A fast and parallel inertia finder for Toeplitz expanded matrices

Evgenij E. Tyrtyshnikov
Institute of Numerical Mathematics
Russian Academy of Sciences
Leninskij Prosp.32-A
Moscow 117334, Russia

August 9, 2000

Abstract

An algorithm is proposed to find the inertia of Toeplitz expanded matrices, i.e. those
expressed as a sum of two-term products of Toeplitz triangular matrices. Using elementary
eliminations the algorithm spends only (m — 1)n? multiplications and as many additions,
and can be performed through O(n) parallel steps, where m is the number of summands
and n is matrices order. As to memory, it requires only m vectors of size n and one vector
of size m to be retained. For m = 2 an ameliorated version is suggested along with one
possible systolic algorithm. Special pivoting is advocated for numerical stability. Presented
are the results of the roundoff analysis, that can be interpreted as an evidence that actually
computed values form the true LDLT decomposition of some matrix which differs from A,
the original matrix , by a matrix whose norm is proportional to the unit rounding error and
a condition number of A.

1 Introduction

While studying the spectra of large symmetric matrices one may be interested in the eigen-
value distribution rather than individual eigenvalues by themselves. To this end it is obvi-
ously sufficient to find the inertia indices for a sequence of shifted matrices. In the paper,
we propose a fast and parallel algorithm to determine the inertia for symmetric Toeplitz
expanded matrices, i.e. those expressed as a sum of products of Toeplitz matrices.

So, suppose a real symmetric matrix A of order n is given such that

A=L,D,LT +.. . +1,D,LT (1.1)
where L; is Toeplitz lower triangular and D; is diagonal:
Lj = llp—q+1.ilpg=1> lp—g+1, =0 if p—g < -1 (1.2)

Dj = diag(dj, e ,dj).

A notable example of Toeplitz expansion like (1.1) is the Gohberg-Sementsul formula [7] for
the inverses of Toeplitz matrices. Toeplitz expansion properties were by and large examined
in [5, 9]. In particular, (1.1) takes place for any symmetric matrix, though m may be
comparable with n. In what follows we assume that m is arbitrary. However, actual efficiency
can be talked about only when m is small in regard to n.

We will assume that A is strongly regular, that is, all its leading minors are distinct from
zero. It means that A admits the LDL” factorization (see, for example, [8]):

A=LDLT (1.3)

where L is lower triangular and D is diagonal. By (1.3) A and D are congruent, and thence
have the same inertia.

Some existing algorithms can be easily tailored to obtain the signs of A’s leading minors,
and hence the inertia. One such algorithm is that from [9] developed to calculate the Toeplitz
expansion for A~!. The derivation of a similar algorithm through a general bordering
scheme is given in [6]. These algorithms require O(mn?) arithmetic operations, but have
poor parallel properties.

In order to design a parallel inertia finder in this paper we adapt a technique advanced
in [3]. However, unlike [3] we do without circular and hyperbolic rotations, opting for
elementary transformations like those in the Gauss elimination method. Numerical stability
is supported here by pivoting. We suggest a simple means to check whether the process can
be continued or should be halted. Should the latter occurs, we have to settle for the inertia
computed for some leading submatrix of the original matrix. In our numerical tests there
has been no case of delivering wrong inertia (for the matrix or submatrix) in any variant of
termination.

Our algorithm take (m —1)n? multiplications and as many additions, which is less than it
could be got when dealing with algorithms from [6,9]. More significant still, in contrast with
previous algorithms it grows possible to have only ¢(m)n parallel steps, where ¢(m) = O(m)
or even less in some appropriate modifications.

The LDLT decomposition of matrix A, in principle, is available via presented here al-
gorithms. Columns of L are computed successively, and once a column is found, it is never
touched again. This makes it possible to involve but a small amount of active memory.
Though, in the context of finding the inertia, the LDLT decomposition by itself is not the
goal of computation. As a consequence, overall computation can be implemented within the
basic memory whose size is rather moderate: only m vectors of size n and one vector of size
m are needed to be stored.

In section 2 a theory is evolved necessary to construct our algorithms. It is summed
up by Theorem 2.1. This theorem establishes the existence of ”simple” transformations
which eventually result in the LDLT decomposition when starting from the given Toeplitz
expansion of a real symmetric strongly regular matrix A.

In section 3 a general scheme is formulated to carry out these ”simple” transformations
so as to dispense with "redundant” arithmetic and memory.

In section 4, a pruned down version of the general scheme is proposed (Algorithm 4.1)
to specially handle Toeplitz matrices, and matrices (1.1) with m = 2. Also here described
is a systolic array with very simple processor elements to implement Algorithm 4.1. The
corresponding systolic algorithm is couched in the spirit of algorithmic descriptions from
Chapter 6 of the book [8].

Section 5 is devoted to the analysis of rounding errors in Algorithm 4.1. The prime result
can be interpreted as that showing that the actually computed LDLT decomposition may
differ from A by a matrix whose norm is proportional to the unit roundoff and a condition
number of A. Finally, we demonstrate that pivoting is essential for numerical stability.

2 Theoretical background

Everything will be based on the next simple lemma.

Lemma 2.1 Let P be a real nonsingular matriz of order mn, and suppose that

[Ly,...,Lp)P =[L1,..., L] (2.1)
[L1Dy,...,LyyDp|P~T = [LiDy,..., LDy (2.2)
there L;, L;, D;, D; € R"*" . Then

LiDyLT + .. + LDy LT = 14Dy LT + .. + Ly Dy LT (2.3)
Proof. The right -hand side of (2.3) equals

[Ly,...,Lp)[La Dy, ..., LyyDp)"
while the left-hand side is

[Li,...,Lp)[L1 Dy, ..., Ln D]t = ([Ln, ..., Lp)P)([L1 D1, - .., Ly Dy] P~)T, O

_ The main idea we are going to exploit consists in choosing P so as to have Ly=...=
L,, = 0. Important is that P can be built up by piecemeal, that means that it will be
expressed as a product of "simple” matrices. Specifically, if

P=P ... Py (2.4)
then
pT=p 1 .. PT (2.5)
Every P; may account for obtaining new zeroes in f/Q, e L,, so that all preceding zeroes
are kept unchanged.
Lemma 2.2 Suppose real numbers p,q and vectors u = [uy ... u,]T,v = [v1...v,]7 are
given such that
ur # 0, (2.6)
uip +viq #0. (2.7)

Then there exists a nonsingular matriz

E:[Lo } (2.8)

] 1
such that

[u, v]E = [t, 7], (2.9)
[up,vql E~T = [ap, bq], (2.10)

where 4 =[G, ..,)T, 0 = [01,...,0,]7 and
01 =0; (2.11)
=L =2 g=1-rm. (2.12)

g g

Proof. Due to (2.6), (2.7) p # 0, so set

U1
= —— 2.13
1 U) ()
v1,.9q
ry = (UL 2.14
.= () (2.14)
Then
uiry + vy =0, (215)
—uyprs +v1q = 0. (2.16)
At the same time,
1
g=det E=1—riro, =14+ — vl 1 T(U%P+U%Q) #0.
uip uip
According to (2.8) and (2.12) we have
1 1 —r
- _* 2
E _g{_rl |] (2.17)
Hence, (2.10) is equivalent to the matrix equality
p 0 1 T | 1 n p 0
[0 (I}{—Tl 1}_[7“2 1}{0q ’ (2.18)

which obviously emanates from (2.13), (2.14). O

From now on, by a simple matrix P(k, [, E), used as P;, will be meant a matrix which coin-
cides with the identity matrix everywhere, except four positions (k, k), (k,1), (I, k), (1,1),k <
I, housing 2 x 2 matrix E being either of the form (2.8) or the permutation matrix

01
J= { o1] |
If F is determined in accordance with Lemma 2.2 by values u1,v1, p, ¢ then we will write
E= E(Ula’Ul;pa q)

Lemma 2.3 Let A be a real symmetric strongly reqular matriz of order n, given by Toeplitz
expansion (1.1) where L;, D; are of the form (1.2). Then there is a pmduct P of simple
matrices, which obeys (2 1) and (2.2) where D; are scalar matrices, L; are Toeplitz lower

triangular, and Lg, . L have only zeroes along the main diagonal.
Moreover, matrz:c

A=LDiLT+.. .+ LD, LT (2.19)
of order n — 1 where X
Ii1 0
. I21 I
L1 = ’
ln-1,1 lAn72,1 Ii1
o 0
L;=) ,J=2,...,m; (2.20)
lnj o1 2

is strongly regular.

Proof. Since A is strongly regular, we find
ay =Bdy 4 ... +13,,dp #0. (2.21)
If it were for all 1 < ¢ < j < m that
I3:d; + 17;d; = 0, (2.22)

then by summing these equations we would obtain

> (Gidi + 13dy) = (m — Day, (2.23)

1<i<j<m

and therefore a;; = 0. Thus, it follows from the strong regularity that there exist indices
i,7 such that

I3:d; + 13;d; # 0. (2.24)
Assume that /1; # 0. Then in chime with Lemma 2.2 we may bring in matrix
E:E(lli,llj,di,dj), (225)
and take up
P =[] P(G—1)m+k (i — hm+k, E). (2.26)
k=1
Set
LM, LW =Ly, ..., LalPy; (2.27)
d; d;
dV = i 4? = L\ = dy, ke {1,.)i} 2.2
2 det E’ 7 d tE k> E{ m}\{z,]} (8)
By Lemma 2.2
A=W 4+ L DD (LT, (2.29)
where 1) 40
D}’ =diag(d;’,...,d;").
By virtue of our definition of P; matrices Lgl), ey L%) remain Toeplitz lower triangular, and

L} thus acquires the zeroed main diagonal and will be ignored in subsequent transformations.
Next, we again seek for indices ¢, j such that

1) #0,05)2d +157)2d £ o,

then construct the corresponding matrix £ and define P, by (2.26). Clearly, it will take
t < m — 1 steps to arrive at

[fl,...,fl] = [Ll,...,Lm]Pl ...Pt,
where for some i [1; # 0, and for all j € {1,...,m}\{i} l;; = 0. If i = 1 then we have
already achieved the new Toeplitz expansion of A we are after. If ¢ # 1 then setting

PtH:HP (i —)ym +k, J), (2.30)

we obtain

[Li,...,Li) = [L1,...,Lp]Pi ... Py, (2.31)

where matrices ﬁl, . ,ﬁl possess all desired properties, and each of Py, ..., P,y is a product
of simple matrices. .
It only remains to verify that A of the form (2.19) is strongly regular. If we write down

@11 @21 ' QApl

A=| ™ , (2.32)

then in accordance with (2.3) and (2.19)

lA21
lnl
Further,
121 0 a1l a21 Gpl
“an 0
@11 _ R
A= - B (2-34)
an 0
- aul 0 1
where
N 1 @21
B=B-— — [021 ...anl]. (235)
a11 an1

On the strength of (2.34) it is clear that A’s strong regularity entails strong regularity of B.
At the same time, by (2.19) the first column of A is of the form

[y .) dalys,

and hence R
1 a21 I21 N N
—_— [0,21 ...anl] :d1 l21 lnl] (236)
a1 i
nl nl
Combining (2.33), (2.35), and (2.36) we conclude that A = B, and that completes the proof.
O

Theorem 2.1 Suppose A is a real symmetric strongly reqular matriz of order n, given by
Toeplitz expansion (1.1) where L;, D; are of the form (1.2). Then there exist simple matrices
whose product P is such that (2.1) and (2.2) hold with Loy = ... = L, =0, and L, is lower
triangular, Dy is diagonal.

Proof. We will use the induction on n. Matrix A, obtained with the help of Lemma 2.3,
enjoys all hypotheses of the theorem, but is of order n — 1. Assume there is a product
Q = Q1 ...Qn of simple matrices of order m(n — 1), such that

Gty)0 = 15,0, O], [EA Dy, ., B D] O=T = [ED,0, .. 0].
Denote by @); the matrix of order mn which is the same as the identity matrix everywhere,

save for m(n — 1) positions (k,l) € M,

M ={2,....km}\ | J{in -1},

=2

housing Qj. Matrices Q1,...,Qx are clearly simple. If P designates the product of simple
matrices raised when applying Lemma 2.3 to A, then with Q@ = Q1 ...QxN

[L1,...,Ln]PQ = [L,0,...,0], LD, ..., LnDn]P Q=T = [LD,0,...,0].

|

Here fll, e an and cfl are values emerged in the course of application of Lemma 2.3 to A.
The proof is completed. O

where

L = ,D:|:d1
0

sz

3 General scheme

We are now in a position to present our algorithm for finding inertia. Theorem 2.1, in fact,
indicates a way to calculate all components of the LDL” decomposition of A.Apparently,
consecutive steps should be performed, each having the Toeplitz expansion of some new
matrix of decreased by 1 order to be computed. We need not therefore compute and store
all elements of dense matrices, and matrix operations described in the preceding section
should be carried out, no doubt, implicitly. To determine inertia we need only signs of the
entries of D = diag(dy, ...,d,). Following Theorem 2.1 we can get di,...,d, successively.
To do this and avoid superfluous memory traffic we should erase those already found LDL™
components which would not be refered to in the sequel. Among other things, we incorporate
in the algorithm some pivoting for the sake of numerical stability.

Thus, we introduce two-dimensional array L(1 : n,1 : m) and one-dimensional array
D(1:m). No other memory is needed.

Algorithm 3.1 Given the components of the Toeplitz expansion (1.1), (1.2) of matriz A €
R™ ™ (L(:,§) is the first column of L;, and D(j) =d;j,j = 1,...,m) suppose that d; # 0 for
all j. The algorithm computes the order n, of the biggest strongly reqular leading submatriz
in A and the number n. of negative eigenvalues for this submatriz.

Ne <0, Ny ¢ n
FOREk=1:n
my < the number of nonzero components among L(k,1 : m)
IF m; > 1 THEN
FOR j =2,m

Find indices i1, j; such that
|L(k,i1)| > |L(k, j1)| >0,
L(k,i1), L(k, j1), D(i1), D(j1) # 0;
if there is no such indices, then set n, + k — 1 and quit.
1 —L(k‘,jl)/L(kJ,’h)
r2 < —r1D(j1)/D(i1)
g+ 1—rir

[L(k‘ : n,il),L(k . n,jl)] — [L(k : nail)aL(k : TL,j1)] |: Lo j|

T2 1
D(ir) < D(i1)/g
D(j1) < D(51)/9g
END
ENDIF

IF (D(i1) < 0) ne < ne +1
IF £k < n THEN
Uk+1:n,i1) < Ulk:n—1,i1)
ENDIF
END

The correctness of Algorithm 3.1 follows from Theorem 2.1. The arithmetic work does
not exceed 2(m —1)n?, with equal parts for multiplications and additions. Algorithm 3.1 has
a salient vectorized structure, and can be implemented through cn parallel steps, where ¢ =
O(m). Obviously, there is an option to deal with independent pairs (i1, 1), (i1, 71), (i1, 71),
and so on, allowing the concurrent treatment of corresponding columns.

The inequality

|L(k,i1)| > |L(k, j1)| (3.1)

serves as a criterion for pivoting. Of course, the choice of i1, j; may be subjected to some
additional requirements.

4 Toeplitz matrix case
Algorithm 3.1 becomes especially elegant when A is Toeplitz, or when m = 2, that is,
A=d L LT + dy L, LY. (4.1)

If d; and d; take on the same sign then A is sign-definite, and so the case is trivial from the
inertia finding point. Therefore, later on we assume that signs of d; and d, differ. Without
loss of generality let us agree that

dy = —d. (4.2)

Lemma 4.1 Suppose A is a real symmetric strongly reqular matriz with Toeplitz expansion
(4.1) which is subject to (4.2). Then on each step of Algorithm 3.1 the following is fulfilled:

2 =T1;
] <1, 0<g<1;
|L(k, 1)| # |L(k,2)];
LGk, V)] > [L(k,2)| = i1 = 1,1 = 2
|L(k, 1)| < |L(k,2)| = i1 = 2,1 = 1;

Proof. The inequality (4.3) is maintained via assignments D(i;) < D(i1)/g, D(j1

)
D(j1)/g; (4.3) directly implies (4.4). Next, by our principle of pivoting |ri| < 1; using (4.4)

we can write g = 1 —r}, and so 0 < g < 1. With this,

g=1- L(k,j1)°
L(k,i1)?’

and hence g = 0 is equivalent to |L(k,i1)| = |L(k,j1)|- We thus obtain (4.6) and, as a
consequence, (4.5), (4.7), and (4.8). O

Algorithm 4.1 Given the components of Toeplitz expansion (4.1) of matriz A € R™*™ with
(4.2) being held, suppose that first columns of Ly and Lo reside in L(1 : n,1) and L(1 : n,2).
Algorithm 4.1 computes the order n, of the biggest strongly reqular leading submatriz in A
and the number of negative eigenvalues in this submatriz.

Ne <0, Ny < n
FORk=1:n

IF |L(k, 1)| = |L(k,2)| THEN
N, +—k—1
RETURN

ENDIF

IF |L(k, 1)| > |L(k,2)| THEN
in e 1 2

ELSE
k2, Jré¢1; ne+ne+1

ENDIF

Tk < —L(k,jk)/L(k,ik)

[L(k :n,ig), L(k : n,ji)] < [L(k:n,ig), L(k : n, ji)] [Lo]

Tk 1
IF £k < n THEN
L(k+1:n,i;) « L(k:n—1,i)
ENDIF
END

This algorithm requires n? multiplications and as many additions. It also calls for only
O(n) parallel steps. All needed memory is two vectors of order n.
Algorithm 4.1 has an entirely regular structure, and thus can be well executed in parallel.
It can be easily implemented on diverse systolic arrays. Bellow described will be one such
array consisting of fairly simple processor elements Pi,..., P, of two kinds: C' and B.
Processor element P; is of kind C', and the others are of kind B.
All B-like elements must have memory to retain three real numbers and one logical value.
Apart from some logic, each B-like element must perform the following action:
B: IF logic= . TRUE. THEN
[ulocy Uloc] — [Uloc; uloc]
ENDIF
1 r

[Ulomvloc] — [Ulomvloc] ro1

while P, is prescribed to additionally store two integer numbers and execute the next state-
ments:
C: IF |ujoc| = |vioe] THEN
quit
ELSE
Ny ¢ Ny +1
ENDIF
IF |wioc] > |vioe] THEN
logic <+ .FALSE.
ELSE
logic +— TRUE.
[ulom Uloc] — ['Ulom uloc]
Ne < Ne + 1
ENDIF

T _Zioc y Uloe < Uloc + ViocT
oc

In terms of actions C and B, Algorithm 4.1 can be encapsulated by a graph. Below this
is done for n = 6:

¢ » B - B3y —» By — By — DBg
D N 2 Y T VR A VA A
Cs - By - By —» Bs — By

A Y T Ve A

Cs —» Bg — By — Bg

Nod ooy LN

07 — Bg — Bg

N+

09 — BlO

N

Subscripts indicate the points in time at which the corresponding action starts running.
To design a systolic array we, in effect, regard the projection of the above graph along the
”main diagonal” direction :

C2B=B=B=B=8

Thus, processor elements will be aligned in a chain:

B AR AR R

Let the global clock be set with ticks . Then, pursuing the terminology and style of the
book [8], we suggest the following

Algorithm 4.2 Suppose processor elements Py,..., P, are connected to form a systolic
chain. If each processor executes the following node program, then upon completion Py
houses the order n, of A’s biggest strongly reqular leading submatriz and the number n. of
its negative eigenvalues.

loc. init.[n, p = my.id, right,left, woe = L(p, 1),
Vioe = L(Ma 2)7
r =0,
logicioe = .FALSE.;
if 4 =1 then {n, =0,n, = 0}]
FORt=1:2n—-1
IF 4 =1 THEN
IF i is odd THEN
IF ¢ # 1 RECEIVE(voe, right)
PERFORM ACTION C
ELSE
SEND({rsc, logicic, right})
ENDIF
ELSE
IF p <t <2n—u THEN
IF p+t is even THEN
RECEIVE({roc,logicioc }, left)

10

IF (¢t > p and p # n) RECEIVE (v, right)
PERFORM ACTION B
ELSE
SEND({r(oc,logicioc }, right)
SEND (vj0¢,left)
ENDIF
ENDIF
ENDIF
END
quit

The understanding of how it works can be alleviated by observing the following chart
which shows the functioning of processor elements with time (n = 6) :

t | PA| P | Ps| Pu| Ps| P
1 C

2 B

3 C B

4 B B

5 C B B

6 B B B
7 C B B

8 B B

9 C B

10 B

11 || C

Here the blank cells match the ticks when the corresponding processor is idle.

5 Roundoff analysis

Here we will try to assess how roundoffs affect Algorithm 4.1, the starting point being that
the algorithm under study can be modified so as to be vied as that for computing the LDLT
decomposition of A. For definiteness, assume that d; = 1 and ds = —1, that is,

A=L,LT - L,LY. (5.1)
It is more convenient to work with the matrix counterpart of Algorithm 4.1. So we set
LO = [L,, L,]. (5.2)

Then, in harmony with the theory of Section 2, mapping the k-loop iterations onto
matrix manipulations we have :

LW = *=Vp, k=1, .n, (5.3)

where .
L™ =[L,0]. (5.4)

Here, L is a lower triangular matrix whose k-th column captures the contents of one of
the columns of array L before shifting at the end of k-th iteration :

L(k:n,k) = L(k : n, i) (5.5)

11

The following relationships are also valid in conjunction with (5.3) :

L pk) = k=D pk-Dp=T "} —1 . n, (5.6)
where D° = diag(1,...,1,—1,...,—1), and further
k= diag(d®,....a®,a® . a™, (5.7)
(k—1))
am =1 d; , 1<i<k-1, 5.8
! dk) k < i <n; ()
dk:(—1)ik-—1HL k=1,...,n; (5.9)
:1 1 _ Tl27)) b
—(k) —dy, , 1<k<n-k+1,
d; = v 1
{dgk b ,m—k+2<i<n. (5.10)
Thus, . .
A = Ldiag(d,,...,d,)L". (5.11)

Rounding errors result in that instead~ of ry, some other values 7 will be obtained, and
thus instead of L(®) and P;, some other L(*) and P, will come about, no longer satisfying
(5.3). All the same , if we write

LW = [kDp y FRO k=1 . n, (5.12)
then F(¥)’s elements will appear ”sufficiently small”.
Lemma 5.1 Let n specify the unit roundoff. Then
IF® 100 < m(L 4+ 7 DI oo (5.13)

Proof. Consider what happens with two L(=1)g columns:

[anewaﬁnew] = .fl <[ﬂoldaﬁold] |: ~1 Ff :|> -

P
This means that
| f1(Gota + VoraTr) — (Gota + Vorafs)||l1 < 0 maz(||@otall1, ||Totall1) (1 + |7&]),

| F1(Gorafs + Vota) — (Gotalr + Uora)|l1 < 0 maz(||@otall1, ||Totall1) (1 + |7&]),

which leads to (5.13) as to the 1-norm case. The co-norm case is treated analogously. O
Corollary.

k
IF® 1,00 < H L+ 1ADILO 100 + O0) (5.14)
Lemma 5.2 If R R R
LW =1Op P, +F (5.15)
then .
1Fh o0 <nn [T+ ADIZO 100 + O07) (5.16)
=1

12

Proof. From (5.12) and by the definition of F' we find
F=FWp, . . P,+F®P. . P, +...+ F* VP, 4+ F, (5.17)

Using that norms we deal with are submultiplicative we get

n

IF® Py .. Pallioo < IF® e] 1+ 17D, (5.18)
I=k+1

and allowing for (5.14) arrive at (5.16).0
Next, set

k
~ . 1
dp = (-1)%! k=1,... 5.19
k () l];[l 1— flg) ’ U ()
and define diagonal matrices D*) by formulas similar to (5.7)-(5.10) but with (5.14) replac-
ing (5.9).

Lemma 5.3 If o 3 ~
LWDM = [OpOp-T p-T 4@, (5.20)

then

G100 <nnH IIL0 1,00 + O(7°) (5.21)

Proof. First of all, note that equalities (5.12) entail
EBHE = FE=0pED p=T 4 plh) pb, (5.22)

to this end, it is sufficient to ascertain what k-th iteration does with any two columns.
Further, by (5.20) and (5.22)

G2 FOPORT T4 pOIPRBT p=T o | p=0) hn=1) p-T L pln) o)
(5.23)
It now remains to resort to (5.14), (5.15), and use that the norms are submultiplicative.

O

Theorem 5.1 Let L be a matriz actually computed through Algorithm 4.1, D= diag(d], ceey dNn)
Then
1L+ |7

- |||L MLl + O0r) (5.24)

|A—=LDLT|) o < 2nnH

Proof. Setting P = P, ... P, we obtain

[L,0] = L°P + F,

[LD,0] = L°D°P~T + G,
and it thence follows that
LDLT = (LOP+F)(LODOP~T4+G)T = LODO(LOYT L LO PGT + FPDO(LONT + FGT

Obviously, A = LO DO (LO)T and applying Lemmas 5.2 and 5.3 will do the proof.O

13

The appearance of estimate (5.24) resembles that of the estimate derived in [4] for the
Levinson-Durbin algorithm; also cf.[2]. Note that the value

can be interpreted as an estimate of ||A~'||. At the other hand, ||L(®||;||L(®)||s have
something to do with ||A||. Thus, there is a ground to consider the bound of Theorem 5.1,
to some extent, as an evidence that Algorithm 4.1 computes the true LDLT decomposition
of some matrix which differs from A so that the deviation by norm is proportional to n
and a condition number of A. Of course, we should mention that the last statement in our
exposition goes without a rigorous proof.

According to Lemma 4.1 || < 1, k = 1,...,n. These inequalities follow from our
principle of pivoting. We would like to stress that without pivoting the halting may come
about rather quickly before end. For instance, if

A= 01 0 01 1 | |10 O 10 1
B 1 0.1 0 0.1 1 10 0 10

then array L looks like

0.1 10
=[]

Assume that we have a chopped 10-base arithmetic with 3 digit mantissa. If there is no
pivoting, the first step affords

7= —100; Iy = f1(0.1 —10-100) = —1000;l55 = fI(1 — 10 - 100) = —1000;

and so the procedure stalls because of l~21 = l~22. At the same time, Algorithm 4.1 works
successfully due to pivoting.

14

References

[1]

[6]
[7]
8]
[9]

[10]

[11]

R. P. Brent and F. T. Luk, A systolic array for the linear-time solution of Toeplitz
systems of equations, J.VLSI and Comput. Syst. 1,no.1: 1-22 (1983).

J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, STAM
J.Sci.Stat.Comput. 6, no.2: 349-364 (1985).

J. Chun, T. Kailath, H. Lev-Ari, Fast parallel algorithm for QR and triangular factor-
ization, STAM J.Sci.Stat.Comput., 8, no.6: 899-913 (1987).

G. Cybenko, The numerical stability of the Levinson-Durbin algorithm for Toeplitz
systems of equations, STAM J. Sci. Stat. Comput. 1, no. 3: 303-319 (1980).

B. Friedlander, M. Morf, T. Kailath, L. Ljung, New inversion formulas for matrices
classified in term of their distance from Toeplitz matrices, Linear Algebra Appl. 27:
31-60 (1979).

I. Gohberg, T. Kailath, I. Koltracht, Efficient solution of linear systems of equations
with recursive structure, Linear Algebra Appl. 80: 80-113 (1986).

I. Gohberg and A. Sementsul, On the inversion of finite Toeplitz matrices and their
continuous analogs, Mat. Issled. 2: 201-233 (1972) (in Russian).

G. H. Golub and C. F. Van Loan, Matriz Computations, 2-nd ed. The John Hopkins
Univ. Press, Berkeley (1989).

T. Kailath, S. Y. Kung, M. Morf, Displacement ranks of matrices and linear equations,
J. Math. Anal. Appl. 68, no. 2: 395-407 (1979).

S. A. Krasnov and E. E. Tyrtyshnikov, Vectorized algorithms and systolic arrays for
Toeplitz systems of equations, Sov. J. Numer. Anal. Math. Modelling 2, no. 2: 83-158
(1987).

E. E. Tyrtyshnikov, Toeplitz Matrices, Some of their analogs and Applications, Dept.
Numer. Math., USSR Acad. of Sci., Moscow (1989) (in Russian).

15

