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A BRIEF STATEMENT OF THE RESULT

Consider the following singular integral Poincaré–
Steklov equation (PS-3) with spectral parameter 

 

λ

 

:

 

(1)

 

where 

 

u

 

(

 

t

 

)

 

 is the unknown function and the constant
does not depend on 

 

x

 

. The functional parameter 

 

R

 

(

 

t

 

)

 

 of
the equation is a smooth nondegenerate change of vari-
able on the integration interval:

 

(2)

 

By using methods of complex geometry and combi-
natorics, we obtain constructive visual representations
for all so-called antisymmetric solutions [4] of Eq. (1)
in which 

 

R

 

(

 

t

 

)

 

 is a real-valued rational function of
degree 3 with separated real critical values different
from the endpoints of the integration interval. From the
equation, we explicitly construct a Riemann surface
with boundary, called a pair of pants, whose conformal
class depends on three real numbers. For the number 

 

λ

 

and some auxiliary parameters (two reals and several
integers), we explicitly construct another pair of pants.
It turns out that 

 

λ

 

 is an eigenvalue of the integral equa-
tion (1) with antisymmetric eigenfunction 

 

u

 

(

 

t

 

)

 

 if and
only if the former pair of pants is conformally equiva-
lent to the latter. Solving the spectral problem for the
integral equation essentially reduces to solving three
transcendental equations with respect to three numbers,
the moduli of the pants. Such a representation of solu-
tions cannot be called explicit in the classical sense, but
it reveals their interesting properties. In [4], it was used
to describe the formation mechanism of a discrete spec-
trum, obtain sharp boundaries for the spectrum loca-
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tion, and count the zeros of antisymmetric eigenfunc-
tions.

THE ORIGIN OF THE PROBLEM

Boundary value problems for the elliptic equation
with a spectral parameter in the boundary conditions
were first considered by Poincaré (1895) and Steklov
(1901). At present, they have become a popular method
for studying dynamics of two-phase fluids, composites,
diffraction, etc. One of such boundary value problems
arises in substantiating and optimizing the domain
decomposition method.

Given a plane domain 

 

Ω

 

 separated into two simply
connected subdomains 

 

Ω

 

1

 

 and 

 

Ω

 

2

 

 by a simple smooth
curve 

 

Γ

 

, it is required to find a value of the spectral
parameter 

 

λ

 

 at which on each of the subdomains 

 

Ω

 

s

 

 (

 

s

 

 =
1, 2), there exists a nonzero harmonic function 

 

U

 

s

 

 van-
ishing on the outer boundary 

 

∂Ω

 

\

 

Γ

 

. The values of the
functions on the interface 

 

Γ

 

 between the subdomains
must coincide (

 

U

 

1

 

 = 

 

U

 

2

 

), and their normal derivatives

must differ by a factor of 

 

–

 

λ

 

: 

 

–

 

λ

 

 = 

 

.

The eigenvalues 

 

λ

 

 and the traces of the eigenfunc-
tions 

 

U

 

s

 

 on the interface 

 

Γ

 

 are the critical values and the
critical points, respectively, of the functional (called the
generalized Rayleigh relation)

where 

 

U

 

s

 

 is the harmonic extension of 

 

U

 

 from 

 

Γ

 

 to the
subdomain 

 

Ω

 

s

 

 with zero Dirichlet data on 

 

∂Ω

 

s

 

\

 

Γ

 

 for 
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CLASSIFICATION OF THE PS-3 INTEGRAL 
EQUATIONS

A third-degree rational function 

 

R

 

(

 

x

 

) =

 

 R

 

3

 

(

 

x

 

)

 

 deter-
mines a triple covering of the Riemann sphere by
another sphere, which is generically branched at four
points 

 

a

 

s

 

,

 

 where 

 

s

 

 = 1, 2, 3, 4. This means that the pre-
image of 

 

a

 

s

 

 consists of a critical point 

 

b

 

s

 

 and a regular
point 

 

c

 

s

 

. We assume that the four branching points 

 

a

 

s

 

 are
different reals not equal to 

 

±

 

1. We enumerate them

according to the natural cyclic order on .

The full preimage ( ) consists of the extended
real line and two pairs of complex conjugate curves
intersecting the real line in the critical points b1, b2, b3,
and b4 as shown in Fig. 1, left. The complement to this
set has six components, which are one-to-one mapped
onto the upper and lower half-planes.

The functional parameter R3(x) of the integral equa-
tion is a nondegenerate change of variables on the inter-
val [–1, 1]. This means, in particular, that none of the
critical points bs belongs to this interval, so that there

are two possible cases1:

type �: [–1, 1] ⊂ [b2, b3];

type �: [–1, 1] ⊂ [b3, b4].

The remaining cases (e.g., where [–1, 1] is con-
tained in [b1, b2] or [b4, b1]) are eliminated by suitably
renumbering the branching points as, which thereby
acquire unique numbers. In type �, we distinguish
between the following subcases:

type � 1 : [–1, 1] ∩ [c2, c1] = ,

type � 21 : [–1, 1] ⊂ [c2, c1],

type � 22 : [–1, 1] ⊃ [c2, c1],

type � 23 : [–1, 1] ⊂ ([b3, c2] ∪ [c1, b4]).

1 A pair of points on the circle breaks the circle into two segments.
Our choice of a segment is determined by the natural require-
ments b1, b2 ∉ [b3, b4]; b1, b4 ∉ [b2, b3]; b3, b4 ∉ [b1, b2]; and so
on.

�̂

R3
1–

�̂

THE PAIR OF PANTS ASSOCIATED
TO THE INTEGRAL EQUATION

The functional parameter R3(x) of the integral equa-
tion (1) determines a sphere with three slits (a pair of
pants):

(�3) := Cl ( \{([–1,1] [a1, a2]) � [a3, a4]}, (3)

where � denotes symmetric difference (the union of
two sets minus their intersection), and the closure (Cl)
of the sphere with cuts is understood (here and in what
follows) in the sense of the intrinsic spherical metric,
where each cut is supplemented by a pair of coasts. The
boundary ovals of the pants are colored as follows:
[−1, 1]\[a1, a2] is red, [a1, a2]\[–1, 1] is blue, and [a3, a4]
is green. The functional parameter can be reconstructed
from the conformal class of the associated pants up to
linear-fractional transformations, which do not affect
the spectrum and the eigenfunctions of the integral
equation.

KLEIN MEMBRANES

In this section, we define pants ��(λ, h1, h2|m1, …)
(see Fig. 2) of several cuts � depending on the spectral
parameter λ, two real numbers h1 and h2, and one or two
integers m1, … . This pair of pants is a many-sheeted
surface (Überlagerungsfläche); it is constructed by a
certain surgery from annuli. The boundary components

�̂

b1 b2 b3 b4c4 c3 c2 c1
�
^ R3(x) a1 a2 a3 a4

�
^

x y

Fig. 1. The topology of the covering R3 with real branching points.

0 0+

C C

h h

red
green
blue

Fig. 2. The pants ��1(λ, h1, h2|m1, m2) are sewn from two
(many-sheeted) annuli.
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may lie over five disks and are colored with three colors
as follows:

C := {p ∈ �: |p – µ–1|2 = r2} is red,

ε  and χ(ε ) are green,

 and ε2  are blue;

here, ε := exp , µ := , r2 := µ–2 – 1, and χ(p) :=

.

TYPES � AND �1

The sewing material is two open annuli α and 
depending on the spectral parameter λ ∈ (1, 2). The

annulus α is bounded by the circles C and ε ; the
complex conjugate annulus  is bounded by the circles

C and ε2 . It is easy to show that, when the spectral
parameter varies within the given range, the annuli do
not intersect. We denote the unramified m-fold cover-
ings of the annuli α and  by m · α and m ·  for m =
0, 1, 2, … .

We define pants of cuts � = �s for s = 1, 2, 3, �1
by using Table 1, in which + denotes the surgery
described below.

GUIDE FOR SEWING ANNULAR PATCHES

1. ��1 (l, h1, h2|m1, m2). Take two (many-sheeted)
annuli m1 · α and m2 · . Cut the upper sheet of each
annulus along the same segment (shown by the red
dashed line in Fig. 2) starting at the point h := h1 + ih2

and ending on the circle C. Now, paste each coast of
one cut to the opposite coast of the other. The resulting
surface is the required pair of pants.

2. ��2 (l, h1, h2|m1, m2). The base pair of pants
��2(λ, h1, h2|m1, 0) is obtained by removing the seg-
ment –ε2[h1, h2] from the upper sheet of the annulus m1

· α. We cut these pants along a segment joining C to the
slit (shown by the blue dashed line in Fig. 3). Now, we

�̂ �̂

�̂ �̂

2πi
3

-------- 3 λ–
2λ

------------

p µ–
µp 1–
---------------

α

�̂

α

�̂

α α

α

cut the upper sheet of m2 ·  along this segment and
crisscross glue together the coast of the resulting cuts.
The result is the required pants.

3. ��3 (l, h1, h2|m1, m2). The base pair of pants
��3(λ, h1, h2|0, m2) is obtained by removing the seg-
ment –ε[h1, h2] from the upper sheet of the annulus
m2 · . As in the preceding case, the required pants are
constructed by sewing the many-sheeted annulus m1 · α
to the base pants.

4. ��1(l, h1, h2|m). This pair of pant is obtained
by deleting the segment [h1, h2] from the upper sheet of
the annulus m · α.

In the limit case, where the branching point h1 + ih2

tends to ε±1�, the pants of cut ��1 coincide with the
limit case of the pants ��2 or ��3 with h1 = h2 > 0.
The corresponding (unstable) two-parameter families
of pants ��12 and ��13 are defined in Table 2.

TYPES ��21, ��22, AND ��23

The two circles ε  and χ(ε ) do not intersect pro-
vided that λ ∈ (1, 3), and they bound an open annulus
β. We denote the unramified m-fold covering of this
annulus by m · β for m = 1, 2, 3, … and represent its
points in the form

α

α

�̂ �̂

p µ 1– ρ iφ( ),exp+=

Table 1.  Three-parameter families of pants in cases � and �1

Cut of pants Definition Constraints on the parameters
h1, h2, m1, and m2

��1(λ, h1, h2|m1, m2) Cl{(m1 · α)\[µ–1, h]}+ Cl{(m2 · α) [µ–1, h]} h: = h1 + ih2 ∈ α ∩ , |h| ≥ 1; m1, m2 = 1, 2, …

��2(λ, h1, h2|m1, m2) Cl{(m1 · α)\–ε2[h1, h2]} + Cl{m2 · α} 0 < h1 < h2, h1h2 ≥ 1; m1 = 1, 2, …, m2 = 0, 1, 2, …

��3(λ, h1, h2|m1, m2) Cl{(m2 · α)\–ε[h1, h2]} + Cl{m1 · α} 0 < h1 < h2, h1h2 ≥ 1; m1 = 0, 1, 2, …, m2 = 1, 2, 3, …

��1(λ, h1, h2|m) Cl{(m · α)\[h1, h2]} µ–1 + r < h1 < h2; m = 1, 2, 3, …

α

red
green
blue

CC

0 0+

–ε2h1
–ε2h2

Fig. 3. The pants ��2(λ, h1, h2|m1, m2) are obtained by

sewing the annulus m2 ·  into the base pants. α
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where ρ > 0 and φ ∈ �mod2πm. The action of the lin-
ear-fractional transformation χ on the sphere (that is,

successive reflections in the circles C and ) is lifted
to the involution of the many-sheeted annulus m · β
defined by

(4)

where r :=  is the radius of the circle C.

Consider pants of cuts � = �21, �22, and �23,
which depend on the real numbers λ ∈ (1, 3), h1, and h2

and the positive integer m.

Definition. For s = 1, 2, 3, we set ��2s(λ, h1, h2|m) :=

Cl{(m · β)\( (h1) ∪ (h2))}/Ξ, where  and  are
the slits defined in Table 3. These slits are invariant with
respect to the involution Ξ and do not intersect each
other and the boundaries of the annulus m · β.

ANTISYMMETRIC SOLUTIONS

The spectrum of the integral equation is positive [1],
because this is the set of critical points of a positive
functional (the ratio of two Dirichlet integrals). Without
loss of generality, we seek only real eigenfunctions.
There are two kinds of them, symmetric and antisym-
metric eigenfunctions [4]; they differ in geometric con-
tents. In this paper, we consider only antisymmetric

�̂

Ξ: µ 1– ρ iφ( )exp+ µ 1– r2

ρ
---- iφ–( ),exp+→

µ 2– 1–

Es
1 Es

2 Es
1 Es

2

eigenfunctions u(x), whose defining feature is the non-
positivity of the value

(5)

where

the constant const is the same as in Eq. (1), Q(t) is the
denominator of the irreducible representation of R3(t) as
a fraction of two polynomials, and {x1, x2, x3} := :=

(y). The quantity (5) does not depend on the choice

of y ∈ \[–1, 1].

MAIN THEOREM

Theorem 1. If λ ≠ 1, 3, then there is a one-to-one
correspondence between the antisymmetric eigenfunc-
tions of the PS-3 integral equation of types � = �, �1,
�21, �22, �23 and the pants2 ��(λ, h1, h2|m1, …),
which are conformally equivalent to pants (3) related to
the functional parameter of the integral equation.

Let p(y) be a conformal mapping of the pants �(R3)
to the pants ��(λ, h1, h2|m1, …) preserving the colors

2 In case �, there are three stable and two unstable cuts of pants
��∗(…).

λ 1–( ) Φ xk( )2 2 Φ x j( )Φ xs( ),
j s<

3

∑–
k 1=

3

∑

Φ x( ) := u t( ) t x–( ) 1– t

u t( ) Q t( ) const–lnd

I

∫
λ 3–

---------------------------------------------------,+d

I

∫
x �̂\ 1– 1,[ ],∈

R3
1–

�̂

Table 2.  Two-parameter families of pants for the parameter ranges 1 < λ < 2, h > 0, and m1, m2 = 1, 2, 3, …

Cut of pants Definition

��12(λ, h|m1, m2) ��1(λ, –Re(ε2h), –Im(ε2h)|m1, m2) = ��2(λ, h, h|m1, m2)

��13(λ, h|m1, m2) ��1(λ, –Re(εh), –Im(εh)|m1, m2) = ��3(λ, h, h|m1, m2)

Table 3.  Slits in the annulus m · β

Definitions of slits The range of h1 and h2

(h1): = µ–1 + rexp[–h1, h1]

(h2): = µ–1 + rexp[–h2, h2]exp(iπm)

h1 ≥ h2 > 0 if m is even,  (µ–1 + rexph1) · (µ–1 – rexph2) ≥ 1

if m is odd

(h1): = µ–1 + rexp[–ih1, ih1]

(h2): = µ–1 + rexp[–ih2, ih2]exp(iπm)

h1 ≥ h2 if m is even, Arg(exp(ih1) + µr) ≥ Arg(exp(ih2) – µr)

if m is odd, h1 + h2 < mπ and h2 > 0 for all m

(h1): = µ–1 + rexp[–h1, h1]

(h2): = µ–1 + rexp[–ih2, ih2]exp(iπm)

h1 > 0, mπ > h2 > 0

E1
1

E1
2

E2
1

E2
2

E3
1

E3
2
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of the boundary ovals. Then, the eigenfunction has the
representation (up to proportionality)

(6)

Here, y := R3(x) and y± := y ± i0. For the cut � = �1,
y1 =  is an interior critical point of the function p(y);
for the other cuts �, the reals y1 and y2 are boundary
critical points of the function p(y).

The approach of this paper is based on reducing the
integral equation to Riemann’s monodromy problem
[2]. The latter can be reformulated as a problem for
branched complex projective structures [3] and solved

for antisymmetric eigenfunctions by using Grothend-
ieck’s technique of child’s drawings. The proof of the
main theorem for case � is given in [4] and for case �,
in preprint [5].
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