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1. Introduction

The new result described in this paper is an exact analytical expression for
the Sensitivity Function of the Magnetic Read-Sensors currently used in Magnetic
Data Storage Products, which are the digital memory devices used by most of the
existing Information Technology Industry. The knowledge of this expression for the
Non-Linear Magnetic Data Storage System is equivalent to the knowledge of the
Impulse Response in a Linear System. From this familiar engineering viewpoint, the
Sensitivity Function Sample Values are the sample values of the ”Impulse Response”
of the Magnetic Data Storage System, which is the Read Sensor response to a
Recorded Magnetic Transition, storing one information bit.

The Readback Voltage Signal in, current, Perpendicular Magnetic Recording
Hard Disk Drives is effectively determined by the Magneto Resistive (MR)-Sensor
with Soft Underlayer (SUL) Geometry, as described in Figure 1
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Figure 1. The dimensions of the octagonal gomain

The MR-Sensor Voltage Signal Output V (t) is, approximately, its Sensitivity
Function which is the imaginary component of the Magnetostatic Potential H(w)
which solves the Dirichlet Boundary Value Problem of the MR-SUL-Read Sensor
Geometry.For MR-Sensors V (t) expressions are given in [4, 5, 6]. The Sensitivity
Function approximation can be made quite exact, once the nonlinear map inherent
in the MR-Sensor, which converts magnetic flux variations into voltage variations,
is experimentally measured and the signal is subjected to its inverse. If this is
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done then, for all practical purposes, the readback voltage function is ψ(w) =
Im(H(w)), whose analytic computation is the subject matter of this paper. The
possible arithmetical signal processing application of having voltage sample values
as analytic function values is briefly outlined in the last section of this paper.

The calculation of the function ψ(w) requires the solution of a Dirichlet Bound-
ary Value Problem (BVP) which is described in the next section for the Perpendicu-
lar Recording System Read-Sensor. The method used is that of Schwartz-Christoffel
Integral, Eq(1) below, Conformal-Map, by which the 2-Dimensional Read Magnetic
Sensor Geometry is mapped to the Upper Half Complex Plane. By a ”lucky coin-
cidence”, this integral is a Doubly-Periodic Elliptic Integral, as initially introduced
by Abel and Jacobi in order to rectify elliptical celestial trajectories. By the in-
version of the Abel-Jacobi Elliptic Integral Period-Map onto the Period Rectangle,
such an integral is ”uniformized” in terms of Jacobi Theta-Functions, which are
holomorphic power series, whose ”zeros” are at the corners of the Elliptic Inte-
gral Period Rectangle, the ”Jacobian”, shown in Figure.2, of the Elliptic Curve,
whose algebraic expression is provided by Eq(2). In Eq(3) appear Complete El-
liptic Integrals of 3− rd-Kind expressed in terms of Jacobi Theta Functions, these
integrals were already used by Maxwell in his book ”A Treatise on Electricity and
Magnetism”, vol.2, Ch.14, to provide analytical expression for the Magnetic Po-
tential of a Current Loop. These are the ”Magnetic Potential Units” in terms of
which the Magnetic Storage Sensitivity Function is expressed, in Eq.9. The Mag-
netic Read-Sensor ”Octagon Geometry”, whose Dirichlet Boundary Value Problem
is being solved in this paper, is portrayed in Figure.1. The MR-Sensor in this
figure is a ”Magnetic Dipole”, the physical reason for the appearance of Elliptic
Integrals of 3-rd Kind which are elementary potentials describing dipole configura-
tions. This Magnetic Sensor Geometry is currently used in Perpendicular Magnetic
Storage Products, where due to enhanced thermal stability properties, the Perpen-
dicular has replaced Horizontal Magnetic Recording. The geometry includes a Soft
Underlayer in the Disk as described in [7].

2. Analytical solution for the Magnetostatic Potential of the
MR-Sensor with Soft Underlayer

2.1. Problem statement. Let us consider an Octagonal Domain, (in what
follows, ’octagon’ for short) , which is determined by six parameters: the width of
the MR head πh45; the distance from the left (resp. right) shield to the underlayer
πh1 (resp. πh8); the gap between MR head and the left (resp. right) shield πh3

(resp. πh6) and distance from the underlayer to the MR element πR, obviously
related to the recession parameter. The dimensions of Octagon as well as its corners
are shown in Fig. 1. In practical applications we usually have h1 = h8.

The sensitivity function ψ(w) is the function which is harmonic inside the
octagon and takes the boundary value equal to 1 on the segments [w3, w4], [w4, w5],
[w5, w6] and 0 on the remaining part of the octagon boundary.

2.2. Mapping rectangle to the Octagon. First of all we give an explicit
parametric representation for the conformal mapping x(w) of the octagon to the
half-plane. The inverse mapping is given by the Schwartz-Christoffel integral:

(1) w(x) = Const

∫ x
√
(t− x2)(t− x4)(t− x5)(t− x7)

(t− x1)(t− x3)(t− x6)(t− x8)
dt,
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with points xs being the images of the corners ws, unknown at the moment. Three
of the unknown xs may be removed by the normalization of the conformal mapping
x(w), while six remaining unknowns (including the constant) are related to six
dimensions of the octagon.

�

�

�

�

�

�

�

�

�

1 = u5
u4 = 0

1 + τ = u7
u2 = τ

�u3
�u6

�

u1

�

u8

−τ

−1

�

α

(Res ηαβ = +1)

�

β
(Res ηαβ = −1)

Figure 2. The torus (2) as a rectangle with identified sides

The differential dw(x) is the third kind abelian differential on the torus

(2) y2 = (t− x2)(t− x4)(t− x5)(t− x7)

where it has eight simple poles (with projections x1, x3, x6, x8 to the x-plane)
and four double zeroes located in the branchpoints of the curve. Now we consider
another model of the torus (2), namely the factor of the comlex u-plane by the
lattice 2Z + 2τZ with purely imaginary elliptic modulus τ . Elementary abelian
integral of the third kind η[α,β](u) with simple poles at u = α (residue = +1) and
u = β (residue = −1) has a simple expression

(3) η[α,β](u) = log
θ(u−α

2 )

θ(u−β
2 )

, θ(u) := θ11(u, τ ) = −2 exp(iπτ/4) sin(πu) + . . .

in terms of (the only) odd theta function of the modulus τ (see the definition in
[1, 2]). Subtracting the terms like (3) with suitable singularities from the abelian
integral w(x(u)), we obtain the holomorphic abelian integral on the torus. In other
words,

(4)

w(u) = h1 log
θ((u− u1)/2)

θ((u+ u1)/2)

−h8 log
θ((u− u8)/2)

θ((u+ u8)/2)

+ih3 log
θ((u− u3)/2)

θ((u+ u3)/2)

+ih6 log
θ((u− u6)/2)

θ((u+ u6)/2)
+Cu,

where the points u1, u3, u6, u8 are the positions of the poles of the differential dw,
definition is clear from the Fig. 2. Six values C, Re u1, Re u8, Im u3, Im u6 and
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Im τ in representation (4) are unknown. They satisfy the system of six equations:

(5) dw(u)/du = 0, u = 0, 1, τ, 1 + τ ;

(6) C = π(h3 + h45 + h6 + i(h8 − h1))

(7) R = Im τ (h3 + h45 + h6) + h8 + h1Re u1 − h8Re u8 − h3Im u3 − h6Im u6

The first four equations (5) mean that dw has zero in every branchpoint of the curve,
this zero will be double automatically. The fifth equation stems from integrating
the differential dw from u2 = τ to u7 = τ + 1. And (7) comes from evaluating
the integral of dw from u4 = 0 to u2 = τ . This system of equations has a unique
solution (we do not prove it here) satisfying natural restrictions on the unknowns:
0 < Re u1 < Re u8 < 1, 0 < Im u3 < Im τ , 0 < Im u5 < Im τ .

Two of the equations (5), (6), (7) for the auxiliary parameters of the mapping
(4) are linear. Therefore, compared to the classical approach [3], we essentially have
less number of equations for those auxiliary parameters. Moreover, all functions
in formulas (4), (5) are effectively evaluated as theta function is represented by an
extremely rapidly convergent series.

2.3. Numerical example. We consider the octagon with parameters πh1 =
πh8 = 49nm, πh1 = 17.3nm, πh45 = 3.4nm, πh6 = 14.3nm, πR = 45nm. The
u-images in the rectangle of the sets of w-points located in the octagon at the same
altitude d and with equal horizontal spaces T are shown in the Fig 3.

Figure 3. Images in the rectangle of four groups of points at the
flying heights d = 8nm and d = 10nm. Left picture: T = 2nm;
right picture: T = 5nm

2.4. Mapping rectangle to the half-plane. The conformal mapping from
the fundamental rectangle {0 < Re u < 1; 0 < Im u < |τ |} to the upper half-plane
with normalization x(u3) = ∞, x(u6) = 0 is given by the standard formula [1]:

(8) x(u) = exp(η[u6,u3](u) + η[−u6,−u3](u)) =
θ((u− u6)/2)θ((u+ u6)/2)

θ((u− u3)/2)θ((u+ u3)/2)
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2.5. Magnetic potential. The boundary value problems for harmonic func-
tions in the half plane may be solved analytically. In particular, our sensitivity
function transferred to the rectangle is given by the explicit formula

(9) Ψ(u) := ψ(w(u)) =
1

π
Arg x(u) =

1

π
Im (η[u6,u3](u) + η[−u6,−u3](u)),

where x(u) is given above.

3. A Signal Processing Application

The Magnetic Readback Signal V (t) is sampled at regular time intervals tk =
kT , where T is a ”clock” period and the samples are processed to determine the
recorded bits. In current magnetic signal processing methods the ”shape” of a
single magnetic transition readback signal is ”equalized” to fit a ”Partial-Response
Signal”. The ”Signal Shapes” used are such that the samples V (tk) take prescribed
integer values.The underlying idea is that the signal values, corresponding to a
sequence of magnetic transitions, are predictable, as they are obtained by linear
superposition of a known set of values, and can thus be described by a finite ”trellis”
graph, on which Maximum-Likelihood Decisions, using ”Viterbi Algorithm”, are
performed to decode the stored information. This method, incorrrectly, replaces
the actual nonlinear magnetic signal addition by linear superposition as an addition
law for magnetic readback signals. Furthermore, the Viterbi Algorithm complexity
increases exponentially as a function of the information channel memory, making
this signal processing method impractical for the efficient processing of large data
sector format, which is currently being adopted by the Hard Disk Drive (HDD)
Industry.

The exact analytical expressions, in terms of Complete Elliptic Integrals of 3-rd
Kind, for the Magnetic Sensitivity Function Values, shown in this paper, provide an
”Analytical Signal Shape” for the magnetic transition readback signal whose sample
values have a natural algebraic addition law, that can be efficiently formulated, as
we want to point out.

Specifically,the signal values Ψ(uk) where uk are the values in the Elliptic Ja-
cobian corresponding to the sampling times tk along the Magnetic Read Sensor
”Flying Height” line, shown in Fig.3, can be approximated by rational lattice, divi-
sion, points on the u-Plane Period Lattice in Fig.2, usually referred to as the Elliptic
Curve Jacobian. The Ψ(uk)-values will then be determined by the values of Ellip-
tic Integrals of 3-rd kind, at rational division points in the Jacobian, described as
follows

(10) V (tk) ≈
1

π
Im (η[u6,u3](uk) + η[−u6,−u3](uk))

A sequence of recording magnetic transitions will produce a sequence of Read-
back Voltage Signals, which are combinations of sample values given by Eq.10.
For uk-Rational Division Points, these sample Values V (tk), given by Eq.10, are
algebraic numbers in an algebraic number field.

The classical theorems of Abel and Jacobi provide Algebraic Addition Laws for
Sums of Complete Elliptic Integrals, in particular those of 3-rd kind [”Ueber die
Additionstheoreme der Abelschen Integrale zweiter und dritter Gattung”, C.G.J.
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Jacobi, Crelle’s Journal, vol 30, p.121-126, 1845]. Given the values of such sums,
they provide algebraic inversion formulas, by which,from given sum values, they
calculate the Jacobian Coordinates of their compositions.

These Invertible Algebraic Addition Laws, can be used to construct ”Algebraic-
Addition” Trellis- Decoders, whereby sums of observed Readback Voltage Sample
Values are mappped onto locations of magnetic transitions in the u-Plane Jacobian
Lattice. These ”Algebraic-Addition” laws, using algebraic number field arithmetic,
which apply naturally to the Sensitivity Function Sample-Value provided in this pa-
per, would thus replace the artificially imposed, and incorrect, Linear Superposition
currently used in Magnetic Signal Processing.

4. Conclusion

We provide an explicit analytic expression for the Sensitivity Function Values
of the Magnetic Read Sensors used in current Perpendicular Magnetic Recording
HDD. We furthermore outline its possible application to the efficient decoding of
stored information on HDD as a natural application of the classical Abel-Jacobi
Algebraic Addition Laws it satisfies.
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