Mosaic Ranks for the Inverses to Band Matrices

E.E. Tyrtyshnikov !

Institute of Numerical Mathematics
Russian Academy of Sciences
Gubkina 8

Moscow 117333, Russia

E-mail: tee@inm.ras.tu

ABSTRACT

After reminding the definition of mosaic ranks, we estimate them from
above for the inverses to band matrices. The estimate grows logarithmically
with the matrix size. The result presented in this note should be compared
with the well-known descriptions of the inverses to band matrices as semisep-
arable matrices. Our approach, still, excells in that it holds under much
weaker assumptions.

1 Introduction

To begin with, we remind some definitions and well-known facts.

Let 1 < p,q < n. We say that A = [a;]5—; is a (p,¢) band matrix if
a;; = 0 whenever 1 —j < —pori—j >gq.

It is very important what comes along the extreme diagonals ¢ — j = —p
and ¢ — j = ¢. If there is a nonzero entry on each of them, then p and ¢ are
correctly defined upper and lower bandwidth. If all their entries are nonze-
roes, then A is called a strict (p,¢) band matrix [10].
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Denote by U, and L, the spaces of upper and lower triangular matrices
of order p and ¢, respectively. We say that A is a (¢, p) semiseparable matrix
if, first,

A=5+ gg] rank S = ¢, U €U, (1)
and, second,
0 0
A=R+ I 0], rankR=p, LeLl,_,. (2)

It is known for years that the inverses to band matrices still capture rather
imposing structure. We all are aware of the following beautiful, well-known,
and rediscovered several times theorem:

A nonsingular matriz is a strict (p,q) band matriz if and only if its in-
verse is a (q,p) semiseparable matriz.

The proof can be found, for example, in [10] (see also [1, 2, 7, 15]). How-
ever, in contrast to the definition and proof given in [10], we need not to
assume additionally that the diagonals i —j = —¢in S and R (and ¢ —j = p
also) are entry-wise different. The above theorem can be proved without this.

In fact, the proof ? can be very short and clear. Suppose, first, that
A is a nonsingular (¢,p) semiseparable matrix. Rewrite (1) in the block
U117 UV2 + U

. We conclude immediately that the blocks
U2V U2V9

form A =

uy and vy are nonsingular. The Schur complement to the (2,1) block is
u1vg + U — (ugvy)(ugvy) "Hugvy) = U. Tt implies that U is nonsingular and

ATl = U*_l . Using the same arguments, from (2) we derive that
-1 * L_l : ” ol
A7 = . o+ | which completes the proof of the "only if” part.

2The idea goes back probably to D.K.Faddeev.



Concerning the ”if” part, set A = [C} ] and remember the Frobenius
formulas: with & = (b —aU~'¢)™! it holds that
At U=tch Ut —U-tchaU!
N h —haU™! ’

Still, one ought to recover from this that

A*:[U;Ch] (1] [8 Uo_ll.

Thus, we have got (1), and the same, just “transposed”, logic leads to (2).

The above proof is by no chance a purpose of this paper. Getting on
to the purpose, we note that the theorem under discussion stands only for
strict band matrices. It is no longer valid when a zero occurs on the extreme
diagonals. For tridiagonal matrices, however, such zeroes make things just
simpler (reducing the case to a block diagonal matrix with strict tridiagonal
blocks). All the same, all is not that simple for arbitrary band matrices.

The goal of this paper is probably two-fold. First, we discuss what kind
of structure is maintained by the inverses for arbitrary, not necessarily strict,
band matrices. To this end, we introduce a concept of (p, ¢) weakly semisep-
arable matrices and prove that their inverses remain in the same class (Sec-
tion 2). It is pertinent to note that any (p,¢) band matrix is also a (p,q)
weakly semiseparable matrix.

Second, we want to say about the relation between semiseparable matrices
and the mosaic ranks introduced of late by the author [11, 12, 13]. That
concept is simple and useful for the analysis of structure of matrices arisen
as discrete analogs of integral operators [13, 5]. More or less indirectly, it is
related to the constructions considered in [3, 4, 6, 8, 9, 14]. In Section 3 we
remind the notion of mosaic ranks. Then we estimate the mosaic ranks for
weakly semiseparable matrices.



2 Weakly semiseparable matrices

Assume that an n xn matrix A is such that the rank of any submatrix located
in its upper triangular (and lower triangular) part is at most p (and ¢). Then
A is said to be a (p, ¢) weakly semiseparable matrix.

Theorem 2.1 A nonsingular matriz is (p,q) weakly semiseparable if and
only if its inverse possesses the same property.

Proof. It is sufficient to prove the following assertion. Let

All A12 -1 Bll B12
A - A =
l Ag1 A ] 7 l Ba1 Ba ] 7

where the diagonal blocks are square. Then rank By; = rank Ays.

It Ayq is nonsingular, then this emanates from the Frobenius formulas.
Otherwise, consider matrices A(t) = A + tI with a real parameter ¢. For all
sufficiently small 0 < ¢ < ¢ the block Ay(?) is nonsingular (it follows that
Ags(1) is also nonsingular). Consequently,

rank By2(t) < rank A1p(1) VO<t<e.
Obviously, A(t) — A as t — 0, and, in the limit, we come to
rank By < rank Aqs.

(It might be worthy to remark that we can not pass to the limit in the
Frobenius formulas.)

There is only a tiny little step from the above assertion to the complete
proof of the theorem. 0O

For band matrices, we easily obtain the following corollary.
Corollary. The inverse to a nonsinular (p,q) band matriz is a (p,q) weakly
semiseparable matrix.

3 Mosaic ranks

We now present the concept of mosaic ranks. It is related to some urgent
practical calls for efficient algorithms for large dense matrices. In our ap-
proach, we try viewing large dense matrices as specifically structured (more
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typical for applications, we look for structured approximations).

A basic kind of structure we choose are so-called skeletons. We use this
name for matrices of the form uv?, where v and v are column vectors. Using
the skeleton expansion A = 3'_, w;v! we can calculate y = Az in only 2rn
coupled operations (instead of n?) using only 2rn memory locations (instead
of n?).

In the general case, when A is m X n, the compressed memory is defined
by the formula

MEMORY = RANK - (m + n).

For arbitrary matrices (prospectively nonsingular), the mosaic rank is intro-
duced so that the formula

MEMORY = MOSAIC RANK - (m + n)

be still valid [12, 13].

If B is a submatrix for a m x n matrix A then I'(B) denotes the m x n
matrix with the same block B and zeroes elsewhere. A system of blocks A;
is called a covering of A if

A= Z F(Al)v
and a mosaic partitioning of A if the blocks have no common elements.

For any given covering, there might be far too few skeletons in every block
(the fewer the better). The mosaic rank of A is defined as

mrA:ZmemAi / (m+n), (3)

where
mem A; = min {m;n; , rank A;(m; +n;)}. (4)

Mosaic ranks for different mosaic partitionings of the same matrix may
differ. Of course, we can always consider the optimal mosaic rank as the min-
imum over all mosaic partitionings. However, any time we write r = mr A



below it means only that there exists a mosaic partitioning whose mosaic
rank is equal to r.

Below we rely on the following lemma proposed in [12, 13].

Lemma 3.1 Given a matriz A of the form

A= l All A12

Ay Ag ] ’ An € @menla Ay € gmexnz,

assume that
[(m1 +n1) = (M2 + )| < g(m+n), ¢ < 1, (5)
and there exist mosaic partitionings such that
mr Ay < clogh™ (mi4+n;), 1 =1,2; mrA; <rlogh(m; +n;), 1 # 35, (6)

for some k > 0, and, moreover,

r
c>

- 2 M
log; =07

Then for A, there exists a mosaic partitioning such that

mr A < cloght (m + n). (7)
We are now in a position to formulate the following result.

Theorem 3.1 For any nonsingular (p, q) weakly semiseparable matriz A,, of
order n > ng > 0,

mr A, < ¢(ng) max{p, ¢} log,2n,

where |
c(no) = 75—
10g2 %
0



Proof. If n is a power of two, we subdivide A, into square blocks of order
n/2 and, then, proceed by induction:

np + ng + 2n max{p,q} logn
2n

1
= max{p, ¢} (5 + log n) < max{p, ¢} log2n.

Thus, we obtained the estimate even sharper than what we are after.

However, the case of an arbitrary n seems to be more tricky, and that
is where we luckily fall back on Lemma 3.1. For an arbitrary n, we can
always have the square diagonal blocks of order ny and ny with |ny —ny| < 1.
Therefore, we may set ¢ = 1/2ng. Then, we apply Lemma 3.1 straightforward
with £ = 1 and, obviously, r = max{p,¢}. O

We can interpret the result also as follows: for any ¢ > 0, it holds
mr A, < (1+4¢) max{p,q¢} log,2n

for all n sufficiently large.
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