ON EIGEN AND SINGULAR VALUE CLUSTERS ()

E. E. TYyrRTYSHNIKOV, N. L. ZAMARASHKIN (2)

ABSTRACT - Usually when singular values are clustered, the eigenvalues behave
similarly. However, it is not the case if we make no assumptions. Here we
present examples when the singular values are clustered whereas the eigenval-
ues are not, and vice versa. Besides, the necessary and sufficient assumptions
are discussed under which the former implies the latter. We also present a
new algebraic approach to one-point clusters.

1. What are clusters?

Sometimes the most of (though not all) eigen or singular values are amassed
near some set on the complex plane (one or several points, as a rule). Such a
set 1s said to be a cluster. However, we need to bring in something more into
the picture. Below we put the definitions proposed in [6] (see also [7, §]).

Consider a sequence of matrices A,, € C"*" with the eigenvalues \;(A4,) and
a subset M of complex numbers. For any ¢ > 0, denote by 7v,(¢) = ~.(g, M)
the number of those eigenvalues of A, that fall outside the & distance from M.
Then M is called a (general) cluster if

fim 228 g Veso0,

n—oo n

and a proper cluster if
Yo(e) < e(e) Vm, Ve>0.

We chiefly consider the clusters consisting of one or several (finitely many)

points (M = € is never of interest).
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One might be interested as well in the singular value clusters. To distinguish
between the eigen and the singular value cases let us write v,(;X) = v,(g, M5 \)
and v,(g;0) = (e, M; 0), respectively. For brevity, let us mark that M is a
cluster by A(A,) ~ M or o(A,) ~ M.

Of course, we tacitly assume that A, are the elements of some common
process (for instance, they could arise from a digitization of some operator
equation on a sequence of meshes).

Clusters are very important in the convergence analysis of iterational
methods [1, 3, 5, 7]. For the minimal residual methods, the eigenvalue clusters
are particularly important. Still, when devising preconditioners it is easier to
fight for the singular value clusters. Fortunately if the singular values are
clustered then under rather mild assumptions the eigenvalues are also clustered
(it is one of our results).

2. Singular value clusters

To prove that a sequence has a cluster, we can try to find a “close”
sequence for which this is already established. That “closeness” can be treated
in a rather broad sense.

THEOREM 2.1. [6, 7] Suppose A, and B, are such that
(21) |14, — Bz = ofn)

or, alternatively,

(2.2) rank (A, — B,) = o(n).

In either case, any singular value cluster for A, is also a singular value cluster
for B,, and vice versa.

3. Eigenvalue clusters

In order to state that the eigenvalue clusters for A, and B, coincide, we
ought to add something to the premises of Theorem 2.1. For example, we can
formulate the following

THEOREM 3.1. Suppose A,, B, € € are diagonalizable for every n and
denote by P,, (@, the corresponding eigenvector matrices. If

cond 5P, cond; Q. ||A, — B.||z = o(n)

then any eigenvalue cluster for A, is also an eigenvalue cluster for B,,, and vice

versa.
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Proor. Using the extension of the Hoffman—Wielandt theorem obtained by
Sun and Zhang (see [4]), we are to follow the same lines as when proving
Theorem 2.1. ]

Some stronger statements can be made if one of the sequences is a constant
matrix, for example, the zero one.

THEOREM 3.2. Suppose o(A,) ~ 0 (A, has the singular value cluster at zero)
and, additionally, uniformly in all sufficiently small ¢ > 0,

log |[A,]]s = O ( n ) .

Yn(E;0)

Then A(A,) ~ 0.

Instead of proving this, we propose and prove another, to some extent more
general, theorem.

THEOREM 3.3. Assume that matrices A, are nonsingular,
o(Ap) ~M={zeR: s < z < r},
and, additionally, uniformly in all sufficiently small ¢ > 0,
L n
og 1451 = o ().
where 7, (¢;0) = y.(¢, M;0). Then
MA)~R = {z€C: s < |z] < 7

PrROOF. Assume that the eigenvalues and singular values are indexed as follows:
IAM(A)| = .. > [ M(An)] and  o1(An) > ... > 0,(An).
We make use of the following Weyl inequalities:

m

(3.1) TT Me(A)] < kfjak(An), m=1,...n

k=1

First of all, we prove that
MA) ~ Bl = {z€€: 2] < 7).

By contradiction, suppose it is not the case. Then there exist g, ¢g > 0 and
some subset of increasing indices N' = {ny,na,...} such that

Yuleo;A) > con VneN,
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where v,(¢0; A) = ~n(eo, B; A). Without loss of generality, assume that nj =
kY k. Choose any € > 0. Using (3.1) we obtain

Tn(e03) mn(e03A)
(r+eo)moN < TT (A < I ow(4n)
k=1 k=1

< ||An||'27n(670) (T T 5)7"(50%\)—’%(5;0)

n(z0iA) nleio)
<r+z—:o)” (AR
r+e¢ o r—4e¢

By the contradictory assumption, if ¢ < ¢¢ then the left-hand side is lower-

bounded by a positive constant. For sufficiently small ¢, this constant can be
made greater than 1 whereas the right-hand side tends to 1 as n grows to infinity.

By similar arguments we can prove that A(A;') ~ B(s™!). In case s =0
this is trivial (if we agree that B(oco) = C). It remains only to note that R is
an intersection of B(r) and B(s™'). ]

REMARK 3.1. We can relax the hypotheses of the above theorem. It remains
valid if the upper estimate on [|AE!||, is replaced by the following requirements:

h%HAAb=0(;;;§UI?Q

and

log || A7, = n .
es3tls = ()

As is clear from the above proof, we could easily have even a more precise
assertion of which the requirements on the norms are changed onto some
relationships between the norms and the radii.

4. The Cauchy-Toeplitz example

Consider the Cauchy-Toeplitz matrices

1
An:[ﬁ] .
Ui i P

We know (see [2, 9]) that
o(A,) ~7n and ||A.l2 < 7.
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Moreover, it was proved in [9] that
(i o) = Olog” n)

and
A2 < clogn.

Since trivially
n
log log n = 0(10g2 -,
all the hypotheses of Theorem 3.3 are fulfilled. Hence, we can state that

MA) ~{zeC: |z| =7}

5. How neat are the assumptions?

We are aware now that next to always the property o(A,) ~ 0 implies
A(A,) ~ 0. The only assumption we need is the one on the behavior of the
2-norms of A,,. How neat is it?

We now produce an example when o(A,) ~ 0 whereas A(A,) ~ 0 does not
hold. Sure the norms of A, must grow, and it is interesting to realise how fast
they have to grow.

LEMMA 5.1. Suppose D € €™ is a diagonal matrix. Then for any 0 <e¢ < 1
there exists a rank-one matrix A = D+ L4 U, where L is strictly lower triangular
with all nonzero entries in modulus less than or equal to ¢, and U is strictly
upper triangular.

ProOOF. Write A = uv” and try to satisfy the following demands:

(5.1) wiv; =di, e =1,....n;  Jui| <e, @ > 7.
Choose
¢ = min {1, ﬁw}
and set
ui= (o=
Obviously, the demands (5.1) are met. [ ]

Now, take d; = :. For each n let us take ¢, = i—g, where 6, > 0, 6, — 0,
and construct a rank-one matrix A, = D, + L, + U, using the above lemma.
Then we set B, = A, — L,. Since B, is upper triangular, its eigenvalues are



6 E. E. TYRTYSHNIKOV, N. .. ZAMARASHKIN:

easy to find. They are dy, ... ,d,. At the same time, all the singular values of
A, save for one are equal to zero, and hence o(A,) ~ 0. Since |4, — B, |7 < 4.,
from Theorem 2.1 we conclude that o(B,) ~ 0. Finally,

o(B,)~0 but AB,) + 0.

Since

n

fox Bl > el
the assumption imposed on the norms is quite accurate and can not be weakened,
at least for the whole of matrices.

Note that it might be as well so that
AA,) ~0 but o(A,) + 0.

To produce an example, for instance, we can take up

0 1

A, =
nXxXn

6. A pseudo-ideal approach to clusters

In this section we present a train of ideas on how we might study one-point
clusters. The approach proposed seems to be absolutely different from those
that were used previously. Below we do not use any more the Hoffman-Wielandt
theorem, neither the interlacing properties. What made it possible is probably
that the one-point clusters are more algebraic in nature than more complicated

clusters.
Let A be a sequence of matrices 4, € O™ (n=1,2, ... ). I N = {n;}
is a sequence of increasing indices ny < ny < ... , then denote by A(N) a

sequence A, ,ny € N. Let M comprise all sequences. If K = {A} C M then
K(N) ={A(N)} consists of the corresponding subsequences.

If A,B € M then we define AB and A+ B as pairwise product and sum

of two sequences.

Denote by L C M all sequences of matrices A, with the 2-norms uniformly
bounded in n (the bound itself may depend upon the sequence).

We call K C M a pseudo-ideal if the following 2 properties are fulfilled:
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(1) if A,B € K then A+ B € K;
(2)if Ae K and B € L then AB,BA€ K.

If a pseudo-ideal K is such that L(N) ¢ K(N) for any N, then it will
be termed a super-ideal.

An evident property of any super-ideal K is that any its sequence is not
allowed to contain a subsequence of the identity matrices.

THEOREM 6.1. A pseudo-ideal K C M 1is such that any its sequence has the
singular value cluster at zero if and only if K is a super-ideal.

PROOF. Suppose any sequence in K has the singular value cluster at zero.
Then, as is readily seen, if o(A,) ~ 0 and o(B,) ~ 0 then o(A, + B,) ~ 0. If
o(A,) ~ 0 and ||B,|| < ¢ uniformly in n then o(A,B,) ~ 0 and o(B,A,) ~ 0. It
is clear also that o(A,,) ~ 0 can not hold for arbitrary matrices A, . Therefore,
K must be a super-ideal.

Now, assume that K is a super-ideal but still contains a sequence A, such
that o(A,)+£0. Consequently, there exist ¢,¢o > 0 and N = {n;} such that

Ym(€;0) > com ¥ m eN.
Consider the singular value decompositions
A, =V, XU, melN.

Since U,, and V,, are unitary, they belong to L(N) and hence {¥,,} belongs
to K(N). What is more, by multiplications by diagonal matrices with the
entries less than or equal to ;' we can obtain from Y, a diagonal matrix
D,, = diag {d;} with units for all ¢ such that o; > &9, and zeroes elsewhere.
Using permutations we can obtain from D,, a diagonal matrix with arbitrarily
prescribed positions for those units. A sum of properly chosen such matrices
will yield the unity matrix of order m, and obviously we are to add not more
than 1 4 ¢! matrices. Thus, we are led to infer that K(AN) O L(A'), which
contradicts the assumptions we started with. [ ]

As an example, consider K consisting of sequences {A,} such that

A, € € ||A, + ALl = o(v/n) and rank A, = o(n).
It is not difficult to verify that K is a pseudo-ideal. By the above theorem,
o(An) ~ 0 for any sequence {A,} € K.

We’d like to thank Paolo Tilli for his remarks on this note.
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