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Report [1] researched generalized conjugate directions methods for systems of linear equations with
nonsymmetric matrices and indicated simple conditions sufficient for application of the methods. We now
prove necessary conditions for the case when the solution of an nth order system is accurately obtained within
n steps of the process, though not earlier for one first approximation zo. We deduce necessary and sufficient
conditions for a k-term relation involving the residual and the vectors that make up the pseudoorthogonal
system. When possible, we will use the same notation and terminology as [1].

We move now to a more exact formulation. To solve the system Az = b, we obtain a sequence of
approximations «;, corresponding residuals »;, and zuxiliary vectors s;, and generate R-pseudoorthogonal
systems, where R = C AB, for given nmiatrices C and B. Recall that an ordered system of vectors sy, ..., 5m
is called R-pseudoorthogonal if, for i < j < m,

(Rsj,si) =0 and (Rsj,sj) #0.

The zeroth step is composed of choosing a first approximation zg, calculating the residual ro = b — Az,
and setting §; = ro. At the ith step (¢ = 1,...), we carry out the following operations:

a; = (Cri~1,7i-1)/(CABs;, s;),
Ty = Tijm1 — a,-ABs,', (1)

T = ri-1 + a;Bs;,

i
i1 =7Ti+ Zﬂi-}-l,jsjA
i=1
Coeflicients Bi41,j in (1) are found from the R-pseudoorthogorality condition of vector s;4; to vectors

Sy ey 8l
(Rsy,81) 0 Bi+1,1 (Rri, 51)
: = - : . ' 2
(Rs1,85) ... (Rsi,s4) Bit1,i (Rr, i)
If »; = 0, then we will say that the process terminates at the ith step. If 7=y % 0, but a; = 0 or
(Rsiys5) = 0, we will say that the process breaks down at the ith step. Indeed, if the process does not break

down at the ith step, it does not break down at the jth step, for j < i.
If the process does not break down at the ith step, then

(CT‘,’,S])=0, 15.7'51) (3)

and residuals »g, ..., 7;—; generate a C-pseudoorthogonal system. It is possible to find a proof of this assertion
in [1].

If the process does not break down at the nth step, then it is necessarily complete, i.e., r, = 0. For,
in this case residuals rg,...,ry—1 compose a C-pseudoorthogonal system which is linearly independent. We

determine the coeflicients of the expansion r,, = @179 + ... + @prn—1 from the resulting system of equations:

(C1’0,1‘0) 0 agy (Crn;ro)

= . y

(CTOv 7'n-1) e (07'11-1; rn-l) Oy (C7'n) 7'n—1)

* From Numerical Methods of Algebra (Chislennye Metody Algebry), Izd-vo MGU, Moscow State Uni-
versity Press (Moscow, 1981), pp. 3-5 (in Russian).



with nonsingular matrix and null right hand side. This latter point is established in the following way.

Obviously,
(CT'mT'j) = (Crn_l,r_,-)—-a,,(CABs,,,rj). (4)

Let j < n—2. Then the first summand of (4) equals zero, by virtue of the C-pseudoorthogonality of vectors
ro, ..., "n—1; but the second equals zero, by virtue of the C' A B-pseudoorthogonality of vectors sy, ..., s, and the
fact that r; is a linear combination of vectors sy, ..., 8;.41. Now, let j = n— 1. Then equality (Crp,Tn-1) =0
is guaranteed by the choice of quantity a,. And 80, ¢y = ... = ap, =0, i.e,, r, = 0.

It is easy to see that if the process does not break down for a certain first approximation zg, then
it does not break down for any first approximation zp, except for the union of a finite number of smooth
manifolds of dimension not greater than n—1. This apparently means that in the general case the calculation
corresponding to (1) almost always permits the result of the sought solution z, insofar as, for almost all such
first approximations, the process does not break down before it terminates. Nonetheless, in the general case
all coefficients f;41,; are distinct from zero, and consequently we must save all vectors 8;; in other words,
we lose the attractive characteristics of the classical conjugate directions method.

From [1], it is clear that condition

(CABC™Y)* = ol + BAB (5)

(I identity matrix, a, numbers) is sufficient in order that §;4;,; = 0 for j < i — 1. Naturally, we could ask
the question whether there exists a matrix posessing an analogous characteristic and not satis{ying condition
(5). This is clearly the question and the direction of our research.

In what follows, we will study the condition

k
(CABC™Y)* = a;(ABY. (6)
1=0

Obviously, (5) is a particular case of (6).
Theorem 1. Suppose (6) holds. Then,

Biy1,; =0, j<i—k. (7

Theorem 2. Suppose that, for all first approximations zg, the process does not break down and satisfies (7),
and for one first approximation zg it terminates at exactly the nth step. Assume n > 2k + 3 and matrices
A, B and C are nonsingular. Then, we have (6).
Proof -+ Theorem 1: Generating the system of equations (2), it appears that (Rr;,s;) = 0 for j <i—k.
We have:

(R?‘,’,Sj) = ((CABC_l)Cr,‘,Sj) = (Ci‘,‘, (CABC—‘)*SJ‘)

k
= Z a)(Cri, (AB)ISJ').
1=0

From relation (1), it is not difficult to obtain that vector (AB)'s; is a linear combination of vectors s, ..., 1.

Insofar as j + 1 < 7, from (3),
~(Cry, (AB)'s;) = 0.
Theorem proven.
Proof of Theorem 2: Suppose residual 7¢ results from a first approximation zp such that the process termi-

nates at exactly the nth step. Then vectors rg,...,rn~1 are clearly C-pseudoorthogonal and, consequently,
linearly independent. We can find numbers «; such that:

(CABC—I)'T() =Y%"m+ ...+ Tn-1Tn-1. (8)
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Taking scalar products from the left by vectors Crg, ..., Cr,_1 results in the following relation:
(CT‘Q,T‘Q) e (CT'Q,Tn_l) Yo , (RI'(),T'())
: = : : 9
0 (Cra-1,Tn-1) Tn-1 (Rrn-1,70)
It appears that
(Rriyre) =0, i>k+1. (10)
From (1), (7), we have

Pigr = M — Qg1 ADs i

i
=ri=aip1(ABri+ > Pig1,jABs;)
j=i-k+1

i
Bit1,j
i — g ABri —aipr ) =L (rjoy — ;)
j=i-k41 I
i+1
——Bis1,))ri = aip1 ABr
1
i-1
Bivij+1  Bigrj
— Qi1 (= - =)
jmi-k41  IFE i
Bit1,i-k+1
— ik
Qi-k41

a

(1+

1

~ Ai41
This having been formed, vector ABr; is clearly a linear combination of vectors ri_g, ..., 7i41. Consequently,
(CABri,r;) =0, j<i—k-1. (11)

Obviously, (10) is a special case of (11). From basic relation (10), and taking into account matrix system
(9), we have the result 9; =0, j >k +1, so

(CABC™Y)*ro = yor0 + ... + Yk7.

It is easily seen that vector r; is a linear combination of vectors rq, (AB)ro, ..., (AB)Iro, Letting r = rq for
simplicity, as a result, there exist numbers 6o(7), ..., 6x(r), such that

k
(CABC™')*r = 6;(r)(AB) r. (12)
.j=0 B

We will consider the 8;(r) as functions, defined on set M of vectors r = rg that result from first approx-
irnations zg such that the process terminates at the nih step. Clearly, M contains all vectors excluding a
finite number of smooth manifolds Ny, ¢ = 1, ..., of dimension not higher than n — 1. A finite sum from the
manifolds (AB)~! N, cannot give M. We know there exists a vector ro € M such that

T'o,(AB)T‘o,...,(AB)n"lTO €M, ‘ (13)

If 7 is one of the vectors from (13), then {12) is satisfied. Clearly, vectors (13) are linearly independent, since
otherwise the process with first residual rg could not terminate at the nth step.
Pick integers I, m > 0 such that

k+l<m—-I<n—k—1, — (14)
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and consider vectors
u = (AB)’ro, v=(AB)"r,.

From (14), the vectors are linearly independent, and there exist numbers ¢,1 # 0 such that M contains

vector
2 = du+ Pu.

We have k
) (CABC-l)-uz = Eéj(z)(AB)J(q;u + d’v)
j=0
k k ‘
= 452 6j(z)(AB)’+jro + 1/)2 6j(z)(AB)m+J ro.
j=0 j=0

On the other hand,

k k
(CABC™Y)'z = ¢ 6;(u)(AB)*ro + ¢ 6;(v)(AB)™+ro.

j=0 j=0

From (14), vectors
(AB)'rq, ..., (AB)"** 7o, (AB)™rg, ..., (AB) ¥ 1o

are clearly part of the basis
(AB)'rg, ...,(AB)*" "1y

which we know is linearly independent. Consequently,
65(u) = 6(v) = 6;(2). (15)
For every ¢ > 0, and considering vectors
(AB)?ry, ..., (AB)1+2+2p,
and values of | and m satisfying (14), we choose consecutive pairs from the sequence of indices

q, g+ (k+1), q+2(k+1),
(g+1), (@+D)+(k+1), (¢g+1)+2(k+1),
(+2), (q+2)+((k+1), (¢g+2)+2(k+1),

Repeating the calculations for these I and m reduces to (15), and we obtain that, if r is one of the vectors
(13), then the coefficient §;(r) does not depend on r. This means relation (6) holds, where aj = §;(r).

Theorem proven,
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