P

� C

 B
� C B
� B B
� C B B
� B B B
� C B B
� B B
� C B
�� B
�� C

Here the blank cells match the ticks when the corresponding processor is idle�

� Roundo� analysis

Here we will try to assess how roundo�s a�ect Algorithm ���� the starting point being that
the algorithm under study can be modi�ed so as to be vied as that for computing the LDLT

decomposition of A� For de�niteness� assume that d� 	 � and d� 	 ��� that is�

A 	 L�L
T
� � L�L

T
� � �����

It is more convenient to work with the matrix counterpart of Algorithm ���� So we set

L��� � �L�� L��� ���
�

Then� in harmony with the theory of Section 
� mapping the k�loop iterations onto
matrix manipulations we have �

L�k� 	 L�k���Pk� k 	 �� � � � � n� �����

where
L�n� 	 ��L� ��� �����

Here� �L is a lower triangular matrix whose k�th column captures the contents of one of
the columns of array L before shifting at the end of k�th iteration �

�L�k � n� k� 	 L�k � n� ik� �����

��



The following relationships are also valid in conjunction with ����� �

L�k�D�k� 	 L�k���D�k���P�Tk � k 	 �� � � � � n� �����

where D� 	 diag��� � � � � ����� � � � ����� and further

Dk 	 diag�d
�k�
� � � � � � d�k�n � d

�k�

� � � � � � d
�k�

n �� �����

d
�k�
i 	



d
�k���
i � � � i � k � ��
dk � k � i � n�

�����

dk 	 ����
ik��

kY
l��

�

�� r�l
� k 	 �� � � � � n� �����

d
�k�

i 	



�dk � � � k � n� k 
 ��

d
�k���
i � n� k 
 
 � i � n�

������

Thus�
A 	 �Ldiag�d�� � � � � dn��L

T � ������

Rounding errors result in that instead of rk some other values �rk will be obtained� and
thus instead of L�k� and Pk some other �L

�k� and �Pk will come about� no longer satisfying
������ All the same � if we write

�L�k� 	 �L�k��� �Pk 
 F
�k�� k 	 �� � � � � n� ����
�

then F �k��s elements will appear �su�ciently small��

Lemma ��� Let 
 specify the unit roundo
�Then

kF �k�k��� � 
�� 
 j�rk j�k�L
�k���k���� ������

Proof� Consider what happens with two �L�k����s columns�

��unew� �vnew � 	 fl

�
��uold� �vold�

�
� �rk
�rk �

��
�

This means that

kfl��uold 
 �vold�rk�� ��uold 
 �vold�rk�k� � 
 max�k�uoldk�� k�voldk���� 
 j�rkj��

kfl��uold�rk 
 �vold�� ��uold�rk 
 �vold�k� � 
 max�k�uoldk�� k�voldk���� 
 j�rkj��

which leads to ������ as to the ��norm case� The ��norm case is treated analogously� �
Corollary�

kF �k�k��� � 

kY
l��

�� 
 j�rlj�kL
���k��� 
O�


�� ������

Lemma ��� If
�L�n� � L��� �P� � � � �Pn 
 F ������

then

kFk��� � 
n

nY
l��

�� 
 j�rlj�kL
���j��� 
O�


�� ������

��



Proof� From ����
� and by the de�nition of F we �nd

F 	 F ��� �P� � � � �Pn 
 F
��� �P� � � � �Pn 
 � � �
 F

�n��� �Pn 
 F
�n�� ������

Using that norms we deal with are submultiplicative we get

kF �k� �Pk�� � � � �Pnk��� � kF �k�k���

nY
l�k��

�� 
 j�rlj�� ������

and allowing for ������ arrive at ��������
Next� set

�dk � ����
ik��

kY
l��

�

�� �r�l
� k 	 �� � � � � n� ������

and de�ne diagonal matrices �D�k� by formulas similar to ������������ but with ������ replac�
ing ������

Lemma ��� If
�L�n� �D�n� 	 L���D��� �P�T� � � � �P�Tn 
G� ���
��

then

kGk��� � 
n
nY
l��

�

�� j�rlj
kL���k��� 
O�


�� ���
��

Proof� First of all� note that equalities ����
� entail

�L�k� �D�k� 	 �L�k��� �D�k��� �P�Tk 
 F �k� �D�k�� ���

�

to this end� it is su�cient to ascertain what k�th iteration does with any two columns�
Further� by ���
�� and ���

�

G 	 F ��� �D��� �P�T� � � � �P�Tn 
 F ��� �D��� �P�T� � � � �P�Tn 
 � � �
 F �n��� �D�n��� �P�Tn�� 
 F
�n� �D�n��
���
��

It now remains to resort to ������� ������� and use that the norms are submultiplicative�
�

Theorem ��� Let �L be a matrix actually computed through Algorithm 	��� �D 	 diag� �d�� � � � � �dn��
Then

kA� �L �D�LT k��� � 

n

nY
l��

� 
 j�rlj

�� j�rlj
kL���k�kL

���k� 
O�

�� ���
��

Proof� Setting �P � �P� � � � �Pn we obtain

��L� �� 	 L� �P 
 F�

� �L �D� �� 	 L�D� �P�T 
G�

and it thence follows that

�L �D�LT 	 �L��� �P
F ��L���D��� �P�T
G�T 	 L���D����L����T
L��� �PGT
F �P��D����L����T
FGT

Obviously� A 	 L���D����L����T � and applying Lemmas ��
 and ��� will do the proof��

��



The appearance of estimate ���
�� resembles that of the estimate derived in ��� for the
Levinson�Durbin algorithm� also cf��
�� Note that the value

r�A� �

nY
l��

� 
 jrlj

�� jrlj

can be interpreted as an estimate of kA��k� At the other hand� kL���k�kL
���k� have

something to do with kAk� Thus� there is a ground to consider the bound of Theorem ����
to some extent� as an evidence that Algorithm ��� computes the true LDLT decomposition
of some matrix which di�ers from A so that the deviation by norm is proportional to 

and a condition number of A� Of course� we should mention that the last statement in our
exposition goes without a rigorous proof�
According to Lemma ��� j�rkj � �� k 	 �� � � � � n� These inequalities follow from our

principle of pivoting� We would like to stress that without pivoting the halting may come
about rather quickly before end� For instance� if

A 	

�
��� �
� ���

��
��� �
� ���

�
�

�
�� �
� ��

��
�� �
� ��

�

then array L looks like

L 	

�
��� ��
� �

�

Assume that we have a chopped ���base arithmetic with � digit mantissa� If there is no
pivoting� the �rst step a�ords

�r 	 ����� �l�� 	 fl����� �� � ���� 	 ������ �l�� 	 fl��� �� � ���� 	 ������

and so the procedure stalls because of �l�� 	 �l��� At the same time� Algorithm ��� works
successfully due to pivoting�

��
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