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Abstract

The main result is the “black dot algorithm” and its fast version for the construc-
tion of a new circulant preconditioner for Toeplitz matrices. This new preconditioner
C is sought directly as a solution to one of possible settings of the approximation
problem A ≈ C + R, where A is a given matrix and R should be a “low-rank”
matrix. This very problem is a key to the analysis of superlinear convergence prop-
erties of already established circulant and other matrix-algebra preconditioners. In
this regard, our new preconditioner is likely to be the best of all possible circulant
preconditioners. Moreover, in contrast to several “function-based” circulant precon-
ditioners used for “bad” symbols, it is constructed entirely from the entries of a
given matrix and performs equally as the best of the known or better than those
for the same symbols.

AMS classification: 15A12; 65F10; 65F15

Key words: Matrix approximations; Preconditioners; Superlinear convergence;
Circulants; Toeplitz matrices; Low-rank matrices; Skeleton decomposition;
Spectral clusters; Spectral distributions.

1 Introduction

The idea of using circulants as preconditioners for Toeplitz matrices was first
proposed by Gilbert Strang in 1986 [7]. His idea was to construct a circulant
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taking half of the entries from the first row and column of a Toeplitz matrix.
Another popular approach is the optimal preconditioner of T. Chan, which is
the Frobenius-norm nearest circulant matrix to the given (Toeplitz) matrix [3].
These preconditioners are easy to construct, but in some cases they fail (the
number of iterations may grow considerably as the matrix size n increases).
For “bad” cases, several other methods and algorithms were proposed (cf. a
survey [9]). However, the most efficient approaches use the symbol (generating
function) and, for this reason, can be called “function-based” rather than
“matrix-based” (cf. [6]). Moreover, a method which is suitable for symmetric
positive definite matrices may not work well for indefinite or nonsymmetric
matrices.

In this paper we propose a matrix approach that delivers a new circulant
preconditioner which is likely to be the best of the known circulant precondi-
tioners. In contrast to several “function-based” circulant preconditioners used
for “bad” symbols, it is constructed entirely from the entries of a given matrix
and performs equally as the best of the known or better than those for the
same symbols. The main result is the “black dot algorithm” and its fast version
for the construction of certain circulant approximations to Toeplitz matrices.
In short, if a good circulant preconditioner exists then it can be easily found
by our algorithm.

Let us start from the beginning. When a linear system

Ax = b

is solved by some iterative method (like CG or GMRES) and the convergence
is slow (which occurs frequently), then a well-known remedy is to get to a
preconditioned system

AP−1x = b,

where P is called a preconditioner. A rigorous analysis of the preconditioner
quality typically starts with embedding a particular system into a sequence
of systems (coefficient matrices, right-hand-side vectors, and preconditioners)
parameterized by the matrix size n. Then, in order to have a “good precondi-
tioner”, we usually take care of the following properties:

(a) AP−1 is boundedly conditioned (there is a bound on the condition number
which is uniform in n);

(b) AP−1 has an eigenvalue cluster at unity.

At least for Hermitian positive definite matrices and under some additional
assumptions in the general case, property (a) indicates the linear convergence
while (b) underlies the so called superlinear convergence (cf. [11]). The exis-
tence of cluster is directly related to decompositions of the form [10]

A = P + R + E, (1)
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where rankR = r � n and ||E|| ≤ ε. The matrices in the right-hand side of
(1) depend on n and ε.

We suggest to construct preconditioners P capitalizing directly on (1). When
restricting the choice of P to a suitable matrix class, we consider (1) as a sort
of approximation problem. Informally as yet, it reads as follows.

C+R approximation problem: given a matrix A, approximate it by the
sum of two matrices

A ≈ C + R,

where C = P is a circulant and R is a “low rank” matrix.

For example, consider Toeplitz matrices A = [ai−j] of sizes n = 128, 256, 512
generated by the symbol f = x4 considered on the interval −π < x < π (it
means that ak are the Fourier coefficients for f). Let P = C in (1) be either
the Strang or T. Chan preconditioner. Then, setting the accuracy to ε = 10−2,
we find R by the truncation of the singular values of A − C = R + E at the
level of ε so that ||E||2 ≤ ε. In this case we obtain the following ranks for R:

n Strang T. Chan

128 8 20

256 8 24

512 8 24

Table 1.1 Dependence of rankR upon n (ε = 10−2).

For that fixed ε, rankR does not depend on the matrix size n any pronouncedly.
However, let us inquire into how it depends on ε for a fixed n.

ε Strang T. Chan

10−3 10 244

10−4 18 254

10−5 50 256

Table 1.2 Dependence of rankR upon ε (n = 256).

As we see, both preconditioners are not satisfactory with respect to producing
a cluster: in this role the T. Chan preconditioner fails completely whereas
the Strang one is not good enough because the ε-ranks seem to grow as ε−α,
α ∼ 1. The matrix A is ill-conditioned; therefore, we have to approximate it
with high accuracy and none of these preconditioners yields a proper cluster. In
this case, however, it turns out that A can be very accurately approximated
by the sum of a circulant and a matrix of sufficiently low rank. But, the
corresponding circulant has nothing to do with neither the Strang, nor T. Chan
preconditioner. Moreover, it can be proved that quite a general class of Toeplitz
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matrices (including all examples in papers on superlinear preconditioners)
admits approximations by the sum of a circulant and a low-rank matrix with
the estimate [13]

r = O(log ε−1(log ε−1 + log n)).

Hence, we are aware of the existence of a “good circulant” and may be inter-
ested to figure out how it can be computed.

We organize the paper in the following way.

In section 2 we expose several settings for the C + R approximation problem
and reformulate it as a completion problem for a low-rank matrix with some
missing elements (”black dots” in our terminology).

In section 3 we expound a basic idea for the solution of the low-rank completion
problem (”black dot algorithm”) and prove that it works in a “noise-free” case.

In section 4 we give a practical version of the black dot algorithm which allows
us to adaptively determine the rank depending on the desired approximation
accuracy.

In section 5 we develop a fast algorithm for the case of Toeplitz matrices and
report on the theorems about C +R approximations which are proved in [13].

Finally, in section 6 we present some numerical experiments which confirm the
theory.

2 The C+R and D+R approximation problems

Since every circulant matrix is diagonalized by the Discrete Fourier Transform
(DFT)

C =
1

n
F ∗DF,

where F is the DFT matrix and D is a diagonal matrix, the C + R approxi-
mation problem can be recast as follows:

Â =
1

n
FAF ∗ ≈ D + R. (2)

Thus, the general C + R approximation problem easily reduces to the D + R
approximation problem, where D is a diagonal matrix.

Now, let us specify what ”approximately” and ”low rank” mean. When fixing
a bound on the rank of the low rank part, we obtain the following optimization
problem.
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D+R problem I: Given a matrix A and an integer r > 0, find a matrix
B = D + R where rankR ≤ r and D is a diagonal matrix that minimizes
||A−B||F .

We can exclude from this formulation either R or D. When excluding R, we
obtain an optimization problem in the terms of singular values.

D+R problem II: Given a matrix A and an integer r > 0, find a diagonal
matrix D that minimizes

σr+1(A−D).

It is worth noting that this is a non-smooth, non-convex optimization problem
that seems to have many local minima. (We are not aware of any convenient
way to solve it.)

When excluding D, we arrive at the following formulation.

D+R problem III: Given a matrix A = [Aij] and an integer r > 0, find a
matrix R = [Rij] of rank not greater than r so that it minimizes

n∑
i,j=1, i 6=j

(Aij −Rij)
2.

The D + R problem was first considered in [1] with an iterative method pro-
posed therein to solve it. It was a variant of the alternating least squares
approach called ADR (Alternating Diagonal Rank) with a two-step iteration
of the following form.

Given some guesses for D and R, find new approximations to the solution D̂
and R̂ as follows:

(1) D̂ = arg min
D
||A−D −R||F ;

(2) R̂ = arg min
R, rankR≤r

||A− D̂ −R||F .

It is easy to see that at each step the residue ||A −D − R||F decreases. Un-
fortunately, it seems to be the only advantage of ADR. It often requires a
huge amount of iterations. It is sometimes stuck into a local minimum. And it
requires O(n3) operations at each iteration, which makes this method (in this
form) unacceptable for practical purposes. There is a way to modify it (not so
trivially) so that it converges to the global minimum, but the computational
cost still remains extremely high. Nevertheless, if a good approximation is
obtained by some other method (e.g. by the algorithm proposed in the next
section), we can get and try some fast modification of ADR to refine a given
approximation to the solution.
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Let us look more closely at the D+R problem III. Recall that we are interested
in the case where a matrix A is well approximated by the sum of a diagonal
and a rank-r matrix. Let us begin with the assumption that A is exactly the
sum of a diagonal and a rank-r matrix. How can we reveal D and R when
given only their sum? The answer is in the next section.

3 Black dots, low rank and skeletons

The problem is formulated in the following way. Suppose that a matrix A can
be exactly represented as the sum of a diagonal and a rank-r matrix. Given
A = D + R, how to recover D and R from A?

It is obvious that in the matrix R we know all off-diagonal elements. Therefore,
all what is left is to find the diagonal elements of R. Before describing the
general algorithm, consider the following simple example of a 6× 6 matrix of
rank 2:

A =



2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12


.

(It is really a rank-2 matrix because aij = i + j).

Suppose now that we do not know the diagonal elements of the matrix A:

A =



• 3 4 5 6 7

3 • 5 6 7 8

4 5 • 7 8 9

5 6 7 • 9 10

6 7 8 9 • 11

7 8 9 10 11 •


.

The diagonal elements are marked by black dots. And the question is how to
complete the off-diagonal part by filling in the black dots so that the resulting
matrix has rank 2? A simple idea can be adopted. Take up the submatrix
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housed by the columns 4,5,6 and rows 2,3,4:

Â =


6 7 8

7 8 9

• 9 10

 .

We want to get a rank-2 matrix, so these three columns have to be linearly
dependent; hence, the first column has to be a linear combination of the second
and the third column. The coefficients of this linear combination are easily
determined by solving the following system:

 7 8

8 9


 c1

c2

 =

 6

7

 .

As is readily seen, the selection of the rows and columns can be done in several
ways. In this example, all these ways will lead to the same result. In practice,
however, the choice of rows and columns used for the reconstruction is an
important issue and may (and often does) go wrong and cause instability.

Let us describe the above procedure in a general setting and prove that it
really reconstructs the black dots.

Consider an arbitrary rank-r matrix B, take r linear independent rows and
r linear independent columns from B and form matrices L ∈ Rn×r (from the
columns) and U ∈ Rr×n (from the rows). Let B̂ denote the r × r submatrix
on the intersection of these selected rows and columns. Then, the submatrix
B̂ is nonsingular and the matrix B can be decomposed as

B = LB̂−1U,

which is sometimes called the skeleton decomposition.

The main point here is that the rank-r matrix is uniquely defined by its r
linear independent columns and r linear independent rows. Let us construct
the skeleton decomposition for the matrix with black dots on the diagonal. For
our example, the rows 3,4 and columns 1,2 provide us with the nonsingular
intersection submatrix, and hence, we can write
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A =



• 3

3 •

4 5

5 6

6 7

7 8



 4 5

5 6


−1  4 5 • 7 8 9

5 6 7 • 9 10

 . (3)

In order to specify how the black dots are handled, introduce the following
“black dot arithmetic”:

•• = •,

•x = x• = •,

•+ x = x + • = •,

where x is an ordinary number. Thus, the multiplication of matrices in (3)
shows that

A =



• • • • • •

• • • • • •

4 5 • • 8 9

5 6 • • 9 10

6 7 • • 10 11

7 8 • • 11 12


.

That means that we have found the (underlined) diagonal elements (5,5) and
(6,6). Since all off-diagonal elements in A are given, now we know two full rows
5,6 and two full columns 5,6 of A and can use the skeleton decomposition again
to obtain the full matrix.

In the general case we do literally the same thing.

Black dot algorithm. Given a matrix A and granted that it admits a
splitting into A = D + R with a diagonal D and a rank-r matrix R, find at
least n− 2r full columns and rows of the unknown R proceeding as follows:

(1) Pick up in A a nonsingular r×r submatrix Â whose elements do not lie on
the main diagonal. Suppose that the rows and columns of this submatrix
have indices i1, ..., ir and j1, ..., jr, respectively, and let matrices L and U
of sizes n× r and r × n be composed of these columns and rows.
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(2) Form the matrix Q = LÂ−1U (still with some black dots) and observe
that the elements

Qij = Rij, i 6= j1, ..., jr, j 6= i1, ..., ir, (4)

are no longer the black dots. Consequently, at this moment we come to
know at least n− 2r diagonal elements of the matrix R.

The algorithm is based on the following simple

Theorem 3.1 The elements of the above defined matrix Q satisfy (4).

Proof. Using the definition of L and U , we obtain

Qij =
r∑

k=1

r∑
l=1

Rijk
(Â−1)kl Ril,j.

If i 6= j1, ..., jr and j 6= i1, ..., ir, then none of the elements Ri,jk
, Rj,il is located

on the main diagonal. Thus, all these elements are known and the correspond-
ing elements of Q must coincide with those of R. 2

In our applications r � n, so the two steps of the black dot algorithm allow
us to find the bulk of diagonal elements. To reveal the remaining entries of R
we need one more step as follows:

(3) If n is large enough (let n − 2r ≥ r, or, equivalently, n ≥ 3r), then at
least r full rows and r full columns of the matrix R are acquired. Assume
that these r columns and rows are linear independent. Then use them to
build up the skeleton decomposition and decipher the remaining black dots
of R.

Remark that this third step is based on the assumption that the first two
steps have produced r linear independent columns and rows with already
known elements. It is sufficient to assume that A possesses two nonsingular
r × r submatrices which occupy neither common column nor common row of
A and both contain only off-diagonal elements of A.

4 Adaptive version of the black dot algorithm

Several problems still remain which were not discussed above. First of all, A
may be not exactly the sum of a diagonal and a low rank matrix. Instead,

A = D + R + E,
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where ||E|| ≤ ε can be viewed as kind of “noise”. Moreover, the bound r
on the rank of R (depending on ε) may be not known beforehand. Thus, we
are faced with a rank-revealing problem wherein r is to be found, given some
desired accuracy ε.

In the “noise-present” case, the choice of the columns and rows (equivalently,
the intersection submatrix) on which the skeleton decomposition is based is
crucial. Which submatrix is the best? If there were no black dots, a good choice
would reside in the maximal volume principle [5]: if the intersection submatrix
Â has maximal volume (determinant in modulus) among all r×r submatrices
then the element-wise error estimate for the skeleten decomposition reads

|(A− LÂ−1U)ij| ≤ (r + 1) σr+1(A), (5)

where σr+1(A) is the singular value of A (assumed in the non-inreasing order)
on position r + 1. We conjecture that in the case of black dots the same good
choice should be a submatrix of maximal volume among all r× r submatrices
with fully defined elements (having no black dots).

Since finding the maximal volume submatrix is not an easy task, we can do
with some submatrix of a sufficiently large volume. Such a submatrix (and its
size, above all) can be obtained by a variant of the incomplete cross approxima-
tion algorithm [4,12] (cf. [2] for boundary element applications). It proceeds as
follows(here R is a nonzero matrix to be approximated by a low-rank matrix):

(1) Initialization: k = 0, Rk = R.

(2) Find the pivot position: (i0, j0) = arg maxi,j |Rk
ij|.

(3) Calculate the cross-based skeleton:

Ck =
ukv

>
k

Rk
i0j0

,

where uk is the i0-th row of matrix Rk and vk is the j0-th column of Rk.

(4) Calculate the new residue: Rk+1 = Rk − Ck.

(5) If the residue norm ||Rk+1|| is small enough, then stop and return
∑k

i=0 Ci

as a rank-r skeleton approximation to the initial matrix R. Otherwise,
increase k by 1 and proceed with step 2.

At each step we substract from the matrix a single rank-one matrix, called
skeleton and determined from the pivot column and row comprising a cross.
The pivots are chosen to eliminate “large” elements in the residue matrix.
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When the algorithm is finished, it gives an instance of the skeleton decompo-
sition with a hopefully good submatrix (the pivot strategy does not pursue
exact maximization of the volume, but is capable of making it reasonably
large).

The overall cost of the above incomplete cross approximation variant is O(n2r)
operations due to the complete pivoting step. However, the incomplete cross
approximation approach was originally motivated by the hope that it can
approximate a near-to-low-rank matrix using just a small amount of its ele-
ments (the cross) [4]. If the matrix is exactly of rank r, then the Gaussian
elimination with pivoting gives zero pivot exactly after r steps. As a matter
of fact, the same approach is adapted to the “noise-present” case. And it may
be implemented with various pivoting strategies (e.g. row or column pivoting)
and with especial gain from those that leave most elements of the matrix out
of play. With a partial pivoting, we may get a larger coefficient at σr+1(A)
in the skeleton decomposition estimate (5); it depends in effect on how close
the resulting intersection matrix volume gets to the maximal volume [5]. For
some strategies and under certain assumptions, it can be 2r instead of r + 1.
Anyway, even by the price of accuracy deterioration, a significant reduction
of computational complexity makes partial pivoting the only practical choice
for the cross approximation algorithm.

The incomplete cross approximation algorithm can be easily tailored to the
case of matrix with some unknown entries (black dots). We only have to trace
how the black dots spread at each step. The rows and columns containing the
black dots will comprize our “black lists” (revised at each step).

Adaptive black dot algorithm.

(1) Initialization:

k = 0, Rii = 0, Rij = Aij, i 6= j, Rk = R,

Lr = ∅, Lc = ∅ (“black lists”).

(2) Find the pivot position:

(i0, j0) = arg max
i6=j, i/∈Lc, j /∈Lr

|Rk
ij|.

(3) Calculate the cross-based skeleton:

Ck =
ukv

>
k

Rk
i0j0

,

where uk is the i0-th row and vk is the j0-th column of Rk.
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(4) Calculate the new residue: Rk+1 = Rk − Ck.

(5) Add the element i0 to Lc and the element j0 to Lr.

(6) Calculate the error:

δk = (
∑

i,j∈S

(Rk
ij)

2)1/2, S = {i, j : 1 ≤ i, j ≤ n, i 6= j, i /∈ Lr, j /∈ Lc}.

(7) If δk is small enough, then quit and return

di = (
k∑

m=0

Cm)ii, i /∈ Lr, i /∈ Lc,

as approximations to the corresponding diagonal elements Rii. Otherwise,
increase k by 1 and proceed with step 2.

This algorithm creates an instance of the skeleton decomposition with some
adaptively chosen submatrix R̂, whose size was not given beforehand and
which is expected to be “good enough” for the skeleton approximation pur-
poses. The error is measured on the elements in the known part of the matrix.

If n is large enough, then the black dot algorithm returns the approximations
to all but 2r diagonal elements. Then we are to run it the second time with a
constraint that pivots are selected only from fully known rows and columns.
In the end we obtain the skeleton approximation for R:

R ≈
r∑

k=1

xky
>
k = XY >.

For the diagonal matrix part of the D+R approximation, we apparently have

D ≈ diag(A− XY>).

As it is put above, the adaptive black dot algorithm caters for the D + R
approximation problem. However, it can be easily adapted to many problems
with other prescribed patterns for the black dots, rather than the main diag-
onal entries.

The above-presented algorithms require O(n2(log n + r)) operations to con-
struct a C + R approximation to an unstructured matrix A. This comes from
the use of FFT to compute the elements of FAF ∗ and is also due to the com-
plete pivoting strategy. In the case of Toeplitz matrices this is not acceptable.
In the next section we will show how the above techniques can work in the
Toeplitz case with the O(n(log n + r2)) complexity.
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5 Toeplitz case

5.1 Fast evaluation of the elements of the Fourier image of a Toeplitz matrix

Now assume that the input matrix T is Toeplitz and A is its Fourier image:

T = [ti−j], A =
1

n
FTF ∗.

The off-diagonal elements of A = [Akl] admit a simple and gainful parametriza-
tion as follows.

Lemma 5.1

Akl =
vk − vl

n(wk−l − 1)
, 0 ≤ k, l ≤ n− 1, k 6= l, (6)

vk = w−kṽk, w = e
2πi
n ,

ṽ = F t̃, t̃k = tk−n − tk, 0 ≤ k ≤ n− 2, t̃n−1 = 0.

Proof. By the definition of the Fourier image A,

nAkl =
n−1∑
α=0

n−1∑
β=0

w−αktα−βwβl =
n−1∑
β=0

wβ(l−k)
n−β−1∑
α=−β

w−αktα.

Upon a change of the summation order, we obtain

nAkl =
−1∑

α=−n+1

w−αktα
n−1∑

β=−α

wβ(l−k) +
n−1∑
α=1

w−αktα
n−α−1∑

β=0

wβ(l−k)

=
n−1∑
α=1

wαlt−α
w(n−α)(l−k) − 1

wl−k − 1
+

n−1∑
α=1

w−αktα
w(n−α)(l−k) − 1

wl−k − 1

=
1

wk−l − 1
(
n−1∑
α=1

(wαkt−α − wαlt−α) +
n−1∑
α=1

(w−αltα − w−αktα))

=
vk − vl

wk−l − 1
,

where

vk =
n−1∑
α=1

(wαkt−α − w−αktα) =
n−1∑
α=1

w−αk(tα−n − tα). 2
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The total cost of computing v is the cost of one FFT and of the multiplication
by a diagonal matrix. The main diagonal of A is also computed in one FFT.
As soon as the preprocessing step is done, each element of A can be computed
via (6) very fast.

Instead of the complete pivoting step, we have to use some partial pivoting.
We propose a rook scheme as follows:

(1) At each step, calculate the superdiagonal of the residue matrix Rk:

S = [(Rk)12, ..., (Rk)n−1,n].

(2) Find the maximal in modulus element in S and its position (i0, i0 + 1).
(3) Find the maximal in modulus element in the i0-th row of the matrix Rk

and use it for the calculation of the next cross.

The overall complexity of the black dot algorithm with this rook scheme for
Toeplitz matrices is now reduced to

O(n(log n + r2)).

The factor r2 comes from the fact that to calculate a certain column or row of
the residue matrix Rk we have to calculate corresponding elements in previous
k − 1 crosses, therefore the complexity for rank r is proportional to

n(0 + 1 + 2 + ... + (r − 1)) = O(nr2).

Thus, in the Toeplitz case the C+R approximation can be calculated fast,
provided that r � n. Upper estimates on r, which we call circulant ranks, are
presented in the next subsection.

5.2 Existence of the C+R approximation for some Toeplitz matrices

As we claimed in the introduction, some wide and practically important classes
of symbols lead to such Toeplitz matrices that can be very accurately approx-
imated by the sum of a circulant and a low rank matrix. Below we summarize
the results on this issue proved in [13].

Theorem 5.1 Let T be a Toeplitz matrix with the symbol

f = P (z) +
Q(z)

L(z)
, z = eix,

where P, Q, L are polynomials, L has no roots on the unit circle, the degree of
Q is not greater than the degree of L, and L and Q have no common roots.
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Then there exists a circulant matrix C and a matrix R such that

T = C + R,

rank(R) ≤ deg(P ) + deg(L) + 1.

Theorem 5.2 Let a Toeplitz matrix T be associated with a piecewise-analytic
symbol of the form

f = g +
l∑

α=0

m∑
k=0

Akα (z − ζk)
α log(z − ζk), z = eix, |ζk| = 1,

where g is analytic in a disk containing |z| = 1. Then for any ε > 0 there exist
a circulant C and a matrix R such that

|(T − C −R)ij| ≤ |Tij|ε,

rank(R) ≤ log ε−1[c0 + c1 log ε−1 + c2 log n] + c3, (7)

and c0, c1, c2, c3 are independent of n and ε.

Theorem 5.1 states that Toeplitz matrices generated by an arbitrary rational
trigonometric symbol are exactly the sums of a circulant and a matrix whose
rank is bounded uniformly in the matrix size.

Theorem 5.2 addresses the case when a symbol is an analytic function plus a
function with logarithmic singularities. The corresponding Toeplitz matrices
can be approximated by C + R matrices with pretty high accuracy. At the
first glance, this may seem to be a rather special class of matrices. However,
this very prototype for symbols covers all examples considered in papers on
superlinear preconditioners. Indeed, functions of the form (z− ζk)

α log(z− ζk)
possess a jump in the α-th derivative. For example, for f = x4 defined on the
interval −π < x < π and then considered as a 2π-periodic function for all x,
we have jumps in the first and third derivatives due to their non-periodicity.
Substracting from f functions of the form

A(z − ζ) log(z − ζ) + B(z − ζ)3 log(z − ζ),

where ζ is a jump point and A and B are proportional to the magnitude of
the jumps, we obtain the analytic function which can be approximated by
trigonometric polynomials (leading to band Toeplitz matrices) with exponen-
tially decaying error.

To summarize, all functions with a finite number of jumps of finite order enjoy
the C + R approximation with the rank of R estimated by (7).
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6 Numerical experiments

The circulants taken from the C + R approximation of Toeplitz matrices are
natural to use as preconditioners in PCG (preferred whenever possible) or
GMRES (in all other cases). These circulants are obtained by the rook scheme
of the black dot algorithm. We have tried them for Toeplitz matrices generated
by several typical symbols (defined on the interval = −π < x < π and then
extended by 2π-periodicity to all real x) as follows:

(A) Positive definite Hermitian Toeplitz matrices:

(1) f1 = |x|,
(2) f2 = x2,
(3) f3 = |x|3,
(4) f4 = x4,
(5) f5 = x2(x− π)2,
(6) f6 = (x + π)2.

(B) Indefinite Hermitian Toeplitz matrices taken from [8]:

(7) f7 = x2(x2 + 1)sgn(x),
(8) f8 = sgn(x−π+2)sgn(x+π−2)(cos(x+2)+1)(cos(x−2)+1),
(9) f9 = ((x

π
)2 − 1)2 − 0.9.

(C) Non-Hermitian Toeplitz matrices (z = eix):

(10) f10(z) = z4−1
(z− 3

2
)(z− 1

2
)
,

(11) f11(z) = (z+1)2(z−1)2

(z− 3
2
)(z− 1

2
)
.

Table 6.1 presents timings (here 1 = time for computing a single Toeplitz
matrix-by-vector product) for the rook scheme. The matrices were approxi-
mated with relative accuracy ε = 10−7. It is worthy to note that, in practice,
different symbols may require different accuracies. If the matrix is not very
ill-conditioned, we might opt for a larger ε. But to deal with ill-conditioned
matrices we should take ε sufficiently small.

The Toeplitz matrices generated by the above symbols satisfy the hypotheses
of Theorems 5.1 and 5.2, and thence are well approximated by the C + R
matrices. In the case of symbols f10 and f11 we observed zero residue, and
that led us to the formulation of Theorem 5.1, of which we were not aware
before the experiments. Table 6.2 shows the ranks of matrices R computed by
the rook scheme.

Of particular interest is the dependence of “circulant ranks” on ε. Typical
behaviour is shown in Table 6.3.
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n 128 256 512 1024

f1 24 23 22 20

f2 15 18 18 17

f3 23 23 22 20

f4 16 17 19 18

f5 19 21 20 15

f6 8 9 10 10

f7 19 23 22 20

f8 21 24 22 20

f9 12 12 11 11

f10 4 3 3 3

f11 5 4 4 4

Table 6.1. Timings(in matvecs) for construction of the C+R approximation
(ε = 10−7).

n 128 256 512 1024

f1 36 37 38 41

f2 19 23 23 26

f3 28 29 32 32

f4 20 21 23 24

f5 27 25 22 18

f6 17 20 22 22

f7 27 32 38 35

f8 28 33 34 30

f9 15 15 12 10

f10 4 4 4 4

f11 6 6 6 6

Table 6.2. “Circulant ranks” (ε = 10−7).

Once the C + R approximation is found, we use C−1 as an explicit precondi-
tioner. For the symmetric positive definite case it is important for C to be also
symmetric and positive definite. Numerical experiments show that symmetry
is maintained by our algorithm.
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ε 10−4 10−5 10−6 10−7

Rank 13 19 21 24

Table 6.3. Dependence of “circulant rank” on ε, n = 512, symbol f4.

However, our circulants sometimes have negative or zero eigenvalues. In this
case, we improve them by setting the unwanted eigenvalues to 1. This is a low
rank correction that makes the circulants positive definite. Table 6.4 shows
the number of negative/zero eigenvalues for symbols |x|k, k = 1, 2, 3, 4. We
can observe that this number does not depend on n.

|x| x2 |x|3 x4

0 1 1 1

Table 6.4. Number of negative/zero eigenvalues of the constructed circulants.

Finally, Table 6.5 reports on the number of iterations required for the solution
of the preconditioned system. The relative error of the solution was 10−6.

n 128 256 512 1024

f1 8 8 9 8

f2 6 6 6 6

f3 13 16 17 20

f4 15 16 16 20

f5 3 3 3 3

f6 5 5 5 5

f7 12 12 13 14

f8 10 10 11 11

f9 3 4 4 4

f10 9 9 9 9

f11 8 9 9 9

Table 6.5. Number of iterations.
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