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Structured Preconditioners for Some Operator Equations

Eugene Tyrtyshnikov *

Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8, Moscow 119991

SUMMARY

We propose and report on the use of block circulant preconditioners for solution of non-Hermitian
linear systems in one important typical application from computational electromagnetics (evaluation of
fields from localized sources in a heterogeneous isotropic formation uniform in one particular direction).
The essentials of the efficiency and discussion are the fast approximation method (based on Fourier
polynomials) and fast algebraic solver (GMRES with block circulant preconditioners). Copyright ©
2002 John Wiley & Sons, Ltd.
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1. Introduction

In this paper we report on the use of block circulant preconditioners for solution of non-
Hermitian linear systems arising in the evaluation of electromagnetic fields from localized
sources in a heterogeneous isotropic formation with conductivity depending only upon z and
y coordinates and independent of z. Such problems are simpler than general 3D but far more
complicated than 2D ones, because of the source. By the integral Fourier transform they can be
reduced to infinitely many 2D problems and thence are usually referred to as 2.5D problems.
The main difficulties are anyway concerned with the involved 2D problems. Each of them can
be reduced to a system of two Helmholtz equations with respect to the z-components of the
Fourier images of the electric and magnetic fields [1].

The interface boundaries are closed cylinders parallel to the z axis and become closed
contours in the x and y coordinates of the 2D problems. In simulation, the electric parameters
are often assumed to be piecewise constant [1]. Using single-layer potentials, we come up with
systems of integral equations. Then, we approximate the potentials by Fourier polynomials
and obtain the algebraic equations by collocation.

As we found, this particular application is one where the method of integral equations can
be much faster (1000 times and more, in some cases) and a lot more accurate than solution
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procedures based directly on the partial differential formulation. The essentials of the efficiency
and discussion below are the following:

e fast approximation method (based on the Fourier polynomials);
e fast algebraic solver (based on the block circulant preconditioners).

2. Mathematical model and integral equations

Let the electric and magnetic fields be sought in the form of Fourier integrals
o0 o0
1 iz 1 iz
E=— [ E(z,y,()e*d, H=_- [ H(z,y,()e*"d(.
2 2

Then, the homogeneous Maxwell equations f
rot E = iwpH, rotH = —iweFE

are equivalent to infinitely many independent 2D equations with respect to E(z,y,() and
H(z,y,(), where ¢ is the Fourier parameter. These 2D equations are of the following
component-wise form:

OFE OFE
61‘2 = i(F, —iwpH,, 6; = i(E, +iwpH,,
0OH . . 0H
ayz = —iweF, +iC(H,, 8;52 = iweE, +i(H,,
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Set k? = w?ep — (2. All the quantities can be expressed through two of them, E. and H., as
follows [1]:

1,0E, . OH, 1 . 0H. . OFE.
E, = E(IC o +iwp By ) H, = 2 (i¢ 5p  we By ),

1, 0FE, 0H. 1 . 0H. . z
Ey = E(IC 8 - 1 837 )7 Hy - kQ(C ay + lwe 837 )

TAll the fields depend on time harmonically with the given frequency w; the equations hold in domains where
1 and € are continuous, additional interface conditions are imposed on the boundaries between these domains.
We assume that p and € are piece-wise constant.
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Now suppose that the formation consists of several nested domains with smooth boundaries.
Let the resistivity be constant in any piece in between of the contours. Denote the above

contours by I'1, ..., I';,. We assume that the curves do not intersect and I'y is the innermost
one embracing the only domain with source of the electromagnetic fields. Thus, there are m+1
subdomains Q, ..., Q2,41 separated by these curves. The source is located in ;.

Let E?, H? be the primary Fourier field defined as solution to the Fourier-transformed
Maxwell equations in the uniform space with electric parameters of £2;. Then we introduce the
shifted Fourier fields as follows:

{ E,—E% in (,

. H’ =
E., otherwise;

z

E; =

z

H,—H? in O,
H,, otherwise.

Inside any subdomain Ef and H satisfy the following independent Helmholtz equations:

0? 0?

5zt 6—y2Ej +k’ES =0, (1)
9* 9?
5zt + a—y2H§ +k°H? =0, (2)

where
E=k(Q;), i=1,....,m+1

The continuity of tangential components across the boundaries can be expressed by the four
equations as follows:

[E]=0, [HI]=0, (3)
C OB wpdHZ| _ ( OH;  wedEl| _
{/@ o wanl " o Tman | )

Since F? and H? are solutions to the Helmholtz equations, they can be obtained as single-
layer potentials:

i

B0 = 1 [ B el 00ds) + 1 [ B Ger)er 0ndson, )

| AP I
(o) = [ HO U)o, 00dsn) + 1 [ B Gne; Onas0n, @
| AP I

i=1,...,m+1.

Here, r is the distance between the points My and M and Hél) is the Hankel function of the
first kind of order zero. ¥ For unification, it is assumed that T'g = I',,, ;1 = (). ”Plus” stands for
the subdomain external to the corresponding contour, ”minus” is for the internal subdomain.

There are 4m unknown density functions <pii, z/;f, t = 1,...,m. They can be found from
the equations (3) and (4) imposed on each boundary. Since Ef and Hf are sought in the form
(5) and (6), these equations are obviously a system of 4m integral equations.

iHél) is the fundamental solution to (1) and (2) satisfying the radiation conditions at infinity. Consequently,
the potentials (5) and (6) satisfy (1) and (2).
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3. Fast approximation method

Assume that all functions are 27-periodic and consider integrals of the form

2T

(r) = / o(r, ) (t)dt,

0

where ¢(t) is a sufficiently smooth 27-periodic function. The kernel g(r,¢) is smooth for all
t # 7 but can be infinite at ¢ = 7. More precisely, we always have

g(T> t) =01 (7_7 t) + g2 (T> t)
with a special-form function g;, and g, smooth and 2z-periodic in both variables.

Three basic prototypes for g; are the following;:

1 —1
L(T,t) = —%ln sin <TT> y

1 —1
S(T,t) = —ECOt <T2 >,

1 . (7=t
H(T,t) = —S—WSln 2 .

These are kernels of the logarithmic (Symm), singular (Cauchy) and hypersingular (Hadamard)
integral operators

2m

Lo= / Lir,O)p()dt, Sp= / S(r,t)p(t)dt, Hp = / H(r, Dp(t)dt.

0

Note that 5 P
8 - EE, H - _ES
We can evaluate £, S and H using the following spectral properties [5]:
1 inT
E(eint) B m € i n 7é 07
In 2, n = 0;
S(eint) _ 2[n] eln'r, n ;é 0,
0, n = 0;
H(e™) = T, mao
0, n = 0.

Given N values of the function ¢ on a uniform grid, we compute the values of ¢ at the same
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nodes. For definiteness, let
ij:(p(tj), t]':hj, jZO,...,N—].; h:2’/T/N.

Basic Singularity Case:

e Interpolate () by a trigonometric polynomial

Py(t) = Z anel™
—N/2<n<N/2
on the values ¢; = ¢(t;), j=0,...,N —1.
e Apply the spectral properties to obtain the image @Qn of Py under action of £, S, or H
(this is a trigonometric polynomial of the same order).
o Take ¢; = Qn(t;) as approximate values of 9 (t;).

General Kernel Case:
e Given a general kernel g(7,t), find g; of the form
g1 =aH + S ++L
with
a= Zai(T)di(t): g = Zbi(T)Bi(t)v v = Zci(T)éi(t)a
and reduce the integration of g; to several applications of the above basic singularity
procedure with appropriately modified (.

e For integration of the smooth constituent g use the formula of rectangles on the same
uniform grid.

Formally the separable functions a, # and v may involve arbitrarily many members and are
not uniquely determined. One should be careful because some of the equivalent representations
of a, § and ~y can lead to a loss of accuracy.

The accuracy depends on how well a;(t), b;(t), ¢;(t) and g» can be approximated by
trigonometric polynomials. This is obviously linked with the smoothness properties. In our
application a, 8 and 7 have only one term.

4. Fast algebraic solver

In the case of m nested domains, the collocation method along with the above approximation
scheme yields a system of linear algebraic equations with 4mn unknowns so long as n nodes
are taken on each boundary. The nest-structure of contours is reflected in the following block
structure of the algebraic system:

Ay C U, F
By A C> Us 0
Bmfl Amfl Cmfl Um71 0
By A Un 0
Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 00:1-8

Prepared using nlaauth.cls



Denote this system by Au = f. To solve it, we can apply a direct method based on the LU
decomposition. The complexity will be O(mn?) due to the block tridiagonal structure (and
O(m3n?) if this structure is ignored). The matrix-vector multiplication complexity for this
matrix is O(mn?).

In spite of a quite agreeable structure of A, iterations are still a keen alternative to the
direct solvers. We apply GMRES with no limits on the Krylov subspace dimension. However,
iterations can lag if no preconditioner is used. One preconditioner of choice is a direct block
circulant preconditioner arising as the coefficient matrix for the concentric circles. In that case,
all the matrices A;, B;, C; are of the form

Gu G2 Giz Gu
G211 G2 Gaz Ga
G31 Gz Gzz Gzq |’
Gy Gaz Gaz Gy

G =

where each block G; is a circulant matrix of order n. The latter means that C' = G; is of the
following very special form:

Co Cn—1 e N Co C1
C1 Cp Ch—1 .- . C2
C =
Cn—2 . T €1 Co Cp-1
L Cn—1 Cn—2 e N C1 Co

Fast algorithms for circulant matrices are based on the following spectral theorem: Let C' be
any circulant matriz of order n with the first column c. Then

1
C= EFfldiag (Fc)F,

where F' is the Discrete Fourier Transform matriz of order n. This theorem can be easily
generalized to the block circulant (circulant-block) case. Due to the FFT, we obtain a direct
solver for A with complexity O(mnlogn) if A;, B;, and C; have structure of G.

In general, A;, B;, and C; have no structure. Instead of the above-discussed construction
related with some (virtual) concentric circles, we propose to use the optimal circulant-block
preconditioner. This preconditioner has the same form as the one with the concentric circles
but can be defined entirely in the matrix language as the minimizer of the Frobenius-norm
distance between A and all matrices of the above form. The preconditioner is now built up
from the entries of A.

We found that the number of iterations with the optimal circulant-block preconditioner can
be reduced by a factor of 10. Such a solver definitely outperforms the direct solvers based on
the LU decomposition even for rather small n.

The idea of using circulants as preconditioners for Toeplitz matrices has been (and go on
to be) addressed in many papers; we mention only [2] with a nice proof of superlinearity of
Strang’s circulants and [4] giving birth to the optimal circulants. The use of circulants and
block circulants as preconditioners for general (non-Toeplitz) matrices has been studied in
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[6, 7]; application of circulants for some matrices of the boundary integral method is discussed
in [3]. Notice a detailed analysis of spectral equivalence and superlinearity in this case that
can be found in [8].

5. Numerical results

Consider the case of three subdomains with relative resistivities 2, 10, 50 and boundaries
depicted on Fig. 1. The disc inside the boot-shaped domain is of radius 0.1, and the boot-
shaped boundary is given by a spline of degree 5 passing across the marked 10 points with the
coordinates

x=1.0, 0.8, 0.5, 0.3, 0.2, -0.3, -0.4, -0.3, 0.2, 0.7;
y = 0.0, 0.3, 0.4, 0.7, 0.9, 0.9, 0.5, -0.2, -0.3, -0.3.
EREH

/ \

e

Figure 1. Boot-shaped domain with a disc inside.

The source is the magnetic z-dipole at the origin and we trace the z-component of magnetic
field at some points on the z-axis near the origin. The operating frequency is set to 20 KHz.

We successively take np = 32,64,128 nodes on each boundary. In these cases the
computation of the Fourier integrals was based upon n, = 47,39, 39 adaptively chosen values
of (, respectively. For each ( we have to solve a linear system of size n = 8nr.

Below we compare the results for unpreconditioned GMRES (with no limits on the subspace
dimension) and GMRES with our circulant-block preconditioner; reported are the average
numbers of iterations for all involved linear systems for different (. The residual reduction
parameter used to quit iterations was set to 1077.

Table 1. Everage number of GMRES iterations

Number of nodes

on each boundary

No preconditioner

Circulant-block preconditioner

32
64
128

6409/47 ~ 136
5787/39 ~ 148
5387/39 ~ 138

125747 ~ 9
371/39 ~ 10
371/39 ~ 10

It is interesting that we do not observe the growth of the number of iterations as the matrix
size increases. Nevertheless, the preconditioner reduces the number of iterations dramatically.
It is especially important in this application because there are several tens of linear systems
to be solved (each system corresponds to one value of ¢); the number of these systems may
grow depending on the parameters of a particular application.
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Not the least, one of the essentials of efficiency is the fast approximation method. Note that
the piecewise constant approximations are noticably worse. Consider 2 disks with radii 0.3
and 0.5 (m). Let the resistivities of the corresponding domains be 10.0, 2.0, 1.0 and operating
frequency be 10 (KHz).

Table 2. Piecewise constant approximations

Number of nodes | TIME (sec) | Relative error in H,
16 3.3 13 %
32 10.0 8 %
64 39.3 5%

In the same cases, our method takes 0.8 sec. with accuracy 0.7 % (with only 16 nodes on
each contour).
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