
Incomplete Cross Approximation
in the Mosaic-Skeleton Method

Eugene E. Tyrtyshnikov ∗

ABSTRACT

The mosaic-skeleton method was bred in a simple observation that rather
large blocks in very large matrices coming from integral formulations can be
approximated accurately by a sum of just few rank-one matrices (skeletons).
These blocks might correspond to a region where the kernel is smooth enough,
and anyway it can be a region where the kernel is approximated by a short
sum of separable functions (functional skeletons). Since the effect of approx-
imations is like that of having small-rank matrices, we find it pertinent to
say about mosaic ranks of a matrix which turn to be pretty small for many
nonsingular matrices.

On the first stage, the method builds up an appropriate mosaic partition-
ing using the concept of a tree of clusters and some extra information rather
than the matrix entries (related to the mesh). On the second stage, it ap-
proximates every (allowed) block by skeletons using the entries of some rather
small cross which is chosen by an adaptive procedure. We focus chiefly on
some aspects of practical implementation and numerical examples on which
the approximation time was found to grow almost linearly in the matrix size.

∗Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina 8,

Moscow 117333, Russia. Supported by the RFBR Grant 97-01-00155 and Volkswagen-

Stiftung.

1

1 Introduction

The mosaic-skeleton method [21, 22] was bred in a simple observation that
rather large blocks in very large matrices coming from integral formulations
can be approximated accurately by a sum of just few skeletons (some say
dyads or rank-one matrices). These blocks might correspond to a region
where the kernel is smooth enough, and anyway it can be a region where
the kernel is approximated by a short sum of separable functions (in other
words, functional skeletons). From a historical point of view, we may note
that the earliest mention of low-rank blocks in dense matrices we are aware
of was made in [26] (yet in the context entirely different from ours).

The mosaic-skeleton approximations are easy to result in fast approx-
imate matrix-vector multiplication algorithms close by nature to those of
multipoles [11, 15, 16, 19, 20], panel clustering [12], interpolation [2, 3, 17],
and wavelet-based approaches [1, 13] (we apologize for not mentioning here
many other important works related to these utterly topical fields). All the
said techniques involve some hierarchy of interface regions and function ap-
proximants. What the mosaic-skeleton method differs in from others is a
matrix analysis view on largely the same problem. Such a view can be very
useful due to the generality of matrix theory approaches. Since the effect of
approximations is like that of having small-rank matrices, we find it perti-
nent to say about mosaic ranks of a matrix which turn to be pretty small for
many nonsingular matrices.

From a practical point of view, the mosaic-skeleton methods is the only
one that works explicitly with the entries of a matrix. It is crucial that it
works only with a small part of the entries. These are entries of some cross
in every block allowing for a low-rank approximation. First of all, we need to
find the list of such blocks (and other blocks as well). On this stage, we fall
back to the concept of a tree of clusters due to Hackbusch and Novak [12].
Apart from the entries, however, we need some extra information related
to the mesh. In this sense, I rather like to say that we discuss a grey box
solver, in contrast to black box solvers, for large dense unstructured matrices
(T. Chan told me that he already used this term, luckily in the same sense).

The first stage of the method is discussed in Section 3. Then, in Section
4, we get to the second stage where (allowed) blocks are to be approximated
by skeletons. It is done using the entries of some rather small cross in the
block. Since only a part of the whole block is involved, we call the approach
an incomplete cross approximation. The cross is selected by an adaptive
procedure involving more (yet not many) rows and columns step by step.

2

On the whole, the procedure is inspired by the concept of maximal volumes
which is of tremendous value in the approximation theory and now adopted to
matrix approximation problems. In Section 5, we present numerical examples
showing that the solution time depends almost linearly on the matrix size.

In spite of our intention to focus here only on practical aspects, in the
next section we begin still with a brief discussion why and when mosaic ranks
appear to be small. We discuss estimates on mosaic ranks with a special stress
on some important assumptions worthy to be put explicitly (though it is not
the case in many papers on compression strategies). We also present some
relations between mosaic ranks of matrices and their inverses.

2 Mosaic ranks

Consider a matrix A of size m × n, and let Ak be a submatrix which is
mk × nk. Denote by Π(Ak) a matrix of the same size as A with zeroes
in the positions that are not occupied by Ak. A finite set of submatrices
Ak is called a covering of A if A =

∑

k Π(Ak), and a mosaic partitioning if
the submatrices have no common entries. If Ak is of rank rk, then Ak is a
sum of k skeletons (rank-one matrices), and the memory for retaining Ak is
mem (Ak) = min{rk(mk + nk), mknk}. The mosaic rank associated with the
given mosaic partitioning is defined as [22] mr (A) =

∑

k mem (Ak)/(m + n).
If m = n and A is of rank r, then we can store A using only 2rn memory
cells. The same holds true if A is a nonsingular matrix and r is its mosaic
rank.

We are also interested in the case when Ak are approximated by matrices
of rank rk with accuracy ε. If the Frobenius norm is used, then, obviously,
||A−∑k Π(Ak)||F ≤ ε ||A||F . In such cases, we consider approximate mosaic
ranks (ε-ranks).

Very large nonsingular matrices coming from integral equations are usu-
ally dense and unstructured. Nevertheless, they may be approximated by
matrices of low mosaic rank.

For example, consider two typical single layer potential equations related
to the Dirichlet boundary value problems for the Laplace (∆w = 0) and
Helmholtz ((∆ + k2)w = 0) equations in two dimensions. The first one is

− 1

2π

∫

∂Ω
log |x − y| U(y) ds(y) = F (x), x ∈ ∂Ω, (1)

3

and the second is

i

4

∫

∂Ω
H

(1)
0 (k|x − y|) U(y) ds(y) = F (x), x ∈ ∂Ω, (2)

here ds(y) is the arclength element (for simplicity, let ∂Ω be an infinitely
smooth closed curve cutting the plane into two parts). The kernels for the
equations are the fundamental solutions for the Laplace and Helmholtz equa-
tions in two dimensions. H

(1)
0 is the Hankel function of order 0 of the first

kind. We assume that Ω is such that (1) and (2) have only trivial solution
in case F (x) = 0.

Let ∂Ω be an ellipse with half-axes a = 1 and b = 0.5. We use the Galerkin
method with piecewise constant functions. Let us see how approximate mo-
saic ranks behave as n increases. In Table 1, there are results computed for
the equation (1) with ε = 10−4. We also output the compression factor which
is the total memory (that would have been needed to keep the original ma-
trix) over the memory used to keep skeletons of the mosaic approximations.
In Table 2, there are results computed for the equation (2) with ε = 10−3;
here k = 1 and the ellipse parameters are a = 1 and b = 0.25.

Matrix

order 512 1024 2048 4096 8192 16384 32768
Mosaic

rank 63.46 71.48 78.44 86.84 93.80 100.76 106.50
Compression

factor 24.79% 13.96% 7.66% 4.24% 2.29% 1.23% 0.65%

Table 1. Mosaic ranks for the logarithmic-kernel equation.

Matrix

order 256 512 1024 2048 4096
Mosaic

rank 46.08 53.76 61.44 71.68 81.92
Compression

factor 36% 21% 12% 7% 4%

Table 2. Mosaic ranks for the Hankel-kernel equation.

As is seen from Table 1, in matrix-vector multiplications we can work
with the nonsingular matrix of order n = 32768 as if its classical rank were
about 106. It is equal to say that the memory used is equal to 0.65% of n2.

An important observation from the tables is that the compression factor
becomes about twice smaller as n increases twice. This means that the
memory and arithmetic work for the matrix-vector multiplication manifest

4

about linear behavior in n. It is important to understand why and when this
is the case. On the whole, it is sufficient to do this for matrices of the form

An = [f(xin, yjn)], 1 ≤ i, j ≤ n,

where f(x, y) is a function of x and y from a bounded region S in the m-
dimensional space, and xin and yjn are the nodes of some meshes.

Assumption 1. Let f be asymptotically smooth in the sense that there exist
c, d > 0 and a real number g such that

|∂pf(x, y)| ≤ cp |x − y|g−p (3)

where
cp ≤ c dp p! . (4)

Here, ∂p is any p-order derivative in y = (y1, . . . , ym):

∂p =

(

∂

∂y1

)i1

· · ·
(

∂

∂ym

)im

, i1 + . . . + im = p.

Assumption 2. Let the meshes be quasi-uniform in the sense that there
are positive constants c1 and c2 such that

c1
mes S ′

mes S
≤ µ(S ′) ≤ c2

mes S ′

mes S
,

where S ′ is any subregion of S and µ counts how many nodes of the nth
mesh fall into S ′.

Theorem 1. [22] Under Assumptions 1 and 2, for any δ > 0 there are
splittings An = Tn + Rn where

mr Tn = O(logm+1 n), ||Rn||F = O(n−δ). (5)

Note that the concept of asymptotical smoothness in the sense of (3)
was introduced by Brandt [2]. However, any proof for compression strategies
would be incomplete if we do not say how cp may grow in p. Thus, (4) should
be regarded as an essential complement to (4). (It appeared explicitly, likely
first, in [22].)

5

Theorem 1 can be generalized in several ways. First of all, we can sub-
stitute Assumption 1 with the following.

Assumption 1′. Assume that for any y0 there are α(p) functions ui(x, y0)
and vi(y, y0) such that, whenever ||y − y0|| < ||x − y0||,

f(x, y) =
α(p)
∑

i=0

ui(x, y0)vi(y, y0) + Ep, (6)

where

|Ep| ≤ β(p)

(

||y − y0||
||x − y0||

)p

. (7)

Moreover, for some positive c, d, and γ,

α(p) ≤ c pγ, β(p) ≤ c dp. (8)

Theorem 2. Under Assumptions 1′ and 2, for any δ > 0 there are splittings
An = Tn + Rn where

mr Tn = O(logγ+1 n), ||Rn||F = O(n−δ). (9)

We omit the proof because, on the whole, it would repeat part of the
proof from [22].

In comparison with Theorem 1, the new formulation has at least two ad-
vantages. First, with some special expansions other than the Taylor series,
it might be proved, sometimes, that γ < m, and this leads to a finer esti-
mate. Second, some oscillatory kernels as that of the equation (2) are not
asymptotically smooth. It is still possible to prove that these kernels fulfil
Assumption 2 [7].

We can not do without any assumption on meshes. However, Assumption
2 seemed to be essential chiefly for the algebraic technique proposed and used
in [22], and we always thought that it could be weakened. Now it is done
in [7]. More precisely, the lower estimate on µ(S ′) is no longer in need.
Consequently, S could be a closed curve on the plane or a surface in the 3D
case [7].

Besides the above theorems, there are other general classes of low-mosaic-
rank matrices. For example, such are the inverses to banded matrices. To

6

present this result, we introduce the concept of weakly semiseparable matri-
ces.

Assume that an n × n matrix A is such that the rank of any submatrix
located in its upper triangular (and lower triangular) part is at most p (and
q). Then A is said to be a (p, q) weakly semiseparable matrix.

Theorem 3. For any (p, q) weakly semiseparable matrix An of order n >
n0 > 0,

mr An ≤ c(n0) max{p, q} log2 2n,

where

c(n0) =
1

log2
2

1

4n2

0

+1

.

If n is a power of two, we subdivide An into square blocks of order n/2
and, then, proceed by induction:

np + nq + 2n max{p, q} log n

2n
= max{p, q}

(

1

2
+ log n

)

≤ max{p, q} log 2n.

Thus, we obtained the estimate even sharper than what we are after. How-
ever, the case of an arbitrary n seems to be more tricky (the embedding
might not work because the mosaic rank of a submatrix is not necessarily
smaller than that of the matrix), and that is where we luckily fall back to
the algebraic approach proposed in [22]. We can interpret the result also as
follows: for any ε > 0, it holds

mr An ≤ (1 + ε) max{p, q} log2 2n

for all n sufficiently large.

Now, the estimation of mosaic ranks for the inverses to banded matrices
reduces to the same problem for weakly semiseparable matrices because the
inverse to a nonsingular (p, q) banded matrix is a (p, q) weakly semiseparable
matrix. This is due to the following proposition.

Proposition. A nonsingular matrix is (p, q) weakly semiseparable if and
only if its inverse possesses the same property.

Proof. It is sufficient to prove the following assertion. Let

A =

[

A11 A12

A21 A22

]

, A−1 =

[

B11 B12

B21 B22

]

,

7

where the diagonal blocks are square. Then rankB12 = rankA12.
If A11 is nonsingular, then this emanates from the Frobenius formulas.

Otherwise, consider matrices A(t) = A + tI with a real parameter t. For all
sufficiently small 0 < t < ε the block A11(t) is nonsingular (it follows that
A22(t) is also nonsingular). Consequently, rankB12(t) ≤ rank A12(t) for any
0 < t < ε. Obviously, A(t) → A as t → 0, and, in the limit, we come to
rank B12 ≤ rank A12. (It might be worthy to remark that we can not pass to
the limit in the Frobenius formulas.) 2

Now we finish the discussion of theoretical estimates (which is not the
main purpose in this paper) and get to practical issues.

3 Mosaic partitionings

On the first stage of the mosaic-skeleton method, we are to choose a suitable
mosaic partitioning. To do this, we do not compute any entries of the given
matrix. Instead of this, we rely on some (rather weak indeed) geometrical
information.

We require that every entry is associated with two points, xi and yj, in
the m-dimensional space. We think it is sufficient to have one mesh instead
of two (xi = yi), though we could keep the two if necessary.

We call a cluster any subset of nodes x1, . . . , xn furnished with a finite
(independent of the number of nodes) set of attributes. In the present al-
gorithms, we use only two attributes: the center c, defined as the mean
radius-vector for the nodes, and radius r, defined as the maximal distance
between c and the nodes. Prior to forming the list of blocks we construct a
tree of clusters suggested in [12].

The root of this tree is the cluster containing all the nodes. Apart from
the nodes, there are two input parameters in our algorithm: the maximal
number of levels Lmax and a separator for any given cluster (the procedure
that subdivides a cluster into several subclusters, if possible). The tree of
clusters is described by a list of clusters T and an integer array P containing
a permutation of {1, 2, . . . , n}. Each cluster is identified by its index in the
list T . Every item in T has the following components:

• Level where the cluster belongs.

• Index of the parent cluster.

• Number of kid-clusters.

8

• Index of a cluster that is followed contiguously by the kid-clusters.

• Number of nodes in the cluster.

• Reference to the position in the permutation array P which is followed
contiguously by indices of the nodes forming the cluster.

Algorithm 1. Let N(T) denote the number of items in T and l the maximal
level in the subtree already constructed.

• Set Nbeg = 0, Nend = 1, and form Item no. 1 in T (the number of
kid-clusters is 0).

• For every i from Nbeg + 1 to Nend, check if the ith cluster is a leaf
(has no kid-clusters). If so, try to split it into subclusters using the
given separator. Every subcluster, if any, is successively added to the
current end of T . Also, the contiguous indices of P corresponding to
the ith cluster are permuted to make the indices associated with every
subcluster run contiguously. Correct the kid-information in Item no. i
of T .

• Increase l by 1 and quit if it is equal to Lmax. If not, set Nbeg = Nend,
Nend = N(T) and go to one step back.

The complexity of Algorithm 1 depends on the separator used. If the
separation time is linear in the number of nodes of a cluster under separation
and the number of subclusters on output is upper bounded uniformly in n,
then the working time for Algorithm 1 is linear in n.

At present, we tested two methods of separation. The first is strictly mo-
tivated by the asymptotical-smoothness property. The second is somewhat
heuristic. As we found, both lead to about equal results in practice.

1. Find a (minimal) parallelepiped containing all the nodes of a cluster,
subdivide it into 2m parallelepipeds, and make up subclusters of the nodes
fallen into each of them.

2. Let a cluster consist of the nodes x1, . . . , xk with a center c. Find
a hyperplane passing through c so that the sum of squared projections of
xi − c onto this hyperplane is maximal. If h is a unit vector normal to the
hyperplane in question, then we need to minimize

Φ ≡
k
∑

i=1

|(xi − c, h)|2 = hT Mh, M =
k
∑

i=1

(xi − c)(xi − c)T .

9

It is easy to see that h is the eigenvector of M for its minimal eigenvalue.
The hyperplane subdivides the space into two subspaces which accumulate
the nodes of two possible subclusters.

When we proceed to preparing the list of blocks, we confine ourselves to
considering only those blocks that are associated with pairs of clusters in the
tree of clusters (or two of them, in case there are two meshes). We permute
the original rows and columns in line with P; then the tree-of-clusters blocks
contain contiguous rows and columns.

It is possible to produce many different lists of blocks based on the same
tree of clusters. Our final goal is a tree-of-cluster mosaic partitioning min-
imizing approximate mosaic rank. However, it might be a difficult discrete
optimization problem. We use the following heuristic approach: low-rank
blocks should be of maximal possible size. We also assume that, for every
pair of clusters, there is an easily computable tag showing if the block is
allowed to be compressed or not; for brevity, call the former allowed blocks.

Algorithm 2. Let M be the target list of blocks and M1,M2 auxiliary
lists.

• Put in M1 the root-cluster block (original matrix).

• Take up successively the blocks from M1. If the block is allowed,
relegate it immediately to M. If not, consider the clusters a and b
defining this block. Add to M2 all the blocks associated with the
subclusters of a and b. If there are no subclusters, move this block to
M.

• Quit if M2 is empty. Otherwise, substitute M1 with M2, empty M2,
and go to one step back.

In practice, the algorithms of this section consume rather negligible part
of the whole time for the mosaic-skeleton method.

4 Incomplete cross approximation

On the second stage of the mosaic-skeleton method, we browse in the list of
blocks and try to compress (approximate by skeletons) every allowed block.
It can be done by the Lanczos bidiagonalization method. Although we even-
tually compute all the entries and the compression time does not behave any

10

close to linear in n, the multiplication time is about linear in n and it might
be still useful for some practical problems [10]. Here we propose an entirely
different approach.

Let A denote an allowed block of size m × n. If rank A = r then we can
obtain skeletons using any r rows and columns for which the intersection
block is nonsingular. The problem is that A is of rank r only up to some
small perturbation. We rely on the following (nontrivial) result.

Theorem 4. [8, 9] Let A and F are m×n, rank (A+F) ≤ r, and ||F ||2 ≤ ε.
Then there exists a cross in A with columns C and rows R, for which, for
some r × r matrix G,

||A − CGR||2 ≤ ε

(

1 +
(

√

t(r, m) +
√

t(r, n)
)2
)

with
t(r, n) ≡ max

U
min

P∈M(U)
σ−1

min(P),

where U means any r columns of a unitary matrix of order n, M(U) is the
set of all r × r submatrices in U , and σmin designates the minimal singular
value.

It was proved also [9] that

t(r, n) ≤ tV (r, n) ≡
√

(r(n − r) + 1,

though we believe that t(r, n) ≤ √
n (not proved so far). The idea behind the

proof of Theorem 4 was the splitting of the singular value decomposition of
A = U1Σ1V1 + U2Σ2V2, where the first term corresponds to r senior singular
triplets, and, then, choosing those submatrices in U1 and V1 that have the
reciprocal to the minimal singular value majorized by t(r, m) and t(r, n),
respectively. The rows chosen in U1 and columns in V1 determine the cross
at issue.

The choice of the above submatrices in U1 and V1 can be performed
constructively: it is sufficient to find the submatrices of maximal determinant
in modulus (we call this quantity a volume) [9].

Unfortunately, the singular value decomposition of A is too heavy a tool
to be practical for our purposes. Instead, we would fall back to the concept
of maximal volumes.

To give more motivation, recall the role of maximal volumes in the inter-
polation theory. Assume that Ω is a compact domain in the m-dimensional

11

space. Assume that f(x) is to be interpolated by φ(x) =
∑k

l=1 αiφl(x) in the
nodes x1, . . . , xk ∈ Ω. Then, as is readily verified,

φ(x) =
k
∑

l=1

f(xl)
Ml

M
,

where M = det{φi(xj)}k
ij=1 and Ml is obtained from M by replacing the lth

column by [φ1(xl), . . . , φk(xl)]
T . If we are allowed to choose the nodes, which

is a reasonable choice? A classical result (see [6]) is that a good idea is to
maximize | det M | over x1, . . . , xk ∈ Ω.

Theorem 5. Let M maximize | detM | and ||f ||C ≡ maxx∈Ω |f(x)|. Then
||f − φ||C ≤ (1 + k) Ebest, where Ebest = infβ1,...,βk

||f −∑k
l=1 βlφl||C.

Luckily, this theorem is as profound as elementary allowing for a one-line
proof:

|f − φ| ≤ |f − φbest| + |φ − φbest| ≤ Ebest +
k
∑

l=1

|f(xl) − φbest(xl)| |
Ml

M
|,

where φbest corresponds to the optimal choice of βl on which the best uniform
bound is attained. A matrix analogue of Theorem 5 is the following.

Theorem 6. Let A be m × n and C consist of the first k columns of A.
Assume that rank C = k and let B be the maximal-volume submatrix in C.
Denote by R the rows of A defined by B. Then

||A − CB−1R||2 ≤ (1 + tV (k, m)) inf
W

||A − CW ||2. (10)

At the same time, if µ(A) is the maximal entry of A in modulus, then

µ(A − CB−1R) ≤ (1 + k) inf
W

µ(A − CW). (11)

Proof. Let A = [C, A2] and, similarly, W = [W1, W2]. Then

A − CB−1R = (A2 − CW2) + CB−1(BW2 − R).

Since B is of maximal volume in C, all the entries of CB−1 are not greater
than 1 in modulus. Indeed, the postmultiplication of C by any nonsingular

12

matrix does not change the ratio of volumes for any two submatrices. With
no loss of generality, let

H ≡ CB−1 =

I
hk+11 . . . hk+1 k

.

 .

If |hk+l j| > 1, then H would have a submatrix of volume greater than 1.
This submatrix would be I with row j substituted with row k + l. Now, (10)
are (11) are evident. 2

The above proof incorporates an algorithm which we use to find maximal-
volume submatrices. On input, we have C and some γ ≥ 1. On output, we
obtain a submatrix B whose volume is greater than or equal to the maximal
volume over γ. With such a B, we modify the estimate (11) to the form

µ(A − CB−1R) ≤ (1 + γ k) inf
W

µ(A − CW). (12)

Algorithm 3.

• Reduce C to H by column transformations using a complete pivoting.

• Find the maximal in modulus entry below the kth row of H . Let it
have indices k + l, j. Quit if it does not exceed γ.

• Interchange row j and k + l and eliminate nondiagonal zeroes in the
upper part of H using column transformations. Go to one step back.

We are ready to formulate the incomplete cross approximation algorithm.
Presently it is a succession of the prescribed number of cross-refinement cy-
cles.

Cross-Refinement Cycle. Given a cross with row indices I and column
indices J , find the maximal-volume submatrices in the columns and the
rows. Let the former has column indices Ĵ and the latter has row indices Î.
Then update the cross changing I onto I

⋃

Î and J onto J
⋃

Ĵ .

Thus, we form the cross adaptively adding to it new rows and columns.
Using a sufficiently large cross, we provide an accurate skeleton approxima-
tion for the whole block. At the same time, we hope that we finish with a
cross small enough.

13

5 Time versus size

An important issue is how we get an initial cross. Sometimes, as in our
experiments with the equation (1), it could be almost arbitrary (even of size
1 × 1 or 2 × 2). This is not entirely clear yet from the point of theory.
However, below we present a practical justification.

Consider more information related to Table 1. On Fig. 1 we can see
that the approximation time grows almost linearly in n. This is due to
the incomplete cross approximation approach. Note also that we used the
conjugate gradients with the circulant preconditioner [4, 5, 24, 25]. We had
only 3 iteration to reduce the residual to a factor of 10−4.

10

100

1000

10000

512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Fig 1. log (TIME) versus log (SIZE).

The maximal size we tested was n = 1 048 576. The computed mosaic
rank was 159.72 and the corresponding compression factor was 0.03%. We
used about 9 Gb of the disc space and 27 283 seconds on the Silicon Graphic
workstation in the University of Saarland. Special thanks for the computing
facilities go to Prof. S. Rjasanow.

14

References

[1] G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transform and
numerical algorithms. I. Comm. Pure Appl. Math. 44: 141–183, 1991.

[2] A. Brandt, Multilevel computations of integral transforms and particle
interactions with oscillatory kernels, Computer Physics Communications
65: 24–38, 1991.

[3] A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and fast
solution of integral equations, J. Comput. Phys. 90: 348–370, 1990.

[4] R. Chan, H. Sun, and W. Ng, Circulant preconditioners for ill-
conditioned boundary integral equations from potential equations, to
appear.

[5] T. Chan, An optimal circulant preconditioner for Toeplitz systems,
SIAM J. Sci. Stat. Comput. 9: 766–771 (1988).

[6] D. Gaier, Vorlesungen über Approximation im Complexen, Birkhäuser
Verlag, Basel-Boston-Berlin, 1980.

[7] S. A. Goreinov, Mosaic-skeleton approximations of matrices generated
by asymptotically smooth and oscillatory kernels, Matrix Methods and
Computations, INM RAS, Moscow, pp. 41–76, 1999. (In Russian.)

[8] S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, Pseudo-Skeleton
Approximations of Matrices, Reports of the Russian Academy of Sci-
ences, 343(2): 151–152, 1995. (In Russian.)

[9] S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, A Theory of
Pseudo-Skeleton Approximations, Linear Algebra Appl. 261: 1–21, 1997.

[10] S. A. Goreinov, E. E. Tyrtyshnikov, A. Yu. Yeremin, Matrix-Free It-
erative Solution Strategies for Large Dense Linear Systems, Numerical
Linear Algebra with Applications, 4(4): 273–294, 1997.

[11] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations.
J. Comput. Physics 73: 325–348, 1987.

[12] W. Hackbusch and Z. P. Novak, On the fast matrix multiplication in
the boundary element method by panel clustering, Numer. Math. 54(4):
463–491, 1989.

15

[13] A. Harten, Multiresolution representation and numerical algorithms: a
brief review, ICASE Report 94-59, October 1994.

[14] M. S. Martynov, Usage of fast multiplication methods for solving integral
equation of potential theory, Matrix Methods and Computations, INM
RAS, Moscow, pp. 77–130, 1999. (In Russian.)

[15] S. V. Myagchilov and E. E. Tyrtyshnikov, A fast matrix-vector multi-
plier in discrete vortex method, Russian J. Numer. Anal. Math. Mod-
elling 7(4): 325–342, 1992.

[16] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White, Precon-
ditioned, Adaptive, Multipole-Accelerated Iterative Methods for Three-
Dimensional Potential Integral Equations of the First Kind, Dept. of
Electrical Eng. and Computer Science, Massachusetts Institute of Tech-
nology, 1994.

[17] Yu. M. Nechepurenko, Fast numerically stable algorithmsfor a wide class
of discrete linear transforms, Preprint 92, OVM RAN, 1985. (In Rus-
sian.)

[18] I. Yu. Nikolsky, Interpolation method for fast approximate multiplica-
tion for a matrix generated by a function on a contour, Matrix Methods
and Computations, INM RAS, Moscow, pp. 131–145, 1999. (In Russian.)

[19] V. Rokhlin, Rapid solution of integral equations of classical potential
theory, J. Comput. Physics 60: 187–207, 1985.

[20] V. Rokhlin, Rapid solution of integral equations of scattering theory in
two dimensions, J. Comput. Physics 86: 414–439, 1990.

[21] E. E. Tyrtyshnikov, Mosaic ranks and skeletons, in L. Vulkov et al.
(eds.), Lecture Notes in Computer Science 1196: Numerical Analysis
and Its Applications. Proceedings of WNAA-96. Springer-Verlag, 1996.
pp. 505–516.

[22] E. E. Tyrtyshnikov, Mosaic–skeleton approximations, Calcolo, 33(1-2):
47–57, 1996.

[23] E. Tyrtyshnikov, Methods for fast multiplication and solution of equa-
tions, Matrix Methods and Computations, INM RAS, Moscow, pp. 4–40,
1999. (In Russian.)

16

[24] E. E. Tyrtyshnikov, Optimal and superoptimal circulant precondition-
ers, SIAM J. Matrix Anal. Appl. 12(2): 459–473 (1992).

[25] E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis,
Birkhauser, Boston, 1997.

[26] V. V. Voevodin, On an order-reduction method for matrices arising in
the solution of integral equations, Numerical Analysis on FORTRAN,
Moscow State University Press, 21–26, 1979. (In Russian.)

17

