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Abstract

Important matrix-valued functions f(A) are, e.g., the inverse A~!, the square root
VA and the sign function. Their evaluation for large matrices arising from pdes is not
an easy task and needs techniques exploiting appropriate structures of the matrices
A and f(A) (often f(A) possesses this structure only approximately). However, in-
termediate matrices arising during the evaluation may lose the structure of the initial
matrix. This would make the computations inefficient and even infeasible. However,
the main result of this paper is that an iterative fixed-point like process for the eval-
uation of f(A) can be transformed, under certain general assumptions, into another
process which preserves the convergence rate and benefits from the underlying struc-
ture. It is shown how this result applies to matrices in a tensor format with a bounded
tensor rank and to the structure of the hierarchical matrix technique. We demonstrate
our results by verifying all requirements in the case of the iterative computation of
A~" and VA. The exact iteration is analysed in the case of sign(A), here, however,
the iteration is constrained to a subspace and does not satisfy the assumptions of our
theorems.
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1 Introduction

We consider important matrix-valued functions f(A) as, e.g., the inverse A~!, the square
root v/A and the sign function. In particular, we are interested in evaluations of f(A) for
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matrices A arising from partial differential equations. Obviously, the computation of f(A)
for large-scale matrices A is not an easy task. In the numerical treatment one has to avoid
the full-matrix representation. Instead one should use special representations (i.e., special
data structures) which, on the other hand, correspond to special properties of the argument
A, of the result f(A) and of the auxiliary matrices arising during the computation process.

Examples for such a representation are Toeplitz-like structures or a sparse-matrix for-
mat. The latter format is not successful for our examples, since sparse matrices A produce
results A~!, /A, sign(A), which are usually non-sparse and which, moreover, cannot be
approximated by sparse matrices. This is different for the format of hierarchical matrices
(cf. [18, 16, 19, 20]) and the hierarchical Kronecker-tensor product (HKT) representation
(cf. [24, 21, 22]).

The matrices belonging to a particular representation are characterised by a subset S
of the vector space of matrices. The letter S abbreviates “structured matrices”. In the
simplest case, A € S implies f(A) € S. If also all intermediate results belong to S, the
whole computational process can be performed using the special data structures of S. The
purpose of this paper is the analysis of a more complicated situation, when A € S does not
imply f(A) € S, but f(A) has a good approximation in S. We illustrate this situation by
the following example.

We consider a discrete two-dimensional Laplacian

2 -1

A=TQI+I®T, T= : (1.1)

where T and the identity I are n x n matrices. Obviously, A is a matrix of size n? x n?

with a very special structure: it is exactly the sum of two terms, each being the Kronecker
(tensor) product of two n x n matrices. It is remarkable that A~! is approzimately of the
same structure but with a greater number of terms. This number is called the tensor rank;
the way the rank depends on the approximation accuracy € and n can be seen from Table 1.1:

€
n 1072 | 1072 | 10=* | 10=> | 10=¢ | 1077 | 1078 | 107°
20 4 5 6 7 8 9 10 10
40 4 6 7 8 10 11 12 13
80 4 6 8 10 11 13 14 15
160 4 7 9 11 13 14 16 18
320 5 7 10 12 14 16 18 20

Table 1.1: Tensor ranks for s-approximations to A=,

We observe a logarithmic growth of the tensor rank upon ¢ and as well upon n. More
precisely, the rank estimate r = O(]loge|logn) can be proven (cf. [23]) based on approx-
imation by exponential sums also for Kronecker products involving more than two factors
(cf. [15, 21, 22]). Thus, A~ can be approximated by a matrix defined by a reasonably small
number of parameters in the tensor format.



So far the existence of an approximation B &~ A~! with B € S is ensured (here, the set S
of structured matrices is given by sums of Kronecker products with a certain limited number
of terms). It remains to design an algorithm for computing f(A4) = A~'. A possible choice
is the Newton-Schulz iteration

X() = CYI, Xk = Xk_1(2[ - AXk_l) (k‘ == 1,2, .. )

For this iteration it can be proved that if 0 < a < 1/4 then X — A~', and the convergence
is quadratic.

Here the important question arises, whether the intermediate matrices X belong to the
subset S or can be well approximated by X, € S. In the following numerical experiment
each X, admits a suitable approximation of low tensor rank as can be seen from Table 1.2:

k
€ 1123|4567 |89 10|11 (12|13 |14 |15 ]| 16

1073 6 | 6 6 |6 |6 | 7| T7|7|7
1076 [2]4]|7[8]|8[|9]10]10]11]12]12]|13]| 14| 14| 13|13

w
e~
e~
ot
ot
ot

Table 1.2: Tensor ranks for e-approximations to X}, (n = 160).

Thus, a natural idea is to substitute X by its approximation in the tensor format.
Such a substitution is called truncation. Assume that the truncation is performed at every
iteration. Then the following questions arise: How will this affect the convergence rate of the
Newton-Schulz method? Will the convergence remain quadratic? The answers are positive.
Moreover, the same answer is valid not only for the Laplacian but typical for the truncation
based on the tensor or hierarchical formats [17, 27, 21, 22].

The main result of this paper is that an iterative fixed-point process for the evaluation
of f(A) can be transformed, under certain general assumptions, into another process which
preserves the convergence rate and benefits from the underlying structure. It is shown how
this result applies to matrices in a tensor format with a bounded tensor rank and to the
structure of the hierarchical matrix technique. We demonstrate our results by verifying all
requirements in the case of the iterative computation of A~! and v/A.

In this paper we propose a general framework in which the above-mentioned results
appear as particular cases. Our main results are two theorems (Section 2) that turn out to
be both entirely general and quite elementary. Despite the latter, they do not seem to be well-
known in the community of numerical analysis and structured matrices. Our results clearly
amplify the role of nonlinear iterative schemes in computations with structured matrices. It
is especially gainful that they apply to many interesting iterative scheme and various classes
of structured matrices including those already in work and those that may appear yet in
application contexts.

Nevertheless, there are iterations which do not satisfy the requirements of our theorems.
For instance, our theory does not apply when the success of the iteration depends on the
fact that the iterates X stay in some sub-manifold. We give examples of such “constrained”
iterations for computing v/A and sign(A) in §4.2.2 and §4.3 and analyse the convergence of
the exact iteration. Although the truncated iteration is not supported by our theorems, the
numerical performance is reasonable.



The rest of the paper is organised as follows.

In Section 2 we consider an iteration X = @, (X 1), which starting with X := ®y(A) is
assumed to converge to f(A). The quadratic convergence is described in detail in Lemma 2.1.
Next we introduce a so-called truncation operator R which maps into a subset S (which we
call the set of “structured” elements). The combination of the iteration with the truncation
operator yields the truncated iteration Y, = R(®x(Yx—1)). In Theorem 2.2 we describe the
characteristic requirements on R so that the truncated iteration has similar convergence
properties as the original iteration. The final Theorem 2.4 considers the important case that
the desired result f(A) does not belong to S but is close to S.

It remains to verify that the assumptions on the truncation operator R can be satisfied in
practically relevant cases. In Section 3 we describe a general framework which is later applied
(i) to the structure used in the hierarchical matrix technique and (ii) to low Kronecker rank
matrices.

Section 4 is devoted to the convergence analysis of certain matrix iterations resulting in
A~', VA and sign(A). In particular, the general theory from Sections 2 and 3 ensures the
quadratic convergence of the truncated non-constrained iterations to compute A~' and v/A.
In §4.2.2 we describe an example of an iteration for v/A which is constrained to a subspace.
An iteration of the same type for sign(A) is given in §4.3.

2 Main result

2.1 Exact iteration

Let V be a normed space V' and consider a function f : V — V and A € V. Assume that
B := f(A) can be obtained by an iteration of the form

Xp=0p(Xp1), k=12 ..., (2.1)

where @, is a one-step operator. Further, assume that for any initial guess X, sufficiently
close to B, the process converges:
lim X, = B. (2.2)

k—o0

If &, = ® does not depend on k, (2.1) represents the important fized-point iteration.

Lemma 2.1 Let B and ®; be as above and assume that there are constants ce, €6 > 0 and
o > 1 such that

|®1(X) — B|| < ¢col|X =B||* forallX €V with || X — B|| <¢e and all k € N, (2.3)

and set
e:=min (e, 1/c), c:= “Vco. (2.4)

Then (2.2) holds for any initial guess X, satisfying || Xo — B|| < &, and, moreover,

ok
Xk =Bl < ¢ (e [|Xo—BJ) (k=0,1,2,...). (2.5)



Proof. Let ey, := || Xy — B||. Then, due to (2.3),
er < co€p_yq, provided that ey < eg . (2.6)

Because of (2.6), the inequalities e;_; < & < g imply e < cpe® = ¢* 1% =¢ (cs)o‘_1 <e.
Hence, all iterates stay in the e-neighbourhood of B. (2.5) is proved by induction:

_ o]
er < co€j_y = Co (c’l (ceg)ak 1) = ¢t (ceo)o‘k =c! (ceo)o‘k :
(2.6) induction hypothesis cp=c*—1
Whenever ey < ¢, (2.5) shows e, — 0. n
We remark that (2.6) together with ey < £ implies monotonicity:
Xk = Bl < [ Xk-1— BJ|. (2.7)

2.2 Truncated iteration

Let S C V be a subset (not necessarily a subspace) considered as a class of certain structured
elements (e.g., matrices of a certain data structure) and suppose that R : V' — S is an
operator from V onto S. We call R a truncation operator. It is assumed that R(X) = X
for any X € S (i.e., all elements in S are fixed points of R). Note that, in general, R is
a nonlinear mapping. The truncation of real numbers to machine numbers is a common
example for V =R.

Now, instead of (2.1), consider a truncated iterative process defined as follows:

Yy == R(Xy),

Yy = R®u(Ye 1) (k=1,2...). (28)

The next theorem needs the assumption that the desired result B := f(A) belongs
(exactly) to the subset S. Later, in Theorem 2.4, this requirement will be relaxed.
Theorem 2.2 Under the premises of Lemma 2.1, assume that

IX —R(X)| < ¢r||X=B|| forall X eV with | X —B||<eq. (2.9)
Then there exists 6 > 0 such that the truncated iterative process (2.8) converges to B so that
1Yy — B|| < cge |[Yic1 — B||*  with cre == (cr + 1)ca (k=1,2,...) (2.10)

for any starting value Yy = R(Yy) satisfying ||Yo — BJ| < 0.

Proof. Let € asin (2.4) and define Z, := @4 (Y)_1). By (2.7) we have || Z;, — B|| < ||Yx-1 — B]|,
provided that ||Y;—1 — B|| < e. Then

Ve = Bl = [[(R(Zk) = Zk) + (Ze = B)|| < (cr + 1) |2, — BJ|- (2.11a)
Assuming ||V — B|| < &, the inequalities £ < €4 and (2.3) ensure
12k = Bl = [|®k(Ye—1) — Bl < o [[Yior — B||*. (2.11b)

Combining (2.11a) and (2.11b), we obtain (2.10) for any k, provided that ||Y;_; — B|| < .
Similar to the proof of Lemma 2.1 and (2.7), the choice

§ :=min (¢, 1/C), C = *Ycro (2.11c)
guarantees that ||Yy — B|| < ¢ implies ||Y; — B|| < 6 < e for all k£ € N. u
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Corollary 2.3 Under the assumptions of Theorem 2.2, any starting value Yy with
1Yo — BJ| < 9§ leads to

i—Bl < CTHC % -B) k=12, (2.12)

where C' and § are defined in (2.11c).

2.3 Thecaseof B¢ S

In most of the practical applications, the desired result B will not belong to the subset S,
but may be close to S. The following requirement (2.14) states that ||B — R(B)|| < egp .
Then the truncated iteration cannot converge to B, but it comes sufficiently close to B.
In fact, in a first phase the truncated iteration is described by (2.12) with C' replaced by
C' := °°/2cps until it reaches the 2zgp-neighbourhood of B. The quantity spp must be
sufficiently small:

erB < g, where 7 := min (£,1/ *V/2cre) (2.13)
with cre = (cg + 1)cg as defined above.
Theorem 2.4 Under the premises of Lemma 2.1, suppose
IX — R(X)|| < crl||X —B|+¢crp for all X € V with || X — BJ| < ee, (2.14)

where egp satisfies (2.13). Further, assume ||Yy — B|| < n and define Yy, by the truncated
iteration (2.8). Let m be the minimal k € N such that

a £
Ve - B < 22, (2.15)

Then the errors ||Yy, — B|| strictly decrease for 1 < k < m, while for k > m the iterates
stagnate in a 2e grg-neighbourhood of the true result:

i p) < { Gone Mo m BT b (2.16)
Proof. Instead of (2.11a) we now have
Ve = Bl < [[Ye = Zell + |2 = Bl < (cr + D [| 2k — Bl| + €ra,
which obviously implies
Y — B|| < cre ||Yio1 — B||* +¢rB- (2.17)

If & < m, the inequality egrp < cgel||Yi—1 — B||* holds and implies [|Y; — Bl <
2¢re ||Yi-1 — BJ|”. Hence, (2.10) holds with cge replaced by 2cgre giving rise to (2.12) with
C replaced by C'" := “3/2cge. The initial error estimate ||Yy — B|| < n implies the strict
decrease of ||Y; — B|| until (2.15) holds.

If k = m, (2.17) shows ||Y,, — B|| < 2egp. For k > m, the estimate cre (2erp)" +crp <
2egp derived from (2.13) proves the second case in (2.16). n
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Corollary 2.5 Theorems 2.2 and 2.4 can be generalised by replacing the conditions (2.9)
and (2.14) with the respective inequalities

I(T=R)Y(X)| < cn X -B| (2.18)

and
I(I = R)(X)|| < cr X —B|’+es, (2.19)

provided that a3 > 1. Then, the order of convergence of the truncated iterative process (2.8)
becomes a3. However, all truncation operators used in this paper satisfy the conditions with

B=1.
Note that condition (2.9) has a clear geometrical background. If
R(X) :=argmin{[|X — Y] :Y € S}

is a best approximation to X in the given norm, inequality (2.9) holds with ¢z = 1, since
B € S. Therefore, (2.9) with ¢z > 1 can be viewed as a quasi-optimality condition. If the
norm is defined by a scalar product, then S is a subspace, R(X) is the orthogonal projection
onto S and (2.9) is obviously fulfilled with cp = 1.

The requirement o > 1 for the order of convergence implies convergence in a suitable
neighbourhood of B. For linear convergence (o = 1) the additional requirement co < 1 is
essential.

Remark 2.6 In the case of a = 1 (i.e., linear convergence), the truncated process retains
linear convergence, provided that (cg + 1)ce < 1.

3 Truncation operators

Theorems 2.2 and 2.4 can be applied to various classes of structured matrices. When con-
structing a truncation operator for a particular class, we should take care that condition
(2.9) is satisfied.

3.1 General framework

Next we describe a general framework which seems to cover all important cases.

Lemma 3.1 Let B = R(B) be fized and assume that R is Lipschitz at B. Then the inequality
(2.9) holds.

Proof. The Lipschitz property of R means that |R(X) — R(B)|| < ¢||X — B]J| for some
constant ¢ > 0 independent of X. The estimate

X = RQOI 25, (X = B) + (R(B) = RX))|| < (1+ ) [|X = B

shows (2.9) with cp =1+ c. u



Corollary 3.2 Condition (2.9) is fulfilled as soon as B = R(B) and R is a bounded linear
operator.

Let V = R be the space of square matrices with respect to the index set I and S C V

a subspace with a prescribed sparsity pattern P C I x I, i.e., X € S if and only if X;; =0

for all (7,j) ¢ P. A familiar example of a truncation in this case is R(X) defined entry-wise
by

L Xij for (Z,]) € P,

R(X)i; = { 0 for (i.j) ¢ P.

This R is linear, and hence, satisfies the hypotheses of Lemma 3.1 via Corollary 3.2.

There are only rare examples, for which A and B = f(A) can simultaneously be approxi-
mated by sparse matrices from S := {X € R™*! : R(X) = X }. However, it is well-known that
after a discrete wavelet transform X + L(X) := T~'XT one can apply a matrix compression
(see [7, 8, 26, 27]). Such a matrix compression is of the form (3.1) and will be denoted by II
instead of R. Then, the trunction R applied to the original matrix X is the composition of
the wavelet transform L, the pattern projection IT and the back-transformation L~ !:

(3.1)

R:=L"'olloL. (3.2)

The same product form of R is typical as well for many other choices of L and II.
In the following lemmata the operator II may be nonlinear.

Lemma 3.3 Let V and W be normed spaces and L : V — W a bounded linear operator
with a bounded inverse. Given B € V', assume that I1: W — W satisfies

1Z -T(Z)|| <enllZ-LB)||  foralZeW with ||L7(Z) — B|| < es. (3.3)
Then the truncation operator R of the form (3.2) satisfies condition (2.9) with
cr = cn | LIHIL7H]. (3.4)
Proof. Let Z = L(X). Then, obviously,

IR(X) = X[| = |IL7'(L(2) = 2)|| < eall L7112 = L(B)II

and it remains to observe that ||Z — L(B)|| = ||L(X) — L(B)|| < ||L|| | X — B||. n

Applications of Lemma 3.3 (especially in the case of hierarchical block matrices) are facil-
itated by the following construction. Define a suitable system of normed spaces Wy, ..., Wy
and set

Wi=Wyx...xWy={H=(H,...,Hy): H € W;} with |H| =

Z 1H:”. (3.5)

Let each W; be associated with a truncation operator II; : W; — W, satisfying

where Z; € W; are some fixed elements.



Lemma 3.4 Let W be the normed space from (3.5) and let the truncation operators I,
satisfy (3.6), where the elements Z; € W; are defined by

L(B)=(Z, ..., Zn).
The product of the truncation operators I1; defines I1: W — W wvia
I(H) := (II;(H,), ..., Uy(Hy)) for H=(Hy, ..., Hy), H; € W,.
Then R from (3.2) satisfies (2.9).

Proof. Let L(X)=H = (Hy, ..., Hy). Then, according to the definitions of L and II,

N N
- < E 2\ H: — Z:? < : E 712
||H H(H)H > \/ i1 G ||Hz Zl” = <II£Z%)](V Cz) \/ i1 ||Hz ZZH ’

which proves (3.3) and allows us to use Lemma 3.3. n

An important example of IT in the case of a matrix space W is given by optimal low-rank
approximations.

Lemma 3.5 Let W be a normed space of all matrices of a fixed size and let S C W consist
of all matrices whose rank does not exceed r. Then for any H € W there exists a matriz
T € S such that ||H —T| = min ||H—-Z|.

rank Z<r

Proof. Consider a minimising sequence Zy € S, i.e., lim ||H — Z;|| =0 := inf ||H —Z].
k—o00 rank Z<r

Obviously, the sequence Z; is bounded. Therefore, a convergent subsequence 2, — T exists.
Its limit satisfies |H — T'|| = 4.

The assertion T € S is due to the fact that a matrix of rank equal to p > r possesses a
vicinity wherein any matrix is of rank > p. [ ]

The optimal approximant 7" is not necessarily unique. For the mathematical definition
of TI(H) we choose any of the optimal approximants. In practice, the result depends of the
implementation.

Corollary 3.6 For any norm, the truncation operator Il defined in Lemma 3.4 satisfies
(3.3) with e = 1.

Proof. In the given norm, no matrix in S can be closer to H than II(H). [

Matrix theory provides well-developed tools for the construction of low-rank approxima-
tions in the case of any unitarily invariant norm. For an arbitrary matrix H € W, denote
its singular values by oy(H) > 092(H) > ... and let X(H) := diag {01(H),02(H),...}. Let
Y..(H) be obtained from X(H) by retaining all o (H) for 1 < k < r and changing the other
entries into zeroes. Let H = Q1X(H)(Q), be the singular value decomposition of H (with
unitary (7 and ()3). Then

I(H) := Q1% (H)Q2 (3.7)



is the best possible approximant to H in the set S of matrices of rank < r, where the norm
is arbitrary but unitarily invariant. It can be readily deduced from the Mirsky theorem (cf.
(3, 30]) claiming that

IE(H) =S(2)|| < ||1H - Z| (3-8)

for all matrices H and Z of the same size and any unitarily invariant norm. If Z € S, then,
clearly, 0;,(Z) = 0 for i > r + 1. Using this together with the monotonicity of unitarily
invariant norms (cf. [30]), we obtain

I1H —1IL(H)| = [|5(H) = & (H)|| < [|5(H) = Z(2)]],

and, due to the Mirsky theorem, the latter norm is estimated from above by ||H — Z]|.

For the most familiar unitarily invariant norms such as the spectral and the Frobenius
norm, the above facts can be established through simpler arguments. In particular, it is
well-known that

i _z||, = : 7|l = 2
Jmin ([ = Z||, = (), min |[H = Z]; -;1 o(H).
i>r

Thus, the truncation property (2.9) is easy to achieve when a best approximation element
is existing. Sometimes (e.g., for three-way approximations of bounded tensor rank) this is not
the case. Nevertheless, all cases are supported by Theorem 2.4 as we can always capitalise
on a quasi-optimal construction as follows.

Let 6(H) = %2£||H—T|| For a given fixed e > 0, let II(H) denote an e-optimal

approximation to H in the sense that
S(H) < ||H —T(H)| < 6(H)+=.
Lemma 3.7 If1I(H) is defined as an e-optimal approzimation to H on S, then
|H-TI(H)|| < ||H-Z||+e  forany Z € S. (3.9)

Proof. Use ||H —II(H)|| — ||H — Z|| < (0(H)+¢)—06(H) =e. n
|H—Z||>6(H)

In the next sections, we discuss some details of the construction of L and II for hierarchical
block matrices and matrices in the tensor format.

Other useful applications of the same general framework are Toeplitz-like matrices, where
L(X) := PX — X(@ for some specially chosen fixed matrices P and @ (cf. [5, 28, 26]).

3.2 Application to hierarchical block matrices

Let V be the space R**™ of n x n matrices. Consider a block decomposition as depicted in
Figure 3.1. Let N be the number of matrix blocks. Then each matrix block belongs to a
certain matrix space W; (1 <i < N). Given X € V, let L;(X) € W; be the ith block. The
space W is defined according to (3.5).
The above-considered operator L : V' — W maps a matrix X into the N-tuple of matrix-
blocks:
L(X) :=(Li(X), ..., Ly(X)).

10
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Figure 3.1: Standard and weakly admissible H-partitionings.

If the Frobenius norm is used on the spaces V and Wy, ..., Wy, the norm induced on
W is again the Frobenius norm. Obviously, || X ||z = ||L(X)|| holds. Hence, the inverse L'
exists and satisfies
1Ll = IL7H] = 1.

Fix a positive integer r and let S; C W; be the subset of matrices of rank < r. Define S
as the Cartesian product
S=85x...xSyCW

and let I1; : W; — S; be of the form (3.7) involving the singular value decomposition of the
matrix block W;. Defining [T : W — S as in Lemma 3.4 and using Lemma 3.5, we can apply
Theorem 2.2 to R= L 'ollo L.

Note that exactly this kind of truncation is used in the theory of hierarchical block
matrices (cf. [18, 19, 33, 34]) and even in some early implementations (cf. [13]).

Initially, the main purpose of the rank truncation was the reduction of storage and of
the matrix-by-vector complexity. In the sequel, it was shown that with an appropriate block
decomposition the hierarchical matrix structure supports all matrix operations and therefore
allows to compute various matrix functions f(A) of A € S C V, where B := f(A) is known
to be close to S (e.g., for f(A) = A~ compare [1, 12], and for f(A) = sign(A) see [11, 22]).
In spite of the observation that these computations are efficient and robust, the rigorous
analysis of the intermediate truncation errors was incomplete. Our results now suggest some
general framework for such an analysis of basic iterative algorithms.

Finally we remark that sometimes the optimal truncation is replaced by an approximate
or heuristic one which is cheaper to compute (e.g., by cross approximation techniques, see
[14, 35]). However, the rigorous analysis of such kind of quasi-optimal truncation procedures
is beyond the scope of our paper.

3.3 Application to tensor approximations

Let V; = RP*? and V, = R™®, while V = RP"*% for some integers p, q, 7, s. The Kronecker
product is a mapping from V; x V5 into V. For A € V| and B € Vj;, the Kronecker product

11



anB anB
A x B is defined by the block matrix | @12B a22B ... | € V. We say that a matrix

M € V has a Kronecker rank < k, if there is a representation
¢
M=) A,xB, withA, €V, B, €V, and ( <F. (3.10)
v=1

We define the subset of structured matrices S by the set of all matrices of Kronecker rank
< k. If k is not too large, this is an interesting representation since matrices of the large size
pr X qs can be described by matrices A,, B, of relatively small size.

As described, e.g., in [24], there is a simple isomorphism L from V' = RP"*?* to RP7*" such
that the representation (3.10) of M € S C V = RP"*% is equivalent to rank(L(M)) < k.
Therefore, we obtain the situation of Lemma 3.5 with W := ¥(V') = RP?*"*. The truncation
operator is again of the form R = L ' ollo L, where II is the optimal SVD-based truncation
or an appropriate substitute.

The framework of this paper can be applied also to the (multi-linear) tensor represen-
tation (3.10) where the number of factors is greater than 2. In this case the truncation
procedures are not so well developed; however, some algorithms are available and claimed
to be efficient in particular applications (mostly for data analysis in chemometrics, physico-
metrics, etc.; cf. [6, 25]).

4 Examples of approximate iterations

We will consider iterative schemes to compute the matrix-valued functions f(A4) = A~
f(A) = VA and f(A) = sign(A). The common feature of the considered iterative schemes
is that they have locally quadratic convergence and require only matrix-matrix products in
each step of the iteration. We prove that our general results can be applied in the case of
hierarchical matrices, Kronecker products or mixed hierarchical Kronecker-product formats
to compute A" (cf. §4.1) and VA (cf. §4.2.2).

On the other hand, our convergence theory for truncated iteration does not apply, in
general, to the case of Newton-type iterative schemes in a subspace. However, numerical
examples (which will be presented elsewhere) demonstrate desired convergence rate (cf. the
discussion in §4.3).

4.1 Newton-Schulz iteration for calculating A~!

Let V = C"" and A € V a regular matrix. The Newton method applied to the equation
U(X):=A— X1 =0 yields the iteration

Xk = Xk_1(2I—AXk_1) (lﬂ? == 1,2,...), (41)
which is also named Schulz iteration (cf. [29]). This corresponds to the formulation (2.1)
with
B(X) i= B(X) := X (2] — AX).

12



The Newton method is known to have locally quadratic order of convergence (i.e., & = 2
in (2.3)). Let Ey := I — AX}, denote the error. Using Xy = X;_1(I + Ex_1) we obtain

Bo=I—-AX, I+ By )=1—(I—E,)(I+E,) =E? | (4.2)
Applying (4.2) recursively, we find that
E,=E (k=1,2,..) (4.3)

and conclude . .
A= Xy =AT'Ey = AT'EY = Xo(I - Ey)T'E; .

Hence, the iteration converges quadratically for all starting values Xy with p(Ey) < 1, where
p is the spectral radius. Finally, equation (4.2) implies

AN Xy =ATE, = (AT - X )AAT - X)),

which proves (2.3) with o = 2 and ¢ = ||A4]].
Now Theorem 2.4 can be applied with a proper choice of the subset S and of the trun-
cation operator R.

4.2 Newton iteration for the calculation of /A

4.2.1 Non-constrained Newton iteration

We apply the Newton method to the equation ¥(X) := A — X? = 0. Abbreviating the
correction by Ay := X — X_1, we obtain the iteration

Xo €V, Xpo1Ap+ A X =A— X7, (k=1,2,...), (4.4)
corresponding to the choice ®4(X) := ®(X), where ®(X) solves the matrix equation
X(®(X) = X)+(¢(X) - X)X =4 - X2 (4.5)
A simple calculation shows that the latter equation implies (with the substitution A = B?)
X(®(X)-B)+XB—- X+ (®(X)-B)X + BX — X*>=B*- X?,
which leads to the matrix Lyapunov equation with respect to Y = ®(X) — B,
XY +YX=(B-X)~

Making use of the solution operator for the Lyapunov equation [11] (and assuming that
X = X is positive definite), we arrive at the norm estimate

|®(X) - B|| = H/ e (B — X)QethtH < OB - X|P.
0

This proves relation (2.3) with v = 2. Hence, Theorem 2.4 applies to the truncated version
of the nonlinear iteration (4.4).

13



4.2.2 Newton iteration in the subspace

Let A be diagonalisable, i.e., A = T~'D4T for some T € V and a non-negative diagonal
matrix D 4. This gives rise to the subspace

Vi ={M € R"™" : M =T 'DT, D is diagonal} C V. (4.6)

Note that A € V and that all matrices from Vi commute.

We reconsider iteration (4.4) under the assumption X, € Vi (this is trivially satisfied for
all multiples X, = agA). Next, it is easy to see that all iterates Xy of (4.4) belong to V. In
particular, X € Vp implies ®(X) € Vp and the left-hand side in (4.5) can be simplified to
2X®(X) — 2X?. Hence we obtain the iteration

1
Xo=apA, Xj:= 5(X,H + X, 1 A) (k=1,2,...), (4.7)

where ag > 0 is the given constant. This corresponds to the formulation (2.1) with

Op(X) :=0(X) := %(X + X 1A).
Note that newly defined @ is different from ® in (4.5), but both coincide on V. In particular
for starting values Xy € V7 both (exact) iterations yield the same Xj. Hence, the convergence
analysis of §4.2.1 implies the same kind of convergence for the iteration (4.7).

For general initial values X, outside of V no quadratic convergence can be proved. Fur-
thermore, the truncations R which we have in mind do not map Vy onto S N Vr. Therefore
the truncated version of the iteration (4.7) yields approximants Y, which not necessarily be-
long to V. Consequently, Theorem 2.4 does not apply. Nevertheless, numerical experiments
with the truncated version of (4.7) show good results. In particular, the relation (2.3) holds
with @ =2 and ¢ = 2||B7|.

4.3 TIterative calculation of sign(A)

Let A € V = C"" be a matrix whose spectrum o(A) does not intersect the imaginary axis.
The matrix function f(A) = sign(A) is defined by

sign(A) = — /F (2] = A) e =T (4.8)

m
with [, being any simply connected closed curve in C whose interior contains all eigenvalues
of A with positive real part.
A possible iterative scheme approximating B = sign(A) is
1

Xo = A/||All,, Xpi=Xp 1+ 3 [ — (Xip-1)?] Xia (k=1,2,...) (4.9)
corresponding to ®(X) := X + 5 (I — X?) X in (2.1). This scheme has already been suc-
cessfully applied in many-particle calculations (cf. [2]).
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To include our scheme into the framework (2.1), we assume that A is diagonalisable,
ie., A =T 1'D,T with a diagonal matrix D, = diag{dy,...,d,}. Again, we denote the
corresponding subspace of matrices by Vr from (4.6).

Note that X, and all subsequent X belong to V and thus commutes with B. Taking
into account that B? = I, we obtain for X € V; that

@Mj—B:X—B+éGﬁ—X%X:CX—&@?—;B+XM3

= (X = B)(B(B~ X)+ (B~ X)(B+X) = (X - B(B+ ;).

This proves the relation (2.3) with o = 2 and ce = 5 + 3¢ and but with X € V replaced
by X € Vr. Hence, Lemma 2.1 leads to local quadratic convergence of the exact iteration
performed in the subspace V7.

For the global error analysis assume A = T~'D,T € Vr with Dy = diag{dy,...,d,},
where d; € R\{0}. As mentioned above, X, € V implies X, € V for all k. The diagonal
entries of Dy, from Xq = A/||A||ls = T 'Dx,T satisfy d; € [—1,1]\{0}. We have to show
that the scalar iteration

1 .
T = @(Tp_1) = Ty + 3 (1—2p_) zp—1 with z¢ € [—1,1]\{0}

converges quadratically to sign(z,). Note that p(z) = zg(z) with g(z) := 1+ 3(1 —2?). The
function ¢ : [—1, 1] — R is increasing and has the fixed points {—1,0, 1}. Since g(z) > 1 for
x € (—1,1), we have

O< oz <, <1 iffL’OE(O,l],
1<z, <zp_1 <0 if zy € [—1,0)

Hence, both z = —1 and x = 1 are stable fixed points.

Let o > 0 be an initial value with |zo|] < 1/2. For z € [-1/2,1/2] we have
g(x) > q:=11/8 > 1, thus the number of iterations z; = xy_19(rg_1) to achieve a value
zr > 1/2 is O(logzy). Assume that ||A||2/p(4) < O(1). Then the smallest eigen-
value of Sy = A/||A||2 is O(1/condy(A)). Since this is the worst case for z, we obtain
O(log(z)) < O(logcondy(A™1)) for the total number of iterations.

For z;, > 1/2, quadratic convergence is visible. In fact, 1 — zp = $(1 — z_1)?(z4—1 + 2)
implies

u—xﬂggu—xkg?
To achieve the accuracy € > 0, one requires O(log, log, £™!) iterations.
Again, usual truncations lead to results outside of V. Then the matrices X and B in

condition (2.3) no longer commute which destroys the quadratic convergence.
We examine a special version of Theorem 2.2 with & = 1 (c¢f. Remark 2.6). In the case
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of @ =1, we obtain the relation (2.3) with ¢p; = 1+ c||X — B|| and ce defined below. Use
o(X)- B :X—B+%(B—X)(B+X)X+ %(XB—BX)X
= —(X - B)*B+ %X) + %[(X — B)BX — B(X — B)X]
= —(X - B)?*B+ %X)
+% (X - B)B(X -B)-B(X —B)’+ (X -B) - B(X - B)B] .
For unitary T (cf. (4.6)) we have ||B]| =1 and derive the expected estimate:
[8(X) — Bl < call X — B + 1|X — B~ B(X ~ B)B|.

Hence, also Remark 2.6 does not apply, and a refined truncation error analysis for iteration
(4.9) is required. However, we note that the numerical results (which will be published
elsewhere) demonstrate fast and robust convergence of truncated iterations (4.9) applied to
the discrete elliptic operator.

Remark 4.1 An alternative approach can be based on the quadrature approzimation to the
integral (4.8) (cf. [11]). Then each matriz resolvent can be represented by the Newton-Schulz
iteration discussed in §4.1.

Another alternative is based on the observation that for nonsingular Hermitian matrices
the so-called polar decomposition holds,

VA*A = A sign(A). (4.10)

Hence, the truncated iterations from Sections 4.1, 4.2 can be directly adapted to the repre-
sentation

sign(A) = VA*AAL (4.11)

Another iteration for computing sign(A) is
1
Xo:=A, Xpp = §(Xk + X1 (k=1,2,...). (4.12)

It converges locally quadratically to sign(A). This method is proved to be efficient in the
hierarchical matrix arithmetics (see [17]).

5 Concluding remarks

In this paper we proposed a unified framework for the analysis of truncated iterations. The
advantage of these truncated iterations is that they preserve the data-sparse structure of
the intermediate matrices. The main result is that an iterative process for the evaluation of
f(A) can be transformed, under astonishingly general assumptions, into an implementable
process which preserves the convergence rate and benefits from the underlying structure
during the iterations. It is shown how this result applies to matrices in the tensor format
with a bounded tensor rank and to the hierarchical matrices (with a bounded rank of the
blocks).
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