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Prime Form and Schottky Model

Andrei B. Bogatyrëv

(Communicated by Athanassios S. Fokas)

Abstract. A new efficient variational formula for the Kleinian prime form
(factor) in the frame of the Schottky model of Riemann surfaces is presented.
We also give an elementary explanation for the choice of the sign in the trans-
formation formula for the prime factor.
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1. Introduction

The prime form was invented by F. Schottky [11] and F. Klein [10]. For hyper-
bolic surfaces it solves the problem of reconstruction of a meromorphic function
from the set of its zeroes and poles. Linear functions and elliptic sigma (also
theta) functions play the same role for the sphere and correspondingly for the
torus. The prime form became very popular in the last decade among pure
mathematicians, numerical community and theoretical physicists.

Let us recall the classical definition of the prime form. We fix two coordinate
neighborhoods on a compact Riemann surface M of genus g > 1 and identify any
points x, y in the neighborhoods with their coordinates. The following function
is known as the Kleinian prime factor:

(1) Ω(x, y) :=

⎡
⎣ lim

x′→x, y′→y

−(x − x′)(y − y′)

exp
(∫ x

y
dηx′y′

)
⎤
⎦

1/2

,

here dηxy is the abelian differential on M with exactly two simple poles at the
points x, y, and residues +1, −1 respectively. The differential is normalized
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so that its periods along all A-cycles of the fixed canonical basis (the so called
Schottky marking of the surface) vanish. The normalization of the square root
in (1) is determined by the asymptotics near the coinciding arguments:

(2) Ω(x, y) = (x − y)(1 + higher order terms).

The value Ω(x, y) of course depends on the choice of local coordinates near the
arguments x, y. However, the inverse bispinor E(x, y) := Ω(x, y)/

√
dx · dy is

locally well defined and it is called the prime form. The prime form acquires
simple non-vanishing multipliers when its arguments walk around the handles of
the surface (see [5, 1, 6] and the last section of this note). So the natural domain
of definition of the prime form is the squared universal covering of M .

2. Schottky model

The prime form has a well-known expression in terms of Riemann theta functions
[1, 6]. However the first representation of the prime form was given in terms of
the Schottky model of Riemann surfaces [11].

We consider 2g smooth simple loops Aj, A′
j, j = 1, . . . , g, on the plane, each

lying in the exterior of all the others. Suppose that a linear fractional map Sj(u)
maps the interior of the loop A′

j to the exterior of the loop Aj . In this case Sj ,
j = 1, . . . , g, freely generate the Schottky group S. The fundamental domain
F of the group is the exterior of all 2g contours. The generators Sj allow us to
identify pairwise the boundary components of F . The fundamental domain with
those identifications becomes a compact Riemann surface M of genus g. Any
Riemann surface may be represented as the orbit space of a suitable Schottky
group S.

Let us give a representation of the prime form in terms of this model of the surface
M . Fix two points x, y of the fundamental domain F . An abelian differential
dηxy of the third kind on M becomes a S-invariant differential form with simple
poles in the orbits of x and y and normalized by∫

Aj

dηxy = 0, j = 1, . . . , g.

When the limit set of the Schottky group has zero length (e.g. when all the
generators Sj(u) are real) the differential may be represented as an absolutely
convergent linear Poincare series

dηxy(u) :=
∑
S∈S

(
1

S(u) − x
− 1

S(u) − y

)
dS(u)(3)

=
∑
S∈S

(
1

u − S(x)
− 1

u − S(y)

)
du.
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The passage of one representation of the differential dηxy to the other is due to
the infinitesimal form of the cross-ratio identity.

Let us separate the poles of the differential dηxy which lie inside the fundamental
domain

dηxy =
du

u − x
− du

u − y
+ dη∗

xy.

The remnant dη∗
xy of course is not S-invariant. But it is holomorphic in F and its

definite integral depends on the endpoints only provided the path of integration
remains within the fundamental domain. The latter property follows from the
chosen normalization of dηxy. We arrive at the following representation for the
Kleinian factor:

(4) Ω(x, y) = (x − y) exp

(
−1

2

∫ x

y

dη∗
xy

)
, x, y ∈ F .

Explicitly distinguishing the poles the differential dηxy of the third kind in a larger
domain we obtain a similar representation valid in the fundamental domain F
translated by the elements of the Schottky group. Finally, if the linear Poincare
series for the Schottky group is absolutely convergent, the Kleinian factor may
be represented in the entire domain of discontinuity as an infinite product

Ω(x, y) = (x − y)
∏

1�=S∈S

′ (x − S(y))(y − S(x))

(x − S(x))(y − S(y))
.

The prime at the product symbol indicates that only one element in each pair of
two inverse elements S, S−1 should be taken.

3. Variational formula

One of the advantages of the Schottky model of Riemann surfaces is the simple
representation of moduli. The coefficients of the generators Sj(u), j = 1, . . . , g,
may be taken as local moduli. The conjugation of all the generators by the same
element of PSL2(C) surely keeps the complex structure of the surface intact.
Thus we arrive at 3g − 3 local moduli [7]. Let S be a Schottky group with
generators S1, S2, . . . , Sg represented in the matrix form

Sj(u) :=
aju + bj

cju + dj
−→ Ŝj :=

∥∥∥∥aj bj

cj dj

∥∥∥∥ ∈ GL2(C).

Any small perturbation of the matrix elements gives rise to a deformation of the
group S and to a variation of the value of the Kleinian prime factor Ω(u, z).

Theorem 1. A deformation of a single generator Sl(u) — with all other Sj(u),
j = 1, . . . , g, j �= l, being fixed — leads to the variational formula

(5) δΩ(x, y) =
1

4πi
Ω(x, y)

∫
Al

(dηxy(u))2 tr[M(u) · δŜl · Ŝ−1
l ]/du + O.
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Here the points x and y belong to F ,

M(u) :=

∥∥∥∥−u u2

−1 u

∥∥∥∥
is the Hejhal matrix and O := O(‖δSl‖). The orientation of the contour Al is
counterclockwise.

Proof. We denote all the objects related to the unperturbed Schottky group by
the superscript 0, e.g. S0

j (u), F0, A0
j , Ω0(x, y). Starting from representation (4)

of the Kleinian prime factor, we get the following chain of transformations

(6) δΩ(x, y) := Ω(x, y)−Ω0(x, y) = −1

2
Ω0(x, y) δ

(∫ x

y

dη∗
xy

)
+ O
(

δ

∫ x

y

dη∗
xy

)
.

Once the perturbation matrix δŜl is small, the fundamental domain F0 remains
within the discontinuity domain of the group S generated by Sj , j �= l, and the

perturbed generator corresponding to the matrix Ŝl + δŜl. We apply the Cauchy
residue formula to the function

δη∗
xy(u) := η∗

xy(u) − η∗0
xy(u) =

∫ u

dη∗
xy − dη∗0

xy =

∫ u

dηxy − dη0
xy =: δηxy(u),

which is holomorphic in the unperturbed fundamental domain, and obtain

δη∗
xy(u) = (2πi)δ

∫ x

y

dη∗
xy =

∫
∂F0

δη∗
xy(u) dη0

xy(u) =

∫
∂F0

δηxy(u) dη0
xy(u)(7)

=

g∑
j=1

∫
∂F0

ηxy dη0
xy.(8)

The passage from (7) to (8) is due to the equality η0
xy(S

0
j u) − η0

xy(u) = const,

and the normalization condition
∫

A0
j
dη0

xy = 0. Hence

δη∗
xy(u) =

g∑
j=1

∫
A0

j

(
ηxy((S

0
j )

−1u) − ηxy(u)
)

dη0
xy(9)

=

g∑
j=1

∫
A0

j

(
ηxy(Sj ◦ (S0

j )
−1u) − ηxy(u)

)
dη0

xy.

In the latter transformation we apply the same argument as above: the difference
between ηxy(Sjv) and ηxy(v) is independent of v. Expanding the increment of
the abelian integral of the third kind in the last formula with respect to the
perturbation parameters, we find

δη∗
xy(u) = −

∫
A0

l

dηxy(u)dη0
xy(u) tr[M(u) · δŜl · (̂S0

l )
−1]/du + O(10)

= −
∫

A0
l

(dη0
xy(u))2 tr[M(u) · δŜl · (̂S0

l )
−1]/du + O.



X (20XX), No. X Prime Form and Schottky Model 5

For the last transformation we used the uniform estimate

dηxy − dη0
xy = O(‖δŜj‖)

on the contour Al which may be obtained in the framework of quasiconformal
mappings [2, 7]. This is the desired variational formula.

Remark. The variational formula (5) is computationally efficient. To see this,
one has to decompose the quadratic differential (dηxy)

2 into meromorphic and
holomorphic quadratic differentials represented as (relative) quadratic Poincare
series. For the latter series, the integral in formula (5) is a finite expression due
to D. A. Hejhal [8]. For implementation of this strategy in actual computations
see [3, 4].

4. Transformation rule

Already F. Schottky ([11], see also [1, 5]) knew what happens to the prime factor
when the group S acts on its arguments:

(11) Ω(Sjx, y) = Ω(x, y) exp

(∫ y

x

dζj − 1

2
κjj

)√
S ′

j(x), j = 1, . . . , g.

Here dζj is the holomorphic differential on M with the normalization
∫

As
dζj =

2πiδjs (integration is counterclockwise); κjj :=
∫ Sjw

w
dζj is its diagonal period.

One can see that there are two sources of ambiguity in this formula. The first
one is the choice of the integration path in the definition of the period, the other
one is the choice of the square root. In other words, the integration path defines
the sign of the square root or, equivalently, the lifting of the generator Sj to
SL2(C). We are going to make this choice explicit.

4.1. Rotation of a smooth curve. Let C be a smooth oriented simple curve
in the plane starting at the point x and ending at the point y. We associate two
real numbers RotG, RotC to this curve and show that they coincide.

Definition. The Gaussian rotation RotG(C) is the increment of the tangent vec-
tor argument as we move from the starting point of the curve C to its endpoint.
The Cauchy rotation RotC(C) is defined as

(12) RotC(C) = Im

∫
C

du

u − x
+

du

u − y
:= lim

x′→x, y′→y
Im

∫ y′

x′

du

u − x
+

du

u − y
,

where the points x′ and y′ tend to their limits along the curve C.

Lemma 1. If a smooth curve C is composed of two curves C1 and C2, then
RotG(C) = RotG(C1) + RotG(C2) and RotC(C) = RotC(C1) + RotC(C2).
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Proof. Let z be the interior point of C, which is the endpoint of C1 and the
starting point of C2. The statement is trivial for the Gaussian rotation. The
Cauchy rotation of the curve C is the limit of the imaginary part of the following
integral ∫ y′

x′

du

u − x
+

du

u − y
= lim

z1→z; z2→z

(∫ z1

x′
+

∫ y′

z2

)
du

u − x
+

du

u − y
.

where zj ∈ Cj , j = 1, 2, and the integration is along (portions of) the curve C.
The latter two integrals can be written as[∫ z1

x′

(
du

u − x
+

du

u − z

)
+

∫ y′

z2

(
du

u − y
+

du

u − z

)]

+

{∫ z1

x′

(
du

u − y
− du

u − z

)
+

(∫ y′

z2

du

u − x
− du

u − z

)}
.

After passing to the limits z1, z2 → z and x′ → x, y′ → y the imaginary part
of the expression in the square brackets gives RotC(C1) + RotC(C2). It remains
to show that the imaginary part of the integrals in curly brackets is zero in the
limit.

Due to the Riemann’s reciprocity law for the abelian integrals of the third kind
on the sphere, the first of the integrals in the curly brackets is equal to∫ z

y

du

u − x′ −
du

u − z1

once the integration paths of both integrals do not intersect. The non-singular
part of the integrals disappears after passing to the limit while the singular part
takes the form

lim
z1→z, z2→z

Im

(∫ y

z

du

u − z1
−
∫ y

z2

du

u − z

)
= π − lim

z1→z, z2→z
Arg

z1 − z

z2 − z

with 0 < Arg < 2π. The latter value is zero since our curve C is smooth.

Lemma 2. Let the curve C and the segment [x, y] connecting its endpoints bound
a convex domain. Then RotG(C) = RotC(C).

Proof. Let ∠x, ∠y ∈ (0, π) be the angles of the boundary of our convex domain
at the points x and y respectively. The argument of the tangent vector to C
is monotonic. Therefore, RotG(C) = ±(∠x + ∠y). Here the sign “−” is taken
if the convex domain lies to the left of the oriented segment [x, y], otherwise
the sign is “+”. The Cauchy rotation of the curve is equal to the same value
±(∠x + ∠y).

Corollary (to Lemmata 1 and 2). Any smooth simple curve may be subdivided
into linear segments and portions satisfying the conditions of Lemma 2.
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Therefore Gaussian and Cauchy rotations coincide for any curve C and we call
them just the rotation Rot(C) of this curve.

4.2. Choice of the sign.

Definition. A smooth simple curve Bj , j = 1, . . . , g, contained in the funda-
mental domain F and connecting its boundary components is called a barrier, if
and only if Bj and its translation SjBj compose a whole smooth curve.

Let Bj be any barrier coming through the point x of the fundamental domain F .
Denote C the part of the smooth curve Bj ∪ SjBj starting at the point x and
ending at Sj(x). It is clear that Rot(C) ≡ Arg S ′

j(x) mod 2π.

Theorem 2. Formula (11) holds for

κjj :=

∫
C

dζj and
√

S ′
j(u) := −|S ′

j(u)|1/2 exp

(
i

2
Rot(C)

)
.

Proof. In what follows we fix the generator Sj, j = 1, . . . , g, and denote it by S
for brevity; dζ means the holomorphic differential dζj. The representation (4)
of the Kleinian factor Ω(x, y) suggests the following analytic continuation to the
domain SF

(13) Ω(Sx, y) = (Sx − y) exp

(
−1

2

∫ Sx

y

dη∗
Sx y

)
, x, y ∈ F ,

where

dη∗
Sx y = dηxy + dζ − du

u − Sx
+

du

u − y
= dη∗

xy + dζ − du

u − Sx
+

du

u − x
.

The path of integration in (13) cannot be taken arbitrarily like in formula (4).
Indeed, in the process of the analytic continuation we drag the endpoint x′ of
the integration path from x to Sx in such a way that the integration path does
not meet the pole S−1x′ of the differential dη∗

x′y. To secure ourselves from this
possible nuisance we draw a barrier B passing through the point x. Now we
fix a path from y to x in the fundamental domain crossing the barrier at the
endpoint x only. The analytic continuation of formula (4) along the barrier B
and its translation SB leads us to the following integration path in formula (13):
from y to the vicinity of the pole x, make a detour around the pole to the point
x̃ ∈ B and the path from x̃ to Sx along B∪SB (see Fig. 1 (a). Next we transform
the integral in (13):

(14)

∫ Sx

y

dη∗
Sx y = lim

x̃→x
(I1 + I2),
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where

I1 =

∫ x̃

y

dη∗
xy + dζ − du

u − Sx
+

du

u − x
,

I2 =

∫ Sx̃

x̃

dηxy + dζ − du

u − Sx
+

du

u − y
.

x x~
Sx Sx~

y

S
–1

 x
B

(a) integration path for I1 and I2

x x~ Sx Sx~

B SB

(b) detour of poles x̃ and Sx.

Figure 1. Integration Paths.

Now we apply the reciprocity law for the differentials of the third kind on the
sphere ∫ x̃

y

du

u − x
− du

u − Sx
=

∫ Sx

x

du

u − y
− du

u − x̃

(the integration paths should not intersect) and the Riemann identity∫ Sx̃

x̃

dηxy =

∫ x

y

dζ

(the fixed path from y to x and the detour around the pole x in the first integral
should be at the opposite banks of the barrier as in Fig. 1(a). The limit in
formula (14) now becomes∫ x

y

(
dη∗

xy + 2dζ
)

+

∫
C

(
dζ + 2

du

u − y

)
− lim

x̃→x

(∫ Sx̃

x̃

du

u − Sx
+

∫ Sx

x

du

u − x̃

)
.

The integrals under the limit sign have integration paths which make a detour
around the poles at x̃ and Sx on the same side of C, opposite to the side where
the fixed path from y to x approaches the barrier — see Fig. 1(b). The limit in
the latter expression equals to

log |S ′(x)| ± 2πi + i Rot(C),
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where the sign ± depends on the orientation of the intersection of the barrier
with the fixed integration path from y to x. Combining the formulae we arrive at
the transformation rule (11) for the prime factor with all the ambiguities being
explained in the formulation of the theorem.
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