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On a compact Riemann surface, the global behavior of trajectories of a regular quadratic differential
is chaotic except for one case. If the critical graph of the foliation is compact, then its complement is a
finite set of cylinders fibered into homotopic closed trajectories [1]. Such differentials arise when solving
extremum problems of the geometric theory of functions [2], in the problem of decomposition of decorated
moduli space of curves into cells (enumerated by ribbon graphs) [3], and in several other problems. Such
differentials are now called Jenkins–Strebel differentials after the names of the scientists who proved
their existence in the 1950–1960s [4]–[7]. A simpler proof was given later by Wolf [8]. All these results
are pure existence theorems, and there are very few explicit constructions of such differentials. Several
one-parameter families of Jenkins–Strebel differentials are explicitly described in [9], [10]. Of course, the
Jenkins–Strebel differentials are not something extraordinary (they are dense in the space of quadratic
differentials), but to verify whether their trajectories are closed is not a very simple problem.

Here we present an explicit multiparametric construction of Jenkins–Strebel differentials on real
algebraic curves. Each squared real holomorphic differential of the 1st kind subjected to some explicit
linear constraints is a Jenkins–Strebel differential.

We assume that an anticonformal involution J (reflection) acts on a compact Riemann surface X of
genus g. The components of the set of fixed points of this involution are smooth closed curves [11] and are
called real ovals. The reflection naturally acts on the 2g-dimensional real space of the one-dimensional
homology spaces of the surface and splits into the sum of spaces corresponding to the eigenvalues ±1 of
the operator J :

R
2g ∼= H1(X, R) = H+

1 (X, R) ⊕ H−
1 (X, R), H±

1 (X, R) := (I ± J)H1(X, R). (1)

The cycles C = JC of the space H+
1 (X) are said to be even. Correspondingly, the cycles C = −JC of

the space H−
1 (X) are said to be odd. The spaces of even and odd cycles contain lattices of integer cycles

H±
1 (X, Z) := H±

1 (X, R) ∩ H1(X, Z)

of full rank. For example, the oriented real ovals of a curve are even integer cycles.
On the space H1(X, R), there is a nondegenerate skew bilinear form, i.e., the intersection index of

the cycles. Since the mapping J changes the orientation at each intersection point of integer cycles, we
have

JC1 ◦ JC2 = −C1 ◦ C2, C1, C2 ∈ H1(X, R). (2)

This easily implies that the subspaces of even and odd cycles are Lagrangian (i.e., the restriction of the
intersection form to them is zero) and their dimensions coincide and are equal to g.

The space Ω1(X) ∼= C
g of holomorphic differentials on a curve contains the subspace of so-called

real differentials Ω1
R
(X) ∼= R

g, which become the complex conjugate differentials J
∗
η = η, η ∈ Ω1

R
(X),

*E-mail: gourmet@inm.ras.ru, ab.bogatyrev@gmail.com

135



136 BOGATYREV

under reflection. The integrals of real differentials over even (resp., odd) cycles are real (resp., pure
imaginary) numbers: ˆ

C
ξ =

ˆ
±JC

ξ = ±
ˆ

C
J

∗
ξ = ±

ˆ
C

ξ = ±
ˆ

C
ξ.

Example. We assume that a curve X is given by the equation P (x, y) = 0 with a real polynomial P .
The curve admits the reflection J(x, y) := (x, y), and the real differentials have the form

Q(x, y)/Py(x, y) dx

with an appropriate real polynomial Q.

Lemma 1. The space (H−
1 (X, R))∗ ∼= R

g of real linear functionals over odd cycles is canonically
isomorphic to the following two spaces:

(i) H+
1 (X, R);

(ii) Ω1
R
(X).

Proof. (i) In this case, the functional is defined by the intersection form. Since this form is nondegen-
erate, it follows that an even cycle for which all odd cycles are zero is itself zero.

(ii) In this case, the functional is defined by the formula

〈η | C−〉 := i

ˆ
C−

η, C− ∈ H−
1 (X).

If all odd cycles for a real differential are zero, then all its periods are real. Such a differential is equal to
zero.

Remark 1. Abelian differentials are usually normalized by using half of the canonical basis in homology
spaces, namely, A-cycles or B-cycles. It follows from assertion (ii) of the lemma that even or odd cycles
can be used as normalization cycles on a surface that admits reflections. Generalizing this observation,
we show that, for the normalization of differentials, it is possible to use any Lagrangian subspace of
dimension g in the homology spaces, i.e., on a curve there is a unique holomorphic differential with given
periods on a basis in such a subspace.

We choose a basis C1, C2, . . . , C2g in the real homology space of the curve X so that its first g
elements lie in the Lagrangian subspace. We do not assume that the basis is canonical or integer. The
following bilinear Riemann relation holds:

0 ≤ ‖η‖2 = i

ˆ
X

η ∧ η = −i

2g∑

s,j=1

Fsj

ˆ
Cs

η

ˆ
Cj

η, (3)

where the matrix Fsj is the inverse of the intersection matrix Cs ◦ Cj . Ifˆ
Cj

η = 0 for j = 1, . . . , g,

then the sum in the right-hand side contains only terms with s, j > g. But then we have Fsj = 0. Indeed,
the intersection matrix has a 2 × 2 block structure with zero g × g block at (1, 1). The inverse matrix
also has a zero block of the same dimension at (2, 2). As we see, only the zero holomorphic differential
has zero periods along all cycles in our Lagrangian subspace.

Remark 2. Comparing the two assertions of the lemma, we see that there is a one-to-one correspon-
dence between even cycles C+ and real differentials η on a curve according to the rule

i

ˆ
C

η = C+ ◦ C for all C ∈ H−
1 (X, R).

For even cycles C, this correspondence already does not hold, because it is not the Poincaré duality
assignment.
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Remark 3. Assume that there are k real ovals on a curve X. Their linear span in the homology space
has dimension k if the curve with eliminated ovals does not split into components. Otherwise, this
dimension is less by 1. We shall show that the corresponding subspace of real differentials generates
Jenkins–Strebel foliations.

Theorem 1. Suppose that the integral of a real holomorphic differential η over the odd cycle C−

is zero if the intersection index of C− with any real oval is zero. Then the foliation η2 > 0 is a
Jenkins–Strebel foliation.

Proof. We cut our surface along the real ovals. On the obtained surface with boundaries, the following
function is well defined:

H(x) := Im
ˆ x

∗
η, x ∈ X \ {real ovals}.

Indeed, if the closed path C does not intersect the real ovals, then

2 Im
ˆ

C
η = Im

ˆ
C−JC

η = 0

by the assumption of the theorem, because

(C − JC) ◦ C+ = 2C ◦ C+ = 0

for each real oval C+.

This globally defined function is locally constant on the boundaries of the cut surface, and its level
lines are leaves of the foliation η2 > 0; see the figure.

Figure: Function H(x) as a function of height on the cut surface.

Example. We consider a hyperelliptic curve all of whose branch points are real except, possibly, for two
points that are complex conjugate in this case. Its real ovals generate the entire space of even cycles, and
hence the space annihilator is trivial. By the above theorem, any squared real holomorphic differential on
such a curve is a Jenkins–Strebel differential. In the case of general real hyperelliptic curves, the bases
in the lattices of even and odd integer cycles were considered in [12], and they permit explicitly describing
the annihilator of all real ovals in the space of odd cycles.
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