Combining Kronecker product approximation
with discrete wavelet transforms to solve dense,
function-related linear systems*

Judith M. Ford' Eugene E. Tyrtyshnikov?
May 8, 2003

Abstract

A new solution technique is proposed for linear systems with large
dense matrices of a certain class including those that come from typical
integral equations of potential theory. This technique combines Kronecker
product approximation and wavelet sparsification for the Kronecker prod-
uct factors. The user is only required to supply a procedure for compu-
tation of each entry of the given matrix.

The main sources of efficiency are the incomplete cross approximation
procedure adapted from the mosaic-skeleton method of the second author
and data-sparse preconditioners (the incomplete LU decomposition with
dynamic choice of the fill-in structure with a prescribed threshold and
the inverse Kronecker product preconditioner) constructed for the sum
of Kronecker products of sparsified finger-like matrices computed by the
Discrete Wavelet Transform. In some model, but quite representative,
examples the new technique allowed us to solve dense systems with more
than 1 million unknowns in a few minutes on a personal computer with 1
Gbyte operative memory.

Kronecker product, wavelets, dense matrices, preconditioning
65F10, 65T60, 65F30
1 Introduction

Dense matrices arise during numerical solution of problems in a variety of ap-
plications in science and engineering. For example, integral operators, interface

*This work was supported by EPSRC Postdoctoral Research Fellowship ref:
GR/R95982/01 and by the Russian Fund of Basic Research (grant 02-01-00590) and Science
Support Foundation.

fMathematics Department, UMIST, PO Box 88, Manchester M60 1QD, UK
(j.fordQumist.ac.uk).

Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina Street, 8,
Moscow(tee@inm.ras.ru).

KRONECKER PRODUCT AND DWT APPROXIMATION 2

preconditioners in the domain decomposition method, Schur complements in
multilevel solution strategies, and Jacobians in the Newton method can all be
sources of large dense matrices. Also, the inverses of sparse matrices in PDE
applications are usually dense.

In many practical cases the matrix entries are not pronouncedly different
in magnitude and almost none of them are negligibly small. More often than
not, the matrices possess no special structure like that of Toeplitz and related
matrices. In these same applications, the sizes of the matrices may need to be
as much as several hundreds of thousands or even millions. Tackling problems
on this scale has become feasible only since the 1980’s when the multipole and
panel clustering approaches appeared [?, ?] and later on when wavelet-based
techniques were adapted to numerical analysis needs [?, ?]. Since then a large
amount, of research has been aimed at gaining a better insight into the essentials
of these techniques and at the design of better-performing algorithms for many
important practical purposes. A distinctive line of research has been concerned
with the development of a matrix view of the established approaches [?, 7, ?,
?, 7, ?] and with user-friendly matrix approximation methods [?, 7, ?, ?] whose
input is simply a procedure by which any specified entry can be computed.

Despite the breakthrough in solution strategies for large dense matrices pro-
vided by the above-mentioned techniques, they still require two things. First,
we need a large amount of operative memory when matrix dimensions approach
and go beyond 1 million. Second, a lot of descriptive information pertaining
to quite intricate hierarchical (mosaic) block partitionings of the given matrix
must be given.

In this paper, we present a new technique that can manage with a modest
operative memory (up to 1 Gbyte for sizes beyond 1 million, as we observed for
typical model examples) and enjoys a very simple logic.

The technique formally applies to matrices that can be associated (at least
virtually) with a function of two variables in the following way:

A=[f(z",29)], 1<ij<n, (1)

where {z%} and {z’} are the nodes of some grids logically equivalent to the
Cartesian product of some one-dimensional grids.

Given a linear system Az = b (which should read “given b and a procedure
enabling us to pick up any requested entry of A”) and an allowed bound € on
the relative perturbation error (in the Frobenius norm), we proceed with the
following steps:

(A) Assuming n = pq, approximate A by a sum of Kronecker products !

.
B=) Up®@Vi ~ A, (2)
k=1

IRecall that [ug;] ® V is a block matrix of the form [ug;V].

KRONECKER PRODUCT AND DWT APPROXIMATION 3

with Uy and Vj, of size p X p and ¢ X ¢, respectively, so that
1B — Allr < el|Allr. (3)

To simplify presentation, from now on we assume that n = p? and p = q.

(B) Apply the Daubechies Discrete Wavelet Transforms (DWT) with a
prescribed number p of vanishing moments to Uy and Vj:

P, =WUWT Qy=WV,W! 1<k<r (4)

Here, W = W (u) is an orthogonal matrix of the DWT of degree u and Py and
Q. are pseudo-sparse matrices with the well-known finger-like pattern for the
significant entries. Choosing an appropriate threshold 7 = 7(e, { P}, {Q«}) and
setting to zero any entry that is less than 7, we get from P and @ to their
sparsified counterparts P and @}, and finally approximate B by

C=W'ew') D WeW) ~ B, D:(ZP,J@Q;), (5)
k=1

so that
I|C = Bllr < ¢||B]|F- (6)

(C) Take ¢ > 7 and discard more entries from P}, and @, to obtain P}~ P,
and Qi ~ Q) with greater sparsity. Then, construct a new sparse matrix

E=Y PoQ) ~ D (7)

k=1

and compute its incomplete LU decomposition LU ~ E with dynamic decision
on the fill-in structure for a properly chosen threshold.

(D) Apply GMRES to solve
CF'y=b, (8)

where
F=WTeowT) LU (WoW) (9)

is a preconditioner (usually termed implicit) for C . Finally, output F~'y as an
approximation to the exact solution .

Step (A) is key to the others. The coefficient matrix A cannot be stored as a
full array of entries because of its size. Nevertheless, after this step, A appears in
the computer memory as a matrix object represented by the sum of Kronecker

KRONECKER PRODUCT AND DWT APPROXIMATION 4

products. Assuming that 7 < n, we need to store only 2rp? = 2rn < n?
numbers.

However, the matrix-vector multiplication with B requires O(n?/?) opera-
tions. This is already better than the O(n?) operations of the standard rule
but is still expensive. To improve performance, we use the Discrete Wavelet
Transform because it is capable of producing matrices with a bulk of relatively
small entries that can be neglected with little reduction in accuracy. As soon
as step (B) is completed, we are ready to employ a suitable iterative method
such as GMRES using C' in place of A. However, the number of iterations may
be large and in this case we need a suitable preconditioner. Step (C) serves to
construct one based on the incomplete LU decomposition.

Application of the proposed technique certainly has its limits, but we are
nevertheless confident of its usefulness. First, we present very promising nu-
merical results for model cases pertaining to a wide class of matrices coming
from integral equations. Second, we are able to outline the limits of the method
through discussion of the mathematical grounds on which the approach has
grown. Third, the algebraic nature of the approach allows one to apply it in
cases that may lie beyond the established grounds.

In what follows, we present a detailed description and discussion of the
above steps and numerical verification of the proposed technique. To make our
presentation clearer, we illustrate all the steps on one characteristic example.

Example 1.1 Define the matriz A = [a;;] of order n = p? by

_ 2p, 1 =7,
‘{ 1)l = 29|, i # 7, (10)

where '

2t = (Tra), Yu))s 0= (k@) = Dp +1(2), (11)
with uniquely defined integer k(i) and 1(i) in the range from 1 to p. The nodes
2t ..., 2" belong to the unit square Q = [0,1] x [0,1] and match the Cartesian

product of same one-dimensional grids with

o = (a—05)/p, a=1,...,p,

(12)
ys =(B—-05)/p, B=1,....p.

We have used uniform grids in our introductory example for the sake of
simplicity, with the consequence that the matrix A in Example 1.1 is doubly
Toeplitz?. This structure means that it could be stored compactly in a straight-
forward manner. In this paper we use Example 1.1 purely to illustrate our
proposed technique, which does not rely on uniformity of the grids, so in what
follows we ignore the Toeplitz property of A. Real-life applications typically use
non-uniform grids and so give rise to matrices that do not have such a convenient
structure. Numerical experiments in the last section confirm that performance
of our new technique is similar, regardless of the choice of grids.

2By “doubly Toeplitz” we mean that A is a block Toeplitz matrix whose blocks are them-
selves Toeplitz.

KRONECKER PRODUCT AND DWT APPROXIMATION)

2 Approximation by the sum of Kronecker prod-
ucts

The idea of separation of variables is pervasive in approximation theory and
analytical and numerical methods for operator equations. In the language of
matrices, this idea converts to one of using low-rank approximations which are
equivalent, as noted in [?], to Kronecker product approximations of some related
matrices, and matrix approximations by sums of Kronecker products (especially
in the case of multidimensional matrices) have become one of the major research
topics in the numerical analysis and linear algebra communities [?, ?, 7, ?, ?].

In the context of this article, the work of Kamm and Nagy [?] on the pre-
conditioning of block Toeplitz matrices is of particular interest since it can be
viewed as following steps (A) - (D) above but using the singular vectors of Uy,
V1 in place of the wavelet basis and adopting the compression criterion of re-
taining only diagonal entries. We are concerned here with a wider class of dense
problems, which makes it necessary to look for a more general approach. In
particular, we are concerned not only with constructing approximations suit-
able for preconditioning but also in finding a way of representing dense matrices
that are too large to be stored and manipulated directly.

Given a matrix A of order n = p?, we want to approximate it by a matrix
B of the form (2) with r as small as possible while the error satisfies (3) with
a prescribed relative error bound . We will refer to B as a matrix of low
Kronecker rank.

Prior to construction of algorithms, one would like to have some existence
theorems stating which classes of matrices are guaranteed to possess approxi-
mations of low Kronecker rank. The first existence theorems of this kind are
proposed in [?] and then extended to the case of three and more Kronecker
factors in [?].

These results assume that matrices are associated with a function f(z',z) of
two vectors 2’ = (2',y') and z = (z,y) with real coordinates, and it holds that

f(ZI,Z):F(U,’U), U:Z”—l', v:yl_y) (13)
where F'(u,v) is such that any mixed derivative

- a* o'
DF—WF, m—k:-l—l,

satisfies the inequality

IDT"F| <cd™m!p? ™ p=+u?+0v2#0, (14)

with some real constants ¢,d > 0 and g. Such an F' is called a complete asymp-
totically smooth function.

[?] Let A =[f(2", 27)] be a matrix of order n = pq, where z* = (x4x;), yi(s))
with integer k(7),1(7) defined by

i= (k@) —1g+10), 1<k()<p, 1<10)<q

KRONECKER PRODUCT AND DWT APPROXIMATION 6

and one-dimensional grids
0<z; <...<2p, <1, 0<y1 <...<y, <L

Assume that f satisfies (13), where F' is a complete asymptotically smooth
function. Define the minimal step size for the one-dimensional grids

h=min{ min |z; — 2|, min |y —yr|}, (15)
1<k,k/<p 1<1,1'<q
kKT 1l

and let v be an arbitrary number such that 0 < vy < 1.
Then, for any m =1, 2, ... , there exists a matrix B of the form (2) with
the following estimates on the number of summands r and approximation error:

r < (co+ci logh™) m, (16)

where cg, ¢; and ¢, are positive constants depending on v, and 079 is to be set
to 0 for any g¢.

Note that the matrix A from Examplel.l satisfies the hypotheses of this
theorem [?]. Below we return to the assumption that p = q.

Given A, minimization of r for a given ¢ can be done via SVD applied to a
matrix P(A) defined as follows:

P(A) = V(An),V(4a), .. VAR,
provided that
A11 . Alp
A=1|,
Ap oo Ay

and V maps a matrix to a vector of its entries taken column by column. We
make use of the following observation [?]:

P (Z Uk @ Vk> = SOV, (18)
k=1 k=1
A=Y UVl =|P(4) = S (VU)V Vi) (19)
k=1 F k=1 P

Consequently, the best Frobenius norm approximation of the form (2) can be
computed by the standard SVD method applied to P(A).

In Fig. 1 one can see the portraits of “large” entries of A and P(A). The
original matrix A is from Example 1.1. Tts large entries are located around the

KRONECKER PRODUCT AND DWT APPROXIMATION 7

main diagonal whereas those of P(A) are “uniformly distributed” over the whole
matrix suggesting that it could be close to a low-rank matrix.

1000] 1000
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
nz = 34620 nz = 34620

Figure 2.1 Portraits of A and P(A) for p = 32,n = 1024.

The application of SVD to P(A) shows that it can be approximated by a
matrix of rank r = 9 with the relative Frobenius norm error 4.5-1076. It follows
that A can be approximated by the sum of r = 9 Kronecker products with the
same error.

Since we obviously cannot afford SVD for large matrices, we have to seek an
alternative. One possibility is the Lanczos bidiagonalization algorithm (see [?]).
It is considerably less expensive than SVD and almost equally reliable, but, as
matrix dimensions increase, it also becomes time-consuming because we have
to recompute all the entries of A on each Lanczos iteration.

As a matter of fact, the very computation of all the entries of A becomes
expensive for large dimensions and so we cannot afford this either.

Again, we need a kind of “existence theorem” that claims that a low-rank
approximation to a matrix of order n can be reliably obtained if we use only
O(n) entries in some, appropriately chosen, positions. Such a claim is proved
in [?]. The case would be closed if we knew which positions to take. A useful
precise answer to this question is as follows.

[?] Let M be of order n and with the singular values oy > ... > 0,,. Suppose
that M is a block matrix of the form

|: Mll M12 :|
M21 M22 ’

where Mj; is nonsingular, 7 x r, and of maximal volume (determinant in mod-
ulus) among all X r submatrices. Then

[{Maz — Moy M7 Mo }ij| < (r+1) o1, 1<4,5 <n.

Let the distance between M and matrices of rank r in the spectral norm
be equal to or less than . Then a reliable rank r approximation to M can be
obtained from the entries of r columns and rows whose intersection contains the
submatrix of maximal volume among all 7 x r submatrices in M. The entry-wise
error of this approximation is estimated from above by (r + 1)e.

KRONECKER PRODUCT AND DWT APPROXIMATION 8

In our case M = P(A). Thus, we need to choose an appropriate cross
of r columns and rows from P(A). In this enterprise, the maximal-volume
principle serves as an ultimate target that should be approached yet might
be never achieved. One possible strategy for selecting this cross is proposed
in [?]. However, it turns out that in many cases of practical interest it can
be simplified and reduced, in effect, to the classical LU decomposition with
selection of pivots in certain subsets of the so-called ‘active submatrices’. We
compute only those columns and rows that correspond to pivots and stop when
the next pivot becomes smaller than a preset dropping tolerance. Admittedly,
this is not a completely reliable method since we do not compute all the entries
of M. However, some justification for a similar algorithm is given in [?], and in
all our experiments it has been found to work well for function-related matrices
such as those of Theorem 2.

Algorithm 2.1 (Incomplete Cross Approximation Algorithm)

Given a function M(i,j) of two indices 1 < i,j < n and a dropping tolerance
€, compute the vectors uy,vy, ... ,U,,v. of size n with r close to the smallest
possible one such that

r
1M =Y woi e < € [|M]|r,
k=1

where

and € ~ €.
1.Set 6 =e,k=1and Z[1:n] = J[1:n] =[1,2,...,n].

2. Compute m;; = M(3, j) for

(1,5) € P = {(Z(k), T (k)),(Z(k +1),T(k+ 1)), ... ,(Z(n),T(n)}
and set
k—1
mi; = mij — Z w(1)vi (7).
=1

3. Find (i}, jx) such that

! _ !
|mi;cjk| = (1%2)7(% |m ;1.

4. Compute m; j, = M(i,ji) for all
i€y ={Z(k), Z(k+ 1), ... ,Z(n)}
and set

k—1
mi;, = mij, — Y w(i)vi(G)-
=1

KRONECKER PRODUCT AND DWT APPROXIMATION 9

5. Find i, such that

max |m}; |.

— !
die = [mi, 5, | = max [m;,

(Now, the pivot on the kth step is to be in position (i, ji) of M).

6. If dj, is less than the machine precision then stop. Otherwise, compute

k—1
E=di(n—K)/|I > wollr
=1

and if € <e, set r = k — 1 and quit.

7. Compute
Mg = M(Zk,,]) for j=1,...,n,

a = mikjk/\/ |mikjk|7 B = \/ |mikjk|’

up(i) = myj, /o, 1=1,...,n,
Uk(j) :mikj/ﬁ, j=1...,n.

8. Swap the entries in positions k and [in Z, where [is such that Z(l) = ix.
Swap the entries in positions k and [in 7, where [is such that J(I) = j.

9. If k <n,set k <+ k+1and go to Step 2.

In this algorithm, one can recognize the familiar LU decomposition in which
the pivots are sought in a subset of entries of the “active submatrix”. This subset
is small compared to the whole set but larger than the single column used in
the column pivoting strategy. If we set € = 0 the algorithm becomes equivalent
to LU factorization with column pivoting and, provided M is non-singular, it
terminates in n steps to yield an exact LU decomposition.

Unlike the classical LU, we make the corresponding diagonal entries in L and
U be equal in modulus (Step 7). Thus, for symmetric positive definite matrices
we come up with the Cholesky decomposition. In the general case, we find it
useful to equalize somewhat the norms of u; and vy.

The most important difference between the above algorithm and the classical
LU is that the columns and rows are not assumed to be stored at the outset.
Each new row and column pair is computed and stored when the corresponding
pivot has been chosen from some precomputed entries. The choice of the latter
entries is based on a heuristic rule. This rule can be provided by the user and
may differ from the one we use above. Note that each new pivot is chosen with
a view to maximizing the volume of the updated cross intersection submatrix
under certain restrictions on the update data.

Concerning Step 6, note that the norm || Ele wol ||F is computed recur-
sively in successive summands without having to compute all the entries of the
corresponding matrix.

Table 2.1 confirms the robustness of the Incomplete Cross Approximation
Algorithm. The input matrix A is from Example 1.1 and ¢ is set to 107°. In the

KRONECKER PRODUCT AND DWT APPROXIMATION 10

table, € is the relative accuracy estimate computed by the algorithm. It should
approximate ||A — Bl||r/||A||r and, as we see, it does so fairly reliably.

n 256 1024 4096 16 384 | 65 536

r 8 10 11 14 15

5 33-10° [33-10° | 33-10° | 1.8-10° | 65-10°
A=B[[#/[[Allr | 29-10 ° | 26-10 ° | 64-10 ° | 22-10 ° | 47-10 ©

Table 2.1 Verification of the Incomplete Cross Approximation Algorithm.

Note that the approximation time for n = 65 536 was 3.6 sec. whereas a
single computation of all the entries of A took 565.5 sec. (on a Pentium 1600
notebook).

The time required by Algorithm 2.1 depends on r. As we observe from
typical examples, r < 20 even for n of the order of 1 million. Consequently, the
time for Step (A) is next to negligible in comparison with Steps (C) and (D).
Table 2.2 shows the times for the same matrix of Example 1.1 (on an AMD 1000
computer with 1 Gbyte operative memory).

n 16 384 | 65 536 | 262 144 | 1 048 576
TIME (sec.) 0.6 2.7 14.6 61.5

Table 2.2 Timings for the Incomplete Cross Approximation Algorithm.

Thus, from the practical point of view, construction of the approximation
B =~ A by Algorithm 2.1 is fast and reliable (at least for the test matrices of
Example 1.1). However, the matrix-vector multiplication procedure using the
Kronecker-product structure of B is still time-consuming. Also, we need a pre-
conditioner to reduce the number of GMRES iterations with A or B. Therefore,
we have to consider further approximation steps, (B) and (C).

3 Approximation by sparse matrices in a wavelet
basis

From now on we concentrate on the solution procedure for Bx = b, where B
T

is a well-structured matrix of the form B = Y U, ® V}, with Uy and V} being
k=1

stored in the computer memory. Matrices U and V}, are of order p which can

be of order of several thousands (however, for n < 1 000 000 we have p < 1 000).

We propose that these Uy and V}, undergo what is called wavelet compression.

The purpose of this is two-fold:
e to reduce the matrix-vector multiplication costs;

e to set the stage for construction of data-sparse preconditioners.

KRONECKER PRODUCT AND DWT APPROXIMATION 11

In typical applications, the U and Vj cannot easily be approximated by
simple thresholding (i.e. setting to zero ‘small’ entries) because most of the
entries are of similar magnitude. However, the divided differences of the en-
tries (considered as the values of a function on the integral grid) may differ
in magnitudes and those of certain orders may become sufficiently small. For
such cases, a discrete Wavelet Transform (DWT) offers a way of separating the
information contained in a ‘smooth’ matrix into blocks of entries corresponding
to weighted averages and weighted differences of entries in the original matrix.
The weighted average entries will be large in magnitude compared with the
weighted difference entries enabling a sparse approximation to the transformed
matrix to be obtained by thresholding. This technique has been used to provide
preconditioners both for dense matrices and for some sparse matrices (see, for
example, [?, 2,7, 7, 7,7 7 7?]). A typical scenario is that of large divided
differences close to the main diagonal with rapid decay as the distance from the
diagonal increases. It is this ‘diagonal singularity’ that produces the familiar
‘finger’ pattern of pseudo-sparsity in the transformed matrix.

Let us apply the Daubechies wavelet transform with g vanishing moments
[?]. It is defined by its ‘low-pass’ filter coefficients h;, i = 0,...,2u — 1, chosen

so that
2u—20—1

1, 1=0,
S it ={ o 151 20)
i=0 ’ =

Then, the ‘high-pass’ filter coefficients are of the form
gi = (—1)'hay_1-i, i =10,...,2u— 1. (21)
The requirement of p vanishing moments means that

2p—1

> gi*=0, s=0,...,n (22)
i=0

In order to apply the transform to a finite length vector we periodize the trans-
form. That is, for a vector x of length n we extend x to be an infinite periodic
vector X of period n and compute the transformed vector & as the first n com-

ponents of the infinite transformed vector X. Set m = 2y and, taking an even

KRONECKER PRODUCT AND DWT APPROXIMATION 12

N > m, define an N x N matrix of the following form:

hO h1 ha hm—l 0

0 0 ho h1 hom—1 0

ha hs - hom—1 0 0 ho hi ho
ho hs ha hs Bon—1 0 0 ho

by =

g g1 g2 - gm-1 0 o
0 0 g0 91 Im—1 0

ga 95 Gm-1 0 0 g0 g1 go
92 93 94 gs Im—1 0 0 90

Notice the wrap-round of the filter coefficients as a result of periodization. By

virtue of (20) and (21), ®x is an orthogonal matrix. When ®y is multiplied
by a vector, the rows with h; correspond to the weighted averages of its com-
ponents while those with g; correspond to the weighted differences of the same
components. Then, the k level transform W (¥) is defined as the product

wk =g® gl (23)
with
. Do ok 0
gk — (2[p/2*])] 24
0 Iy —app /2] 24

Note that the above definition does not assume that p is a power of 2.
If z; = f(i) for a polynomial f of order u, then, due to (22),

m—1
> gif(G+1i)=0, j=0,....p—I(m—1).
1=0

Consequently, most of the weighted differences (except those that come from
the wrap-round effect) are equal to zero. In this case, the divided differences of
f of order u are equal to zero (see, for example, [?]). In general, small divided
differences of order k < p signal that the kth derivatives at certain points are
small and, under some assumptions, f can be proved to be close to a polynomial
of order k. This results in the pseudo-sparsity of the transformed vector.

The matrix level & wavelet transform of a p X p matrix Z is defined to be

Z=Wzw", w=w®, (25)

This is equivalent to performing the level k£ vector DWT on each of the rows
and the columns of Z. In what follows, we replace W with the same matrix

g3
g1

KRONECKER PRODUCT AND DWT APPROXIMATION 13

with the columns in the reverse order. Clearly it makes no difference for the
matrix compression purposes but turns out to be useful for construction of
sparse factorized preconditioners.

”
Now, consider B = 3 Up®V}, with dense pxp matrices Uy, and Vj,. Applying
k=1

an orthogonal discrete wavelet transform (DWT) to the Uy and V}, we obtain
Pk = WUkWT and Qk = WVkWT. Clearly,

S PowQu=Wew)B(W!'aw?).

k=1

Choosing a threshold 7 > 0, we approximate P and @ by sparse matrices
P and Q. It can be verified that

r T T
1Y PLeQr =Y PeoQillr <ewll) Pe® Qkllr, (26)
k=1 k=1

— = k=1
where
Y. (1P — PLF||QkllF + | PrlIFlIQr — QFlIF)

k=1 _ (27)
I kZ P ® Qkllr
=1

r

ew =ew(T) =

is easy to compute. By orthogonality of the DWT, we have
1C = Bllr < ewl|Bllp-
If B is an approximation of A such that
1B = Allr < exllAllr, (28)
it is easy to see that
IC — Allr < (ex +ew +erew) ||AllF- (29)

Hence, by appropriate choices of r and 7, steps (A) and (B) of Section 1 enable
us to approximate A to any required degree of accuracy.

In the wavelet compression of Step (B) we begin with some 7 = 75 and
then diminish it (currently by the rule 7, = 7,1 /4) until ey (7) becomes of
the same level as the error estimate of Step (A). The initial threshold is set to
be 19 = Yamax where apax is the maximal in modulus entry in the Uy and Vj
and 0 < 7 < 1 is a preset control parameter. The important outcome of this
procedure is the compression factor (the ratio of the total number of nonzero
entries in the U] and V;7 and the total number of entries in A). In Table 3.1
we show the wavelet compression results for the matrix of Example 1.1 of order
n = 65 536, using the Daubechies DWT of order 8.

KRONECKER PRODUCT AND DWT APPROXIMATION 14

In this example, the compression factor of Step (A) was 0.0003967 and the
relative accuracy estimate was ex = 6.4 - 107°. On the output of Step (B) we
have the compression factor 0.00007169, which is a significant improvement
of the one from Step (A). The final accuracy estimate ey = 5.8 - 107° is of
the same order as the estimate of approximation by the sum of the Kronecker
products (ew).

However, it is not the compression factor itself that is the principal target
to consider in Step (B). The main purpose here is to reduce the matrix-vector
multiplication costs. Let the number of nonzero entries in all the P} and @),
matrices be v. Then D (and hence C) can be multiplied by a vector in O(v+/n)
operations. In Table 3.1 we also give the complexity reduction factor which is
the ratio of the reduced matrix-vector multiplication costs and the same costs
for the original matrix A.

T Compression factor | Complexity reduction factor Ew
1.513253 0.00000179 0.00045836 0.14160909
0.378313 0.00000600 0.00153661 0.04432408
0.094578 0.00001376 0.00352216 0.01161883
0.023645 0.00002444 0.00625551 0.00331343
0.005911 0.00003830 0.00980413 0.00089616
0.001478 0.00005413 0.01385605 0.00021871
0.000369 0.00007169 0.01835191 0.00005751

Table 3.1 Wavelet compression of Step (B).

Instead of using the same 7 for each of the P, and @ we could have opted
for choosing individual thresholds. However, since the norms of Py, and Q. differ
considerably for different k, one has to be careful in this choice lest the sparsity
for the matrices of smaller norms is lost.

4 Data-sparse preconditioners

Once we have computed the P] and @, we are in a position to solve Az = b
by using an iterative method, such as GMRES, applied to the approximate
equation C'x = b. This requires only that we are able to perform matrix-vector

N
multiplication with C = (W' @ WT)D(W ® W), where D = Y P{ ® Q7.
k=1

The 2D DWT matrices W @ W and WT @ WT are multiplied by a vector in
O(n) operations. It implies that the matrix-vector multiplication costs for C
are determined by the same costs for D. Overall we multiply C' by a vector in
O(v+/n) operations, where v is the total number of nonzero entries in the P[]
and @}, matrices.

Let A be from Example 1.1 of order n = 1 048 576. Application of PCG to
solve Cz = b took 186 iterations and 199.58 minutes (on an AMD-1000 com-
puter). The spectral condition number of C was found (from the corresponding
Ritz values) to be 6737.4. Thus, we are interested to reduce this condition

KRONECKER PRODUCT AND DWT APPROXIMATION 15

number, and hence the number of iterations, by choosing an appropriate pre-
conditioner. We consider the following two options:

e Incomplete LU preconditioner.

e Inverse Kronecker product preconditioner.

4.1 Incomplete LU preconditioner

Although D has a fairly large proportion of zero entries, it is not sparse enough
to be stored in memory in any conventional storage scheme for sparse matrices
(for example, the Compressed Row Format or the Compressed Column Format
[?]). To form a preconditioner, we first increase the threshold § > 7 for P} and
Qi to increase the number of zeroes so that the matrix

-
E=) P oQ
k=1
can be stored as an explicit sparse matrix.

The choice of the threshold is now different from the one we had at the
wavelet compression stage of Step (B). Then we had to maintain the approx-
imation error at the level of that obtained at Step (A). Now we begin with
some g = Yamax, Where 0 < v < 11is a preset control parameter and a,qz 18
the maximal in modulus entry in the P, and @) matrices. Then we increase
0 (currently by the rule 6y = 20;_1) until the compression factor reaches the
prescribed level. In the example below we use the Daubechies DWT of order 8.

In Table 4.1 we show the results of the above thresholding for A of order
n = 65 536 from Example 1.1. The compression factor of Step (A) is fa =
3.9673-10~* and we agree to satisfy with the compression factor fg for E when

it becomes less than f = cyfa with some preset ¢, > 1. In this particular
case we take ¢, = 2.5 and obtain f = 9.9182-10~* In the last column we
output the estimate for the relative Frobenius-norm approximation error of this

sparsification procedure.

0 fe Error estimate
0.015133 | 0.01850058 0.00257633
0.030265 | 0.01384041 0.00494958
0.060530 | 0.00978269 0.00971694
0.121060 | 0.00669412 0.01966431
0.242121 | 0.00385682 0.03909217
0.484241 | 0.00241708 0.07117478
0.968482 | 0.00096515 0.14700328

Table 4.1 Sparsification preliminaries for the incomplete LU decomposition.

Once E has been stored, we apply the incomplete LU decomposition algo-
rithm with the dynamic choice of fill-in depending on the preset threshold ey
(the so-called ILUT, in the terminology of [?]).

KRONECKER PRODUCT AND DWT APPROXIMATION 16

For the above example, the ILUT threshold e., was set to 0.01. In this
case we use the symmetry and positive definiteness of the matrix and apply the
incomplete Cholesky algorithm, a special variant of the LU decomposition with
L =UT. The compression factor for L versus A was found to be 4.902 - 10~*.
On Fig. 4.1 we show the sparsity portraits of E and the incomplete Cholesky
factor U.

Figure 4.1 Matrix and its incomplete Cholesky factor (n = 65 563).

In Table 4.2 we can see the performance of CG with no preconditioner. The
timing was done on an AMD-1000 computer with 1 Gbyte operative memory.

n 16 384 65 536 262 144
r 12 13 16
CG time 14.7 sec | 106.7 sec | 1968.0 sec
Number of iterations 61 90 129
conds(C) 824.455 | 1667.53 3344.93

Table 4.2 CG with no preconditioner for matrices of Example 1.1.

In Table 4.3 we record the performance of the PCG with the ILUT precon-
ditioner for matrices of different orders for the same Example 1.1. Note that we
were not able to proceed with larger sizes because the memory was insufficient
for construction of the ILUT preconditioner.

n 16 384 | 65 536 262 144
ILUT construction time 2.3 sec | 37.7 sec 86.1 sec
PCG time 2.5 sec | 10.0 sec | 163.6 sec
Number of iterations 8 6 9
conds(CF™1) 3.852 2.435 5.638

Table 4.3 Performance of the ILUT preconditioner for matrices of Example
1.1.

4.2

One may expect that a good preconditioner could be built up from approxima-
tions to A of smaller Kronecker rank than B. To this end, we may consider

Inverse Kronecker product preconditioner

KRONECKER PRODUCT AND DWT APPROXIMATION 17

matrices
l

BZZZUk®Vk7 1<l<r,
k=1
and especially the simplest case corresponding to [= 1. A remarkable advantage
of the simplest case is that B; can be inverted explicitly at low costs as
—1 —1 —1
B =U "V .
Applying the DWT to the U; ! and V;* we obtain

S=wur'wt, T=wv'wl,

(30)

(31)

then approximate S and T by their sparsified counterparts S® and T, respec-
tively, and finally come up with an explicit preconditioner of the form

Fr=wWT oW (S e T)(W o W). (32)

The threshold § can be chosen as § = yayax where 0 < v < 1is a preset, control
parameter and apmax is the maximal in modulus entry in the S and T'.

In Table 4.4 we present the results for matrices of different orders from the
same Example 1.1 on an AMD-1000 computer with 1 Gbyte operative memory.

n 16 384 65 536 262 144 | 1 048 576

r 12 13 16 16

é 38-10°|6.4-107°|3.1-10° | 6.8-10°
Matrix-by-vector time 0.2 sec 1.2 sec 15.4 sec 48.3 sec
Number of iterations 18 22 26 35
IKP construction time 0.2 sec 1.3 sec 11.1 sec 77.4 sec
Time for the PCG 4.7 sec 28.8 sec 7.14 min | 30.33 min
conda(CF~1) 32.59 53.21 90.44 159.77
Relative solution error | 1.2-10~% | 1.8-10~%* | 9.6-10~° 3.-10~*

Table 4.4 Numerical results for matrices of Example 1.1 using IKP
preconditioner.

The right-hand side b was set to be the sum of the first, fifth and tenth
columns of A, so we know the exact solution of Az = b and can report on the
resulting accuracy in the most reliable way. The accuracy control parameter
was set to 107%, the same as the residual reduction parameter for PCG. The
threshold control parameter y for sparsification of S and 7" was set to 0.04.

If we apply IKP without wavelet sparsification of the Kronecker factors, the
number of iterations is smaller but the overall time becomes considerably higher,
because of the multiplication complexity (see Table 4.5).

n 16 384 | 65 536 262 144
Number of iterations 15 20 26
IKP construction time | 0.1 sec | 1.2 sec 10.6 sec
Time for the PCG 5.1 sec | 70.5 sec | 32.35 min

Table 4.5 IKP preconditioner without wavelet sparsification.

KRONECKER PRODUCT AND DWT APPROXIMATION 18

4.3 Implementation remarks

Our solution method for Az = b, as set out above, requires that we store the
approximate matrix D (in the form of a sum of Kronecker products) and use it
to solve the approximate equation

WTewW?)D(W o W)z =b.

At each iteration, this involves transforming a vector into the wavelet basis and
transforming another vector back to the standard basis. Although the cost is
not high (O(n) operations), it is not negligible and is unnecessary. The cost of
each iterative step can be reduced by transforming the entire equation into the
wavelet basis, solving it there and then transforming the solution vector back
to the standard basis. In other words, we solve the transformed equation

Di=b, z=WeW)z, b=WaW)b, (33)

and then obtain z = (W' ® WT) i by applying an inverse DWT. Thus we
now only perform one vector DWT at the start of the iteration process and one
inverse DWT at the end. Similarly, when a preconditioner F (in the wavelet
basis) is used, we solve

DF'y=b, §=Fi, #=WeW)zx, b=(WoW)b. (34)

The orthogonality of the DWT ensures that the residual norm is the same in
both the wavelet and the standard basis.

5 More examples and discussion

In several places above, we have already reported on very promising numerical
results obtained for matrices of Example 1.1. Consistent with theory proposed
in [?, ?], the Kronecker product approximation method works well for these
matrices. Moreover, both of the data-sparse preconditioners proposed in this
paper perform well. Construction of the ILUT preconditioner takes longer, but
it leads to a smaller number of iterations. The IKP preconditioner is easier
to construct but the number of iterations in this case is larger. The overall
time is also greater than for ILUT, but only slightly. However, the main draw-
back of the ILUT preconditioner is that it requires more memory than the IKP
preconditioner.

To give more examples, consider a somewhat artificial extension of Example
1.1 as follows.

Example 5.1 For any a > 0, define A(a) = [aij ()] of order n = p? by

.. — 2pa’ Z:.]a
@ ={ Y, 121 (35)

where the nodes z* are the same as those in Example 1.1. For brevity, we refer
to A(a) as the a-matrices.

KRONECKER PRODUCT AND DWT APPROXIMATION 19

All the a-matrices are symmetric. For n = 4 096, we have observed numeri-
cally that they are positive definite for 0 < a < 1.6 and for a > 1.7 they become
indefinite. > Thus, for 0 < a < 1.6 we may apply CG.

120 T I I I I I I I
: : No Preconditioner +
; ; Inverse Kronecker Product Preconditioner >
100 =i AR poerereeee R R oo
: : : : : : : : +
B0
: : : : : : : ot
. —+ .
60 - T REGREAREEEEEEEE beeeesies R EEEEe] REERETREPEF s
1 1 1 N 1 1
! . + . . . !
: : + T : : : : :
40 i R T R T b
: + : : : : : : :
: i >< : X X f : : : :
20 R e g e
| | | R
0 | | | | | | | |

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

Figure 5.1 The number of CG iterations against a (n = 4 096).

The approximation error control and residual reduction parameters were set
to 107°. The relative accuracy of the computed solution was found to be of
order 10~°. The Kronecker rank was 2 for & = 2 and from 10 to 12 for other
values of a.

In Fig. 5.1. we plot the number of unpreconditioned and IKP precondi-
tioned CG iterations against a. In Fig. 5.2 we show the estimates for the
spectral condition number computed from the Ritz values. Obviously, the IKP
preconditioner considerably reduces the condition number. However, the small-
est number of iterations (just 2) is observed with the largest condition number!
This is no surprise, in fact, as it is not only the condition number that counts,
and in the case a = 0 we have only two different eigenvalues. For small o a
relatively small number of iterations is best effected by a specific distribution of
the eigenvalues, the eigenvalue cluster around 1 (see [?]).

3A proof and a general theorem on this phenomenon would be interesting.

KRONECKER PRODUCT AND DWT APPROXIMATION 20

[y
w

| | | | |
12 + 77777777777 L No Preconditioner ~+ |
Lo ~ Inverse Kronecker Product Preconditioner <
I + L R R SR S L —
e T | | | | | |
I A N B R SO U [S
v T | +
L e + B S N S
| | S
8t e SRR B —
T ><>< """""" """ >< """""""""""""""""""""" -
6 D GO S S S S S -
X X & |
o R SELEEE R R E G S R —
4 -'><>< """"""""""" =
: X
B T XKooz
9 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

Figure 5.2 Spectral condition number in log, scale against a.

For a > 1.7 we apply GMRES with a maximum of 600 iterations. In Table
5.1 we put the results for the IKP and ILUT preconditioners. As above, the
approximation control and residual reduction parameters were set to 107°. De-
spite the previous results, in this range of a the solution accuracy falls by three
orders and finally is of order of 1072.

o 1.7 1.8 1.9 2.0 2.1
No prec. | 198 | > 600 | > 600 | > 600 | > 600
IKP 27 141 194 346 444
ILUT 231 125 154 182 202

Table 5.1 Number of GMRES iterations for the a-matrices (n = 4 096).

Example 5.2 Define a;; by (10) with the nodes (11) constructed from the
nonuniform one-dimensional grids of the following form:

1 1
5(1—(:05(%(0[—5))), a=1,...,p,

y/g:%(l—cos(%(ﬁ—%))), B=1,....p.

The Kronecker ranks for matrices of Example 5.2 are found to be approxi-
mately the same as they were in the case of uniform grids. Now the matrices are
not positive definite, so we apply GMRES. For the solution accuracy to be of
order of 10~ we have to set the residual reduction parameter to 10=¢ (note that
it was 10~ in case of Example 1.1). The number of unpreconditioned iterations
was larger than it was with uniform grids. Also, we found the ILUT precondi-
tioner less impressive in this new case but still very useful. For construction of
FE we took ¢y = 4.5 and ¢ = 0.005.

Lo

(36)

KRONECKER PRODUCT AND DWT APPROXIMATION 21
n 2 025 3 600 5 625 8 100
r 14 16 18 17
5 7-107° [4-10=° [4-10=5 | 7-10°°
No prec. 353 571 > 900 > 900
ILUT 50 54 94 109

Table 5.2 GMRES iterations for matrices of Example 5.2. Wavelet order is 8.

In the case of nonuniform grids we have no difficulties at the stage of ap-
proximation by the sum of Kronecker products, even for very large matrices.
However, the ILUT preconditioner now requires much more memory than it did
with the uniform grids. In further research we need to find out if we can do with
lesser memory in the ILUT and also look for alternatives. (The current version
of IKP appeared inefficient.) We think that the currently observed difficulties
may come from the application of the Daubechies wavelets that do not very well
suit the case of nonuniform grids.

In Table 5.3 we compare the performance of ILUT with wavelets of different
orders. The timing is made on a Pentium-1600 notebook (the first number in
the brackets is time for the construction of preconditioner and the second is for
GMRES iterations).

Wayvelet order n =2 025 n = 3 600 n=>5625 n =38 100
2 49 (4.141.9) | 68 (11.445.8) | 157 (71.7432.7) | 129 (161.1+41.3)
4 29 (6.8—1—1.0) 54 (26.9+4.7) 110 (153.9—1—22.5) 90 (256.6+26.4)
8 50 (12.242.0) | 54 (22.1+4.4) | 94 (109.6+17.0) | 109 (256.8+31.1)

Table 5.3 Number of iterations and timings (in sec.) for matrices of
Example 5.2.

In conclusion, let us make a summary of the results and outline directions
for future research.

We have presented a new way in which very large dense matrices derived
from radial functions can be stored (in an approximate form) very compactly, by
expressing them as a sum of the Kronecker products of much smaller matrices in
a wavelet basis. This enables us to store and manipulate such matrices without
the need for prohibitively large memory resources.

We have further demonstrated that solving linear systems of equations in-
volving such matrices is feasible using an iterative method, and have presented
two simple preconditioning strategies based firstly on ILU decomposition of a
sparse approximation to the matrix and secondly on approximating the inverse
of a single Kronecker product. In experiments, the overall solution time using
the two methods was similar, with the ILUT approach being slightly faster.
However, the extra memory required to store the ILUT preconditioner means
that, if limited storage is an issue, the IKP approach may be feasible when ILUT
is not.

These are by no means the only possible preconditioning approaches that
could be tried, and future work will include investigation into alternative meth-
ods. In particular, the inverse of the wavelet-approximated matrix E can be
expected to be pseudo-sparse, suggesting that it might be fruitful to seek an ap-
proximate inverse of this matrix. This would provide a better approximation to

KRONECKER PRODUCT AND DWT APPROXIMATION 22

E~! than the IKP preconditioner described above. Such ‘direct’ precondition-
ers are of particular interest when parallel processing is employed, as may well
be the case for very large matrices, because the construction and application
of approximate inverse preconditioners can be readily parallelized. Preliminary
experiments using a Newton iteration (see e.g. [?, §2.1]) to form an approximate
inverse for E produced preconditioners that gave good convergence, but were
expensive to compute. We anticipate that an alternative method of computing
the approximate inverse (such as the factorized approximate inverses of [?, 7, 7],
the polynomial preconditioners of [?] or the minimization approaches of [?, ?])
and/or the choice of a better starting matrix for the Newton iteration could
be expected to yield improved results. In particular, we have implemented ver-
sions of the Benzi, Meyer and Tuma algorithms [?, ?] for computing factorized
sparse approximate inverse preconditioners using sets of E-biconjugate vectors
in which the matrix E is defined as a sum of Kronecker products. So far our re-
sults have been promising, but more work is needed to establish reliable criteria
for dropping entries in the P; and @); to give E and subsequently for dropping
entries to maintain the sparsity of factors of the approximate inverse. we have
also carried out some preliminary work using the Grote and Huckle algorithm
[?], but so far have not found a way of combining good convergence with a
reasonable cost for computing the preconditioner.

It may be possible to reduce further the cost of the IKP preconditioner by
using the alternative ‘DWTPerMod’ transform (presented in [?]), in which the
large entries are confined to an ‘arrow’ structure (a diagonal band and blocks at
the bottom and right-hand edges) by permutation of the rows and columns of the
transformed matrix. This substantially reduces fill-in under LU factorization.

At present we have only used wavelets from the Daubechies family. These
have the virtue of being extremely easy to implement and their orthogonality
ensures that a close approximation in the wavelet basis implies a close approx-
imation in the standard basis. However, it is likely that improved sparse ap-
proximations (i.e. more sparse or giving closer approximation or both) could be
obtained by using other wavelet transforms to approximate the Kronecker fac-
tors. In particular, using the ‘Lifting’ scheme of Sweldens [?] it may be possible
to design biorthogonal wavelets with specific matrix approximations in mind.
Another avenue that we intend to explore is the use of NS-forms [?, ?], which
offer an alternative way of solving linear systems in a wavelet basis.

We believe that we have laid the foundations for some exciting new develop-
ments in approximation and numerical solution of large dense matrix problems.

Acknowledgements
The authors would like to thank the anonymous referees and our colleagues Dr.

David Silvester and Prof. Neville Ford for their careful reading of the draft of
this paper and for their helpful suggestions.

