On the approximation of Toeplitz matrices by a sum of circulant and low-rank matrix *

Zamarashkin N.L., Oseledets I.V., Tyrtyshnikov E.E. ${ }^{\dagger}$

1. Introduction. A matrix $T=\left[a_{i j}\right]_{i j=1}^{n}$ is said to be Toeplitz, if $a_{i j}=$ t_{i-j}. To solve linear systems with Toeplitz matrices it is convenient to use some iterational method. However, to achieve fast convergence, preconditioning should be used. It was first proposed in [1] to use circulant preconditioners, which were studied later in $[2,3]$ and in a large number of other papers. All proofs for fast(superlinear) convergence of iterational methods are based on the decomposition [3]

$$
T=C+R+E,
$$

where C is a circulant matrix, $\|E\| \leq \varepsilon, R$ - a matrix of rank $r=r(\varepsilon, n) \ll n$. Rank estimates obtained in [3] and some other papers are of form $r=\mathcal{O}(1)$ or $r=o(n)$; but unfortunately, $r \sim \frac{1}{\varepsilon^{\alpha}}, \alpha>0$. In this paper it is proved that in typical cases (including all examples in papers on the construction of superlinear preconditioners) a circulant matrix can be chosen so that $r(\varepsilon, n)=$ $\mathcal{O}\left(\left(\log \varepsilon^{-1}+\log n\right) \log \varepsilon^{-1}\right)$.
2. Toeplitz matrices with rational symbols. A matrix T is said to be associated with a symbol f, if

$$
t_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i t k} d t
$$

Lemma 1. Let T be a lower-triangular Toeplitz matrix with the first column $t_{k}=\alpha \rho^{k}$. Then $T=C+R$, where C is a circulant matrix and R is a matrix of rank 1

Proof. It is sufficient to take R as a rank- 1 Toeplitz matrix

$$
R=\left[r_{i-j}\right], \quad r_{k}=\frac{\alpha \rho^{k}}{1-\frac{1}{\rho^{n}}}, \quad k=-n+1, \ldots, n-1 .
$$

It is straightforward to check that the matrix $C=T-R$ is circulant.

Corollary 1. If a Toeplitz matrix T has a symbol

$$
f(z)=\frac{1}{1-\rho z}, \quad z=e^{i t}, \quad|\rho| \neq 1
$$

then $T=C+R$, where C is a circulant matrix, $a R$ is a matrix of rank 1 .
Lemma 2. Let T be a lower-triangular Toeplitz matrix with the first column $t_{k}=k^{q}, q$ is a natural number. Then $T=C+R$, where C is a circulant matrix, and $\operatorname{rank} R \leq q+2$.

Proof. Let us choose R as a Toeplitz matrix

$$
R=\left[r_{i-j}\right], \quad r_{k}=p(k),
$$

where p is a polynomial of degree $q+1$ satisfying

$$
p(k)-p(k-n)=k^{q} .
$$

Obviously, the rank of matrix R doesn't exceed $q+2$, and the matrix $C \equiv T-R$ is circulant because

$$
c_{k}-c_{k-n}=t_{k}-t_{k-n}-r_{k}-r_{k-n}=0 .
$$

Theorem 1. Let a Toeplitz matrix T be associated with a rational trigonometric symbol of form

$$
f(z)=P(z)+\frac{Q(z)}{L(z)}, \quad z=e^{i t}
$$

where P, Q, L are polynomials, L has no roots on a unit circle, the degree of Q is not greater than the degree of L and they have no common roots. Then

$$
T=C+R
$$

where C is a circulant matrix, and $\operatorname{rank}(R) \leq \operatorname{deg} P+\operatorname{deg} L+1$.
Proof. Split $\frac{Q(z)}{L(z)}$ in elementary fractions and use Corollary 1.

2. Toeplitz matrices with logarithmic singularities of symbols.

Lemma 3. Let T be a lower-triangular Toeplitz matrix with the first column

$$
t_{k}= \begin{cases}0, & k=0 \\ \rho^{k} k^{-\alpha}, & k=1, \ldots, n-1, \alpha>0 .\end{cases}
$$

Then for each ε there exists a circulant matrix C and a matrix R of rank r such that

$$
\left|(T-C-R)_{i j}\right| \leq\left|T_{i j}\right| \varepsilon
$$

and

$$
r \leq \log \varepsilon^{-1}\left[c_{0}+c_{1} \log \varepsilon^{-1}+c_{2} \log n\right]
$$

where c_{0}, c_{1}, c_{2} depend only on α.
Proof. For each ε there exist f_{m}, w_{m} such that [4]

$$
\left|k^{-\alpha}-\sum_{m=1}^{r} w_{m} e^{-f_{m} k}\right| \leq k^{-\alpha} \varepsilon, \quad r \leq \log \varepsilon^{-1}\left[c_{0}+c_{1} \log \varepsilon^{-1}+c_{2} \log n\right]
$$

It is now left to apply Lemma 1.
Corollary 3. Let a Toeplitz matrix T be associated with the symbol

$$
f(z)=\log (z-\zeta), \quad z=e^{i t}, \quad|\zeta|=1
$$

Then for each ε there exists a circulant matrix C and a matrix R of rank r such that

$$
\left|(T-C-R)_{i j}\right| \leq\left|T_{i j}\right| \varepsilon
$$

and

$$
r \leq \log \varepsilon^{-1}\left[c_{0}+c_{1} \log \varepsilon^{-1}+c_{2} \log n\right]
$$

Corollary 4. Let a Toeplitz matrix T be associated with the symbol

$$
f=(z-\zeta)^{\alpha} \log (z-\zeta), \quad z=e^{i x}, \quad|\zeta|=1, \quad \alpha \in \mathbb{N}
$$

Then for each ε there exists a circulant matrix C and a matrix R of rank r such that

$$
\left|(T-C-R)_{i j}\right| \leq\left|T_{i j}\right| \varepsilon
$$

and

$$
r \leq \log \varepsilon^{-1}\left[c_{0}+c_{1} \log \varepsilon^{-1}+c_{2} \log n\right]+2 \alpha
$$

The results of this part are summarized in the following
Theorem 2. Let a Toeplitz matrix T be associated with a piecewise-analytic symbol of form

$$
f=g+\sum_{\alpha=0}^{l} \sum_{k=0}^{m} A_{k \alpha}\left(z-\zeta_{k}\right)^{\alpha} \log \left(z-\zeta_{k}\right), \quad z=e^{i t},\left|\zeta_{k}\right|=1
$$

where g is analytic in a disk containing $|z|=1$. Then for each ε there exists C and a matrix R such that

$$
\left|(T-C-R)_{i j}\right| \leq\left|T_{i j}\right| \varepsilon
$$

and

$$
\operatorname{rank}(R) \leq \log \varepsilon^{-1}\left[c_{0}+c_{1} \log \varepsilon^{-1}+c_{2} \log n\right]+c_{3}
$$

and $c_{0}, c_{1}, c_{2}, c_{3}$ do not depend on n and ε.

References

[1] G. Strang, A proposal for Toeplitz matrix calculations, Studies in Applied Mathematics, 84: 171-176, 1986.
[2] R. Chan, Circulant preconditioners for Hermitian Toeplitz systems, Linear Algebra Appl., 10: 542-550, 1989.
[3] E. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl., 232: 1-43, 1996.
[4] N. Yarvin, V. Rokhlin, Generalized Gaussian quadratures and singular value decompositions of integral operators, SIAM J. Sci. Comput., 20 (2): 699-718, 1999.

