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Abstract. Various physical and mathematical settings bring us to a bound-
ary value problem for a harmonic function with spectral parameter in the
boundary conditions. One of those problems may be reduced to a singular 1D
integral equation with spectral parameter. We present a constructive repre-
sentation for the eigenvalues and eigenfunctions of this integral equation in
terms of moduli of explicitly constructed pants, one of the simplest Riemann
surfaces with boundary. Essentially the solution of the integral equation is re-
duced to the solution of three transcendential equations with three unknown
numbers, moduli of pants.
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We introduce the new type of constructive pictorial representations for the
solutions of the following spectral singular Poincaré–Steklov (PS for brevity) inte-
gral equation

λ V.p.

∫

I

u(t)

t − x
dt − V.p.

∫

I

u(t) dR(t)

R(t) − R(x)
= const, x ∈ I := (−1, 1), (0.1)

where λ is the spectral parameter; u(t) is the unknown function; const is indepen-
dent of x. The functional parameter R(t) of the equation is a smooth nondegen-
erate change of variable on the interval I:

d

dt
R(t) 6= 0, t ∈ [−1, 1]. (0.2)
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1. Introduction

H.Poincaré (1896) and V.A.Steklov (1901) were the first who put the spectral
parameter to the boundary conditions of the problem for an elliptic operator.
Later it became a popular technique for the analysis and optimization in diffraction
problems [1], (thermo)conductivity of composite materials, simple 2D model of oil
extraction etc.

1.1. Spectral Boundary Value Problem

Let a domain in the plane be subdivided into two simply connected domains Ω1

and Ω2 by a smooth simple arc Γ. We are looking for the values of the spectral
parameter λ when the following problem has a nonzero solution:'

&

$

%
� 


Ω1

Ω2
Γ

∆U1 = 0 in Ω1; U1 = 0 on ∂Ω1 \ Γ;
∆U2 = 0 in Ω2; U2 = 0 on ∂Ω2 \ Γ;

U1 = U2 on Γ;

−λ
∂U1

∂n
=

∂U2

∂n
on Γ,

(1.1)

Spectral problems of this type naturally arise e.g. in the justification and
optimization of a domain decomposition method for the solution of a boundary
value problem for Laplace equation. It is easy to show that the eigenfunctions and
the eigenvalues of the problem (1.1) are correspondingly the critical points and
critical values of the functional (the so called generalized Rayleigh ratio)

F (U) =

∫
Ω2

|grad U2|2 dΩ2∫
Ω1

|grad U1|2 dΩ1
, U ∈ H1/2

oo (Γ), (1.2)

where Us is the harmonic continuation of the function U from the interface Γ to
the domain Ωs, s = 1, 2, vanishing at the outer boundary of the domain.

The boundary value problem (1.1) is equivalent to a certain Poincaré–Steklov
equation. Indeed, let Vs be the harmonic function conjugate to Us, s = 1, 2. From
the Cauchy–Riemann equations and the relations on Γ it follows that the tangent
to the interface derivatives of V1 and V2 differ by the same factor −λ. Integrating
along Γ we get

λV1(y) + V2(y) = const, y ∈ Γ. (1.3)

The boundary values of conjugate functions harmonic in the half-plane are related
by a Hilbert transformation. To reduce our case to this model we consider a con-
formal mapping ωs(y) from Ωs to the open upper half-plane H with normalization
ωs(Γ) = I, s = 1, 2. Now equation (1.3) may be rewritten as

−λ

π
V.p.

∫

I

U1(ω
−1
1 (t))

t − ω1(y)
dt − 1

π
V.p.

∫

I

U2(ω
−1
2 (t′))

t′ − ω2(y)
dt′ = const, y ∈ Γ.
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Introducing the new notation x := ω1(y) ∈ I; R := ω2 ◦ ω−1
1 : I → Γ → I;

u(t) := U1(ω
−1
1 (t)) and the change of variable t′ = R(t) in the second integral we

arrive at the Poincaré–Steklov equation (0.1). Note that in this context R(t) is the
decreasing function on I.

1.2. Some Known Results

The natural way to study integral equations is operator analysis. This discipline
allows to obtain for the smooth nondegenerate change of variables R(x) the fol-
lowing results [2]:

• The spectrum is discrete; the eigenvalues are positive and converge to λ = 1.
• ∑

λ∈Sp |λ − 1|2 < ∞ (a constructive estimate in terms of R(x) is given)

• The eigenfunctions u(x) form a basis in the Sobolev space H
1/2
oo (I).

1.3. Goal and Philosophy of the Research

The approach of complex geometry for the same integral equation gives different
types of results. For quadratic R(x) = x + (2C)−1(x2 − 1), C > 1, the eigenpairs
were found explicitly [3]:

un(x) = sin




nπ

K ′

(C+x)/(C−1)∫

1

(s2 − 1)−1/2(1 − k2s2)−1/2ds


 ,

λn = 1 + 1/ cosh2πτn, n = 1, 2 . . . ,

where τ = K/K ′ is the ratio of the complete elliptic integrals of modulus k =
(C − 1)/(C + 1). Now we are going to give constructive representations for the
eigenpairs {λ, u(x)} of the integral equation with R(x) = R3(x) being a rational
function of degree 3. Equation (0.1) itself will be called PS-3 in this case.

The notion of a constructive representation for the solution should be however
specified. Usually this means that we restrict the search for the solution to a certain
class of functions such as rational, elementary, abelian, quadratures, the Umemura
classical functions, etc. The history of mathematics knows many disappointing re-
sults when the solution of the prescribed form does not exist. Say, the diagonal of
the square is not commensurable with its side, generic algebraic equations cannot
be solved in radicals, linear ordinary differential equations usually cannot be solved
by quadratures, Painlevé equations cannot be solved by Umemura functions. Na-
ture always forces us to introduce new types of transcendent objects to enlarge
the scope of search. The study of new transcendental functions constitutes the
progress of mathematics. This research philosophy goes back to H. Poincaré [4].
From the philosophical point of view our goal is to disclose the nature of emerging
transcendental functions in the case of PS-3 integral equations.
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1.4. Brief Description of the Result

The rational function R3(x) of degree three is explicitly related to a pair of pants
in section 2.2. On the other hand, given a spectral parameter λ and two auxiliary
real parameters, we explicitly construct in section 2.3 another pair of pants which
additionally depend on two integers. When the above two pants are conformally
equivalent, λ is the eigenvalue of the integral equation PS-3 with parameter R3(x).
Essentially, this means that to find the spectrum of the given integral equation
(0.1) one has to solve three transcendental equations involving three moduli of
pants.

Whether this representation of the solutions may be considered as construc-
tive or not is a matter of discussion. Our approach to the notion of a constructive
representation is utilitarian: the more we learn about the solution from the given
representation the more constructive is the latter. At least we are able to obtain
valuable features of the solution: to determine the number of zeroes of the eigen-
function u(t), to find the exact locus for the spectra and to show the discrete
mechanism of generating the eigenvalues.

2. Description of the Main Result

The shape of the two domains Ω1 and Ω2 defines the variable change R(x) only
up to a certain two-parametric deformation. One can easily check that the gauge
transformation R → L2 ◦ R ◦ L1, where the linear fractional function Ls(x) keeps
the segment [−1, 1], does not affect the spectrum of equation (0.1) and induces
only the change of the argument for its eigenfunctions: u(x) → u ◦ L1(x). For
this reason we do not distinguish between two PS equations with their functional
parameters R(x) related by the gauge transformation.

The space of equivalence classes of equations PS-3 has real dimension 3 =
7−2−2 and several components with different topology of the functional parameter
R3. In the present paper we study for brevity only one of the components, the
choice is specified in section 2.1.1.

2.1. Topology of the Branched Covering

In what follows we consider rational degree three functions R3(x) with separate
real critical values different from ±1. The rational function R3(x) defines a 3-
sheeted branched covering of a Riemann sphere by another Riemann sphere. The
Riemann–Hurwitz formula suggests that R3(x) has four separate branch points
as, s = 1, . . . , 4. This means that every value as is covered by a critical (double)
point bs, and an ordinary point cs.

Every point y 6= as of the extended real axis R̂ := R∪{∞} belongs to exactly
one of two types. For the type (3:0) the pre-image R−1

3 (y) consists of three distinct
real points. For the type (1:2) the pre-image consists of a real and two complex
conjugate points. The type of the point remains locally constant on the extended
real axis and changes when we step over the branch point. Let the branch points
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as be enumerated in the natural cyclic order of R̂ so that the intervals (a1, a2) and
(a3, a4) are filled with the points of the type (1:2). Later we will specify the way
to exclude the relabeling a1 ↔ a3, a2 ↔ a4 of branch points.

q qa1 a2 q qa3 a4
R̂

gy
q qc4 c3 q qc2 c1

#
"
 
!q qb1 b2

#
"
 
!q qb3 b4

R̂ 7−→
R3(x)

gx

Figure 1. The topology of the covering R3 with real branch points

The total pre-image R−1
3 (R̂) consists of the extended real axis and two pairs

of complex conjugate arcs intersecting R̂ at the points b1, b2, b3, b4 as shown at the
left side of Fig. 1. The compliment of this pre-image on the Riemann sphere has
six components, each of them is mapped 1-1 onto the upper or lower half-plane.

2.1.1. The Component in the Space of Equations. The nondegeneracy condition
(0.2) forbids that any of critical points bs be inside the segment of integration
[−1, 1]. In what follows we consider the case when the latter segment lies in the
annulus bounded by two ovals passing through the critical points bs. Possibly
relabeling the branch points we assume that [−1, 1] ⊂ (b2, b3).

Other components in the space of PS-3 integral equations are treated in [11].

2.2. Pair of Pants

For obvious reason a pair of pants is the name for the Riemann sphere with

three holes in it. Any pair of pants may be conformally mapped to Ĉ := C ∪ {∞}
with three nonintersecting real slots. This mapping is unique up to the real linear-
fractional transformation of the sphere. The conformal class of pants with labeled
boundary components depend on three real parameters varying in a cell.

Definition To the variable change R3(x) we associate the pair of pants

P(R3) := Closure
(
Ĉ \ {[−1, 1]∪ [a1, a2] ∪ [a3, a4]}

)
. (2.1)

Closure here and below is taken with respect to the intrinsic spherical metrics
when every slot acquires two sides. Boundary components of the pair of pants are
colored (labeled) in accordance with the palette:

[−1, 1] – ”red”,
[a1, a2] – ”blue”,
[a3, a4] – ”green”.

The conformal class of pants (2.1) depends only on the equivalence class of
integral equations. To simplify the statement of our result we assume that infinity
lies strictly inside the pants (2.1) which is not a loss of generality – we can always
apply a suitable gauge transformation of the parameter R3(x).
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2.2.1. Reconstruction of R3(x) from the Pants. Here we show that the branched
covering map R3(x) with given branch points as, s = 1, . . . , 4, is essentially unique.
A possible ambiguity is due to the conformal motions of the covering Riemann
sphere.

Let La be the unique linear-fractional map sending the critical values a1,
a2, a3, a4 of R3 to respectively 0, 1, a > 1, ∞. The conformal motion Lb of the
covering Riemann sphere sends the critical points b1, b2, b3, b4 (unknown at the
moment) to respectively 0, 1, b > 1, ∞. The function La◦R3◦L−1

b with normalized
critical points and critical values takes a simple form

R̃3(x) = x2L(x)

with a real linear fractional function L(x) satisfying the restrictions:

L(1) = 1, L′(1) = −2,
L(b) = a/b2, L′(b) = −2a/b3.

We got four equations for three parameters of L(x) and the unknown b. The first
two equations suggest the following expression for L(x)

L(x) = 1 + 2
(c − 1)(x − 1)

x − c
.

Another two are solved parametrically in terms of parameter c:

b = c
3c − 3

2c − 1
; a = c

(3c − 3)3

2c − 1
.

Both functions b(c) and a(c) increase from 1 to ∞ when the argument c ∈
(1/3, 1/2). So, given a > 1 we find the unique c in just specified limits, and there-

fore the mapping R̃3(x). Now we can restore the linear fractional map Lb. The

inverse image R̃3

−1
of the segment La[−1, 1] consists of three disjoint segments.

For our case we choose the (unique) component of the pre-image belonging to the
segment [1, b]. The requirement: Lb maps [−1, 1] to the chosen segment determines
R3(x) up to a gauge transformation.

2.3. Another Pair of Pants

For real λ ∈ (1, 2) we consider an annulus α depending on λ bounded by εR̂,
ε := exp(2πi/3), and the circle

C := {p ∈ C : |p − µ−1|2 = µ−2 − 1}, µ :=

√
3 − λ

2λ
∈ (

1

2
, 1). (2.2)

Another annulus bounded by the same circle C and ε2R̂ is denoted by α. Note
that for the considered values of λ the circle C does not intersect the lines ε±1R.
We paint the boundaries of our annuli in the following way:

C – ”red”,

εR̂ – ”green”,

ε2R̂ – ”blue”.
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Given λ in the specified above limits, real h1, h2 and nonnegative integers
m1, m2, we define three pairs of pants Ps(λ, h1, h2|m1, m2) of different fashions
s = 1, 2, 3.

Fashion 1:
P1(λ, h1, h2|m1, m2) := m1α + m2α +

C

0

h

+

C

0

h

"red"
"green"
"blue"

The operations ′+′ here stand for a certain surgery. First of all take two
annuli α and α and cut them along the same segment (dashed red line in the
figure above) starting at the point h := h1 + ih2 from the interior of α ∩ α and
ending at the circle C. Now glue the left bank of one cut to the right bank of
the other. The resulting two sheeted surface (called Überlagerungsfläche in the
following) will be the pair of pants P1(λ, h1, h2|0, 0). It is possible to modify the
obtained surface sewing several annuli to it. Cut the annulus α contained in the
pants and m1 more copies of this annulus along the same segment (shown by the
dashed green line in the figure above) connecting the boundaries of the annulus.
The left bank of the cut on every copy of α is identified with the right bank of
the cut on another copy so that all copies of the annulus are glued in one piece. A
similar procedure may be repeated for the annulus α (cut along the dashed blue
line). The scheme for sewing together fashion 1 pants from the patches α, ᾱ when
m1 = 3 and m2 = 2 is shown in Fig. 2.

Fashions 2 and 3:
P2(λ, h1, h2|m1, m2) := P3(λ, h1, h2|m1, m2) :=
m1α + m2α + m1α + m2α +

C

0

−ε2h2

−ε2h1 C

0

−εh2

−εh1
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The pair of pants P2(λ, h1, h2|0, 0) (resp. P3(λ, h1, h2|0, 0)) by definition is
the annulus α (resp. α) with removed segment −ε2[h1, h2] (resp. −ε[h1, h2]), 0 <
h1 < h2 < ∞. As in the previous case those pants may be modified by sewing in
several annuli α, α. The scheme of cutting and gluing is shown in Fig. 3

α

α

α
α

α
_

α
_

α
_*

Figure 2. The scheme for sewing pants P1(λ, h1, h2|3, 2). Aster-
isk is the critical point of p(y).

α
α

α
α

α
_

α *

*
α

α
_

α
_

α
_

α
_

*

*

Figure 3. The scheme for sewing pants P2(λ, h1, h2|4, 1) (left);
and P3(λ, h1, h2|1, 3) (right). Asterisks are the critical points of
the mapping p(y).

2.3.1. Remarks on the Constructed Pairs of Pants. 1. The limiting case of the
first fashion of the pants when the branch point h1 + ih2 tends to ε±1R coincides
with the limiting cases of the two other fashion pants when h1 = h2 > 0:

P1(λ,−Re(ε2h),−Im(ε2h)|m1, m2) = P2(λ, h, h|m1, m2 + 1),
P1(λ,−Re(εh),−Im(εh)|m1, m2) = P3(λ, h, h|m1 + 1, m2),

(2.3)

where parameter h > 0. We denote those intermediate cases as Ps(λ, h|m1, m2),
s = 12, 13 respectively.

2. The surgery procedure of sewing annuli e.g. to the pants (known as grafting
of projective structures) was designed by B. Maskit (1969), D. Hejhal (1975) and
D. Sullivan-W. Thurston (1983), see also W. Goldman (1987).

3. Every pair of pants Ps(λ, h1, h2|m1, m2) may be conformally mapped to
the sphere with three real slots, i.e., pants of the type (2.1). Let p(y) be the
inverse mapping. We observe that p(y) has exactly one critical point in the pants
P(R3), counting multiplicity and weight. For the fashion s = 1 this point lies
strictly inside the pants and is mapped to h = h1 + ih2. For the case s = 2 (resp.
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s = 3) there will be two simple critical points of p(y) on the blue (resp. green)
boundary component of the pants which are mapped to the points −ε2h1, −ε2h2

(resp.−εh1, −εh2). Finally, for the intermediate case (see remark 1) there will be a
double critical point on the boundary. The multiplicity of the critical point on the
boundary should be calculated with respect to the local parameter of the double
of pants P(R3):

M := {w2 = (y2 − 1)

4∏

s=1

(y − as)}, (2.4)

e.g., at the endpoint a = ±1, a1, . . . , a4 of the slot this local parameter is
√

y − a.
We consider the critical points on the boundary with the weight 1

2 .

2.4. Main Theorem

Later we explain that real eigenfunctions of the integral equation PS-3 are split
with respect to the reflection symmetry into two groups: the symmetric and the
antisymmetric. In the present paper we consider only the second group of solutions.

Theorem 2.1. When λ 6= 1, 3 the antisymmetric eigenfunctions u(x) of the PS-3
integral equation with parameter R3(x) are in one to one correspondence with the
pants Ps(λ, h1, h2|m1, m2), s = 1, 2, 3, 12, 13, which are conformally equivalent to
the pair of pants P(R3) with colored boundary components.

Let p(y) be the conformal map from P(R3) to Ps(λ, h1, h2|m1, m2), then up
to proportionality

u(x) =

√
(y − y1)(y − y2)

p′(y+)p′(y−)

p(y+) − p(y−)

w(y)
, (2.5)

where x ∈ [−1, 1]; y := R3(x), y± := y ± i0. For s = 1, y1 = y2 is the critical
point of the function p(y); for s = 2, 3 the real y1 and y2 are critical points of the
function p(y).

The p r o o f of this theorem will be given in the remaining two sections of
the article.

2.5. Corollaries

The representation (2.5) cannot be called explicit in the usual sense, since it com-
prises a transcendent function p(y). We show that nevertheless the representation
is useful as it allows us to understand the following properties of the solutions.

1. The ”antisymmetric” part of the spectrum is always a subset of [1, 2)∪{3}.
2. Every λ ∈ (1, 2) is the eigenvalue for infinitely many equations PS-3.

Proof. Any of the constructed pants may be transformed to the standard form: a
sphere with three real slots. Normalizing the red slot to be [−1, 1], the end points
of the two other slots will give the branch points a1, . . . , a4. We know already how
to reconstruct the branched covering R3(x) from its branch points. �
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3. Eigenfunction u(x) related to the pants Ps(. . . |m1, m2) has exactly m1 +
m2 +2 zeroes on the segment [−1, 1] when s = 2, 3 and one more zero when s = 1.

Proof. According to the formula (2.5), the number of zeroes of eigenfunction u(x)
is equal to the number of points y ∈ [−1, 1] where p(y+) = p(y−). This number in
turn is equal to the number of solutions of the inclusion

S(y) := Arg[p(y−) − µ−1] − Arg[p(y+) − µ−1] ∈ 2πZ, y ∈ [−1, 1]. (2.6)

Let the point p(y) go m times around the circle C when its argument y
travels along the two sides of [−1, 1]. The integer m is naturally related to the
integer parameters of the pants Ps(. . . ). The function S(y) strictly increases from
0 to 2πm on the segment [−1, 1], therefore the inclusion (2.6) has exactly m + 1
solutions on the mentioned segment. �

4. The mechanism for generating the discrete spectrum of the integral equa-
tion is explained. Sewing an annulus to the pants Ps(λ, h1, h2| . . . ) changes the
conformal structure of the latter. To return to the conformal structure specified
by P(R3) we have to change the real parameters of the pants, one of them being
the spectral parameter λ.

If we knew how to evaluate the conformal moduli of the pair of pants
Ps(λ, h1, h2|m1, m2) as functions of its real parameters, the solution of the integral
equation would be reduced to a system of three transcendental equations for the
three numbers λ, h1, h2. This solution will depend on the integer parameters s,
m1, m2.

3. Geometry of Integral Equation

PS integral equations possess a rich geometrical structure which we disclose in this
section. The chain of equivalent transformations of PS-3 equation described here
in a somewhat sketchy fashion is given in [10, 11] with more details.

3.1. A nonlocal Functional Equation

Let us decompose the kernel of the second integral in (0.1) into a sum of elementary
fractions:

R′
3(t)

R3(t) − R3(x)
=

d

dt
log(R3(t) − R3(x)) =

3∑

k=1

1

t − xk(x)
− Q′

Q
(t), (3.1)

where Q(t) is the denominator in an irreducible representation of R(t) as the ratio
of two polynomials; x1(x) = x, x2(x), x3(x) – are all solutions (including multiple
and infinite) of the algebraic equation R3(xs) = R3(x). This expansion suggests



Poincaré-Steklov integral Equations and Moduli of Pants 11

to rewrite the original equation (0.1) as a certain relationship for the Cauchy-type
integral

Φ(x) :=

∫

I

u(t)

t − x
dt + const∗, x ∈ Ĉ \ [−1, 1]. (3.2)

The constant term const∗ in (3.2) is introduced to compensate for the constant
terms arising after substitution of expression (3.2) to the equation (0.1).

For a known Φ(x), the eigenfunction u(t) may be recovered by the Sokhot-
skii-Plemelj formula:

u(t) = (2πi)−1 [Φ(t + i0) − Φ(t − i0)] , t ∈ I. (3.3)

Function Φ(x) generated by an eigenfunction of PS integral equation satisfies
a nonlocal functional equation:
Lemma 3.1. [10] For λ 6= 1, 3 the transformations (3.2) and (3.3) imply a 1-1 cor-
respondence between the Hölder eigenfunctions u(t) of the PS-3 integral equation
and the nontrivial solutions Φ(x) of the functional equation which are holomorphic
on a sphere with the slot [−1, 1]

Φ(x + i0) + Φ(x − i0) = δ

(
Φ(x2(x)) + Φ(x3(x))

)
, x ∈ I, (3.4)

δ = 2/(λ − 1), (3.5)

with Hölder boundary values Φ(x ± i0).

3.2. The Riemann Monodromy Problem

The lifting R−1
3 (P(R3)) of the pants associated to the integral equation consists

of three components Os, s = 1, 2, 3. We number them in the following way (see
Fig. 1): the segment [−1, 1] lies on the boundary of O1; the segment [c4, c3] is on
the boundary of O2 and the boundary of O3 comprises the segment [c2, c1].

3.2.1. Let the function Φ(x) be related to the solution u(x) of the integral equa-
tion (0.1) as in (3.2). We consider a 3-vector defined in the pair of pants:

W (y) := (W1, W2, W3)
t = (Φ(x1), Φ(x2), Φ(x3))

t, y ∈ P(R3), (3.6)

where xs is the unique solution of the equation R3(xs) = y in Os. Vector W (y) is
holomorphic and bounded in the pants P(R3) as all three points xs, s = 1, 2, 3,
remain in the holomorphicity domain of the function Φ(x). We claim that the
boundary values of the vector W (y) are related via constant matrices:

W (y + i0) = D∗W (y − i0), when y ∈ {slot∗}. (3.7)

The matrix D∗ assigned to the ”green” [a3, a4], ”blue” [a1, a2], and ”red” [−1, 1]
slot respectively is

D2 :=
0 0 1
0 1 0
1 0 0

; D3 :=
0 1 0
1 0 0
0 0 1

; D :=
−1 δ δ
0 1 0
0 0 1

. (3.8)
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This in particular means that our vector (3.6) is a solution of a certain Riemann
monodromy problem. The monodromy of vector W (y) along the loop crossing only
”red”, ”green” or ”blue” slot is given by the matrix D, D2 or D3 correspondingly
– see Fig. 4.

a3 a4 a1 a2-1 1

"red"

"green"

"blue"

Figure 4. Three loops on a sphere with six punctures ±1, a1, . . . , a4

Indeed, let y+ := y + i0 and y− := y − i0 be two points on opposite sides of
the ”blue” slot [a1, a2]. Their inverse images x+

3 = x−
3 , x±

1 = x∓
2 lie outside the cut

[−1, 1]. Hence W (y+) = D3W (y−). For two points y± lying on opposite sides of
the ”green” slot [a3, a4], their inverse images satisfy relations x+

2 = x−
2 , x±

1 = x∓
3 ,

which means W (y+) = D2W (y−). Finally, let y± lie on both sides of the ”red”
slot [−1, 1]. Now two points x+

2 = x−
2 and x+

3 = x−
3 lie in the holomorphicity

domain of Φ(x) while x+
1 and x−

1 appear on the opposite sides of the cut [−1, 1].
According to the functional equation (3.4),

Φ(x+
1 ) = −Φ(x−

1 ) + δ(Φ(x±
2 ) + Φ(x±

3 )),

therefore W (y+) = DW (y−) holds on the slot [−1, 1].

3.2.2. Conversely, let W (y) be the bounded solution of the Riemann monodromy
problem (3.7). We define a piecewise holomorphic function on the Riemann sphere:

Φ(x) := Ws(R3(x)), when x ∈ Os, s = 1, 2, 3. (3.9)

From the boundary relations for the vector W (y) it immediately follows that the
function Φ(x) has no jumps on the lifted cuts [a1, a2], [a3, a4], [−1, 1] except for the
cut [−1, 1] from the upper sphere. Say, if the two points y± lie on opposite sides
of the cut [a1, a2], then W3(y

+) = W3(y
−) and W1(y

±) = W2(y
∓) which means

that the function Φ(x) has no jump on the components of R−1
3 [a1, a2]. From the

boundary relation on the cut [−1, 1] it follows that Φ(x) is the solution for the
functional equation (3.4). Therefore it gives a solution of Poincaré–Steklov integral
equation with parameter R3(x). Combining formulae (3.3) with (3.9) we get the
reconstruction rule

u(x) = (2πi)−1

(
W1(R3(x) + i0)− W1(R3(x) − i0)

)
, x ∈ [−1, 1]. (3.10)

We have just proved the following

Theorem 3.2. [3] If λ 6= 1, 3 then the two formulas (3.6) and (3.10) imply the one-
to-one correspondence between the solutions u(x) of the integral equation (0.1)
and the bounded solutions W (y) of the Riemann monodromy problem (3.7) in the

punctured sphere Ĉ \ {−1, 1, a1, a2, a3, a4}.
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3.2.3. Monodromy Invariant. The following statement is proved by direct compu-
tation.

Lemma 3.3. All matrixes (3.8) (i) are involutive (i.e. D
2 = D2

2 = D3

2 = 1) and
(ii) conserve the quadratic form

J(W ) :=

3∑

k=1

W 2
k − δ

3∑

j<s

WjWs. (3.11)

The form J(W ) is not degenerate unless −2 6= δ 6= 1, or equivalently 0 6=
λ 6= 3. Since the solution W (y) of our monodromy problem is bounded near the
cuts, the value of the form J(W ) is independent of the variable y. Therefore the
solution takes values either in the smooth quadric {W ∈ C3 : J(W ) = J0 6= 0},
or the cone {W ∈ C3 : J(W ) = 0}.
3.3. Geometry of the Quadric Surface

The nondegenerate projective quadric {J(W ) = J0} contains two families of line
elements1 which for convenience are denoted by the signs ′+′ and ′−′. Two different
lines from the same family are disjoint while two lines from different families must
intersect. The intersection of those lines with the ’infinitely distant’ secant plane
gives points on the conic

C := {(W1 : W2 : W3)
t ∈ CP 2 : J(W ) = 0} (3.12)

which by means of the stereographic projection p may be identified with the Rie-
mann sphere. Therefore we have introduced two global coordinates p±(W ) on the
quadric, the ’infinite part’ of which (= conic C) corresponds to coinciding coordi-
nates: p+ = p− (see fig. 5).

The natural action of them pseudo-orthogonal group O3(J) in C3 conserves
the quadric, the conic at infinity C, and the families of line elements possibly
interchanging their labels ′±′. The induced action of the group O3(J) on the
stereographic coordinates p± is a linear fractional with a possible change of the
superscript ′±′.

3.3.1. Stereographic Coordinates. To obtain explicit expressions for the coordi-
nate change W ↔ p± on the quadric we bring the quadratic form J(W ) to the
simpler form J•(V ) := V1V3 − V 2

2 by means of the linear coordinate change

W = KV (3.13)

where

K := (3δ + 6)−1/2
1 1 1
1 ε2 ε
1 ε ε2

·
0 µ−1 0
0 0 1
1 0 0

, (3.14)

ε := exp(2πi/3), µ :=

√
δ − 1

δ + 2
=

√
3 − λ

2λ
.

1This property of quadric is sometimes used in architecture. The line generators of the hyper-
boloid serve as construction elements, e.g., for the Shukhov tower in Moscow.
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Figure 5. Global coordinates p
+ and p

− on quadric

Translating the first paragraph of the current section into formulae we get

p±(W ) :=
V2 ± i

√
J0

V1
=

V3

V2 ∓ i
√

J0

; (3.15)

and inverting this dependence,

W (p+, p−) =
2i
√

J0

p+ − p−
K




1
(p+ + p−)/2

p+p−


 . (3.16)

The point W (p+, p−) with coordinate p+ (resp. p−) being fixed moves on the
straight line with the directing vector K(1 : p+ : (p+)2) (resp. K(1 : p− : (p−)2))
belonging to the conic (3.12).

3.3.2. Action of the Pseudo-orthogonal Group.

Lemma 3.4. There exists a (spinor) representation χ : O3(J) → PSL2(C) such
that:
1) The restriction of χ(·) to SO3(J) is an isomorphism to PSL2(C).
2) For coordinates p± on the quadric the following transformation rule holds:

p±(TW ) = χ(T)p±(W ), T ∈ SO3(J),
p±(TW ) = χ(T)p∓(W ), T 6∈ SO3(J).

(3.17)
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3) The linear-fractional mapping χp := (ap+b)/(cp+d) is the image of the matrix:

T :=
1

ad − bc
K

d2 2cd c2

bd ad + bc ac
b2 2ab a2

K
−1 ∈ SO3(J). (3.18)

4) The generators of the monodromy group are mapped to the following elements
of PSL2:

χ(Ds)p = ε1−s/p, s = 1, 2, 3;

χ(D)p =
µp − 1

p − µ
.

(3.19)

Proof. We define the action of the matrix A ∈ SL2(C) on the vector V ∈ C3 by
the formula:

A :=
a b
c d

:
V3 V2

V2 V1
−→ A

V3 V2

V2 V1
A

t. (3.20)

It is easy to check that (3.20) gives the faithful representation of a connected
3-dimensional group PSL2(C) := SL2(C)/{±1} into SO3(J•) and therefore, an
isomorphism. Let us denote by χ• the inverse isomorphism SO3(J•) → PSL2(C)
and let χ(±T) := χ•(K

−1
TK) for T ∈ SO3(J). The obtained homomorphism χ :

O3(J) → PSL2(C) will satisfy statement 1) of the lemma.
To prove 2) we replace components of the vector V in the right-hand side of

(3.20) with their representation in terms of the stereographic coordinates p±:

i
√

J0

p+ − p−
A

[
(p+, 1)t · (p−, 1) + (p−, 1)t · (p+, 1)

]
A

t =

i
√

J0
(cp+ + d)(cp− + d)

p+ − p−
[
(χp+, 1)t · (χp−, 1) + (χp−, 1)t · (χp+, 1)

]
=

i
√

J0

χp+ − χp−
[
(χp+, 1)t · (χp−, 1) + (χp−, 1)t · (χp+, 1)

]
=

V3(χp+, χp−) V2(χp+, χp−)
V2(χp+, χp−) V1(χp+, χp−)

,

where we set χp := (ap + b)/(cp + d). Now (3.17) follows immediately for T ∈
SO3(J). It remains to check the transformation rule for any matrix T from the
other component of the group O3(J), say T = −1.

Writing the action (3.20) component-wise we arrive at conclusion 3) of the
lemma.

And finally, expressions 4) for the generators of monodromy group may be
obtained either from analyzing formula (3.18) or from finding the eigenvectors
of the matrices Ds,D which correspond to the fixed points of linear- fractional
transformations. �

For convenience we collect all the introduced objects related to the boundary
components of the pair of pants P(R3) in Tab. 1
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Table 1. Slots, their associated colors, matrices and linear-
fractional maps

slot [−1, 1] [a1, a2] [a3, a4]
color ”red” ”blue” ”green”

matrix D∗ D :=
−1 δ δ
0 1 0
0 0 1

D3 :=
0 1 0
1 0 0
0 0 1

D2 :=
0 0 1
0 1 0
1 0 0

χ(D∗)p
µp − 1

p − µ
ε/p ε2/p

3.4. Entangled Projective Structures

Definition 3.5. A branched complex projective structure [5, 6, 8, 9] on a Riemann

surface M is a meromorphic function p(t) on the universal covering M̃ which

transforms fractionally linear under the cover transformations of M̃. The appro-
priate representation χ : π1(M) → PSL2(C) is called the monodromy of the
projective structure. The set of all critical points of p(t) with their multiplicities

survives under the cover transformations of M̃. The projection of this set to the
Riemann surface M is known as the branching divisor D(p) of projective structure
and the branching number of the structure p(t) is deg D(p).

Examples. The unbranched projective structures arise in Fuchsian and Schot-
tky uniformizations of the Riemann surface. Any meromorphic function on a Rie-
mann surface is a branched projective structure with trivial monodromy.

3.4.1. Projective Structures Generated by Eigenfunction. Every bounded solution
W (y) of the Riemann monodromy problem (3.7) generates two nowhere coincid-
ing meromorphic functions p±(y) in the sphere with three slots. Those functions
are stereographic coordinates (3.15) for the vector W (y). The boundary values of
functions p+(y) and p−(y) on every slot are related by linear-fractional transfor-
mations:

p±(y + i0) = χ(D∗)p
∓(y − i0), y ∈ {slot∗} (3.21)

where the matrix D∗ = D, D2, D3 stand for the ’red’, ’green’ and ’blue’ slots
respectively.

Relations (3.21) allow us to analytically continue both functions p+(y) and
p−(y) through any slot to the second sheet of the genus 2 Riemann surface

M := {w2 = (y2 − 1)

4∏

s=1

(y − as)}, (3.22)

and further to its universal covering M̃ . Thus obtained functions p±(t), t ∈ M̃ , will
be locally single valued on the Riemann surface since all matrices D∗ are involutive.
However varying the argument t along the handle of the surface M may result in a
linear-fractional transformation of the value p±(t). Say, the continuations of p+(y)
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from the pants through the red and green slots will give two different functions on
the second sheet related by the linear-fractional mapping χ(DD2).

3.4.2. Branching of the Structures p±. The way we have carried out the continua-
tion of functions p±(y) suggests that the branching divisors of the arising projective
structures are related via the hyperelliptic involution H(y, w) := (y,−w) of the
surface M :

D(p+) = HD(p−). (3.23)

The condition p+ 6= p− allows to determine the branching numbers of the struc-
tures which is done in the next theorem.

Theorem 3.6. [11] When λ 6∈ {0, 1, 3} the solutions u(x) of the integral equation
PS-3 that have invariant J0 6= 0 are in one-to-one correspondence with the cou-
ples of not identically equal functions meromorphic in the pants P(R3) p±(y) with
boundary values satisfying (3.21) and two critical points in common. The corre-
spondence u(x) → p±(y) is established by the sequence of formulae (3.2), (3.6) and
(3.15); the inverse dependence is given by the formula

2πu(x) =

√
(δ + 2)J0

3

p+(y)p−(y) − µ(p+(y) + p−(y)) + 1

p+(y) − p−(y)
, (3.24)

where x ∈ [−1, 1] and y := R3(x) + i0.

Remark: The number of critical points of the structures in the pants is
counted with their weight and multiplicity (see remark 3 on page 8): 1) the
branching number of p±(y) at the branch point a ∈ {±1, a1, . . . , a4} of M is
computed with respect to the local parameter z =

√
y − a, 2) every branch point

of the projective structure on the boundary of the pants should be considered as
a half-point.

Proof. : 1. Let u(x) be an eigenfunction of the integral equation PS-3, then the
stereographic coordinates p±(y) of the solution of the associated Riemann mon-
odromy problem inherit the boundary relationship (3.21). What remains is to find
the branching numbers of the entangled structures p±(y). To this end we consider
the Kleinian quadratic differential on the slit sphere

Ω(y) =
dp+(y)dp−(y)

(p+(y) − p−(y))2
, y ∈ Ĉ. (3.25)

This expression is the infinitesimal form of the cross ratio, hence it remains un-
changed after the same linear-fractional transformations of the functions p+ and
p−. Therefore, (3.25) is a well defined quadratic differential on the entire sphere.
Lifting Ω(y) to the surface M we get a holomorphic differential. Indeed, p+ 6= p−

everywhere and applying suitable linear-fractional transformation we assume that
p+ = 1 + zm+ + {terms of higher order} and p− = czm

− + ... in terms of lo-
cal parameter z of the surface, m± ≥ 1, c 6= 0. Then Ω = cm+m−zm++m

−
−2 +

{terms of higher order}. Therefore

D(p+) + D(p−) = (Ω).
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Any holomorphic quadratic differential on a genus 2 surface has 4 zeroes and taking
into account the symmetry (3.23) of the branching divisors, we see that each of
the structures p± has the branching number two on the curve M . It remains to
note that the pair of pants P(R3) are exactly ”one half” of M .

2. Conversely, let p+(y) and p−(y) be two not identically equal meromorphic
functions on the slit sphere, with boundary conditions (3.21) and total branching
number two in the pants (see remark above). We can prove that p+ 6= p− every-
where. Indeed, for the meromorphic quadratic differential (3.25) on the Riemann
surface M we establish (using a local coordinate on the surface) the inequality

D(p+) + D(p−) ≥ (Ω) (3.26)

where the deviation from equality means that there is a point where p+ = p−.
But the degree of the divisor on the left of (3.26) is four and the same number is
deg(Ω) = 4g − 4. Therefore this pair of functions p± will give us the holomorphic
vector W (p+(y), p−(y)) in the pants which solves our Riemann monodromy prob-
lem. We already know how to convert the latter vector to the eigenfunction of the
integral equation PS-3. �

3.4.3. Remark about the Non-smooth Quadric. It is shown in [11] how to incor-
porate the exceptional case J0 = 0 into the above scheme. In the latter case the
functions p±(y) coincide, however the boundary relations (3.21) survive. The total
branching number of the function p+ = p− in the pair of pants is either zero or
one. The solutions to the PS-3 integral equation and the associated Riemann mon-
odromy problem may be recovered up to proportionality from the unified formulae
(true whatever J0)

u(x) =

√
Ω(y)

dp+(y)dp−(y)
(p+(y)p−(y) − µ(p+(y) + p−(y)) + 1), (3.27)

W (y) =

√
Ω(y)

dp+(y)dp−(y)
K(1, (p+(y) + p−(y))/2, p+(y)p−(y))t, (3.28)

where Ω(y) = (y − y1)(y − y2)
(dy)2

w2(y)
is the holomorphic quadratic differential on

the Riemann surface M with zeroes at the branching points of the possibly coin-
ciding structures p+ and p− [or with two arbitrary double zeroes when the struc-
ture p+ = p− is unbranched, further analysis however shows that the required
unbranched structures do not exist].

3.5. Types of the Mirror Symmetry of the Solution

The eigenvalues of the integral equation are the critical values of the positive
functional (1.2) – the generalized Rayleigh ratio. So we may consider only real
eigenfunctions u(x) without loss of generality. Real solutions of the PS-3 equation
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give rise to exactly two types of mirror symmetry for the entangled structures:

Symmetric p±(ȳ) = 1/p±(y)

Antisymmetric p±(ȳ) = 1/p∓(y)
, y ∈ P(R3),

depending on the sign of the real number (δ + 2)J0. In what follows we restrict
ourselves to the case of antisymmetric eigenfunctions. In this case:

p+(y ± i0) = 1/p−(y ∓ i0) = 1/χ(D∗)p+(y ± i0), y ∈ slot∗,

and hence we know where the boundary components of the pair of pants P(R3)
are mapped to. In particular,

”green” boundary → εR̂

”blue” boundary → ε2R̂

”red” boundary →
{

C − see (2.2) when 1 < λ < 3
∅ when λ < 1 or 3 < λ.

(3.29)

We see that the above geometrical analysis of the integral equation gives the
universal limits for (the antisymmetric part of) the spectrum.

The branching divisor of the projective structure p+ has the mirror symmetry:
D(p+) = H̄D(p+) where H̄(y, w) := (ȳ,−w̄) is the anticonformal involution of the
surface M leaving boundary components (ovals) of pair of the pants P(R3) intact.
Therefore exactly three situations may occur: p+(y) has one simple critical point
strictly inside the pants, or there are two simple critical points on the boundary of
pants or there is one double critical point of p+(y) on the boundary of the pants.

4. Combinatorics of Integral Equation

For the antisymmetric eigenfunctions we arrive at the essentially combinatorial
Problem (about putting pants on a sphere) Find a meromorphic function p := p+

defined in the pair of pants P(R3) mapping boundary ovals to the given circles
(3.29) and having exactly one critical point (counted with weight and multiplicity)
in the pants.

The three above-mentioned types of the branching divisor D(p) will be treated
separately in the sections 4.1, 4.2. When the branch point of the structure p is
strictly inside the pants we show that the solution of the problem takes the form
of the Überlagerungsfläche P1(. . . ) with certain real and integer parameters. The
case of two simple branch points belonging to the boundary gives us the pants
Ps(. . . ), s = 2, 3 and the unstable intermediate case with double branch point on
the boundary brings us to the pants Pj(. . . ), j = 12, 13 described in (2.3).

Let p(y) be a holomorphic map from a Riemann surface M with a boundary
to the sphere and the selected boundary component (∂M)∗ be mapped to a circle.
The reflection principle allows us to holomorphically continue p(y) through this
selected component to the double of M. Therefore we can talk of the critical points
of p(y) on (∂M)∗. When the argument y passes through a simple critical point,
the value p(y) reverses the direction of its movement on the circle. So there should
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be an even number of critical points (counted with multiplicities) on the selected
boundary component.

4.1. The Branchpoint is inside a Pair of Pants

4.1.1. Construction 1. Using otherwise a composition with a suitable linear-frac-
tional map, we suppose that the circle p((∂M)∗) is the boundary of the unitary
disc

U := {p ∈ C : |p| ≤ 1}, (4.1)

and that a small annular vicinity of the selected boundary component is mapped
to the exterior of the unit disc. We define the mapping of a disjoint union M∪ U

to a sphere

p̃(y) :=

{
p(y), y ∈ M,
L(yd), y ∈ U,

(4.2)

where the integer d > 0 is the degree of the mapping p : (∂M)∗ → ∂U, and where
L(y) is an (at the moment arbitrary) linear fractional mapping keeping the unitary
disc (4.1) unchanged. The choice of L(·) will be fixed later to simplify the arising
combinatorial analysis.

Now we fill in the hole in M by the unit disc, identifying the points of (∂M)∗
and the points of ∂U with the same value of p̃ (there are d ways to do so). The
holomorphic mapping p̃(y) of the new Riemann surface M∪ U to the sphere will
have exactly one additional critical point of multiplicity d− 1 at the center of the
glued disc.

4.1.2. Branched Covering of a Sphere. We return to the function p(y) being the
solution of the problem stated in the beginning of section 4. Suppose that the
point p(y) completes turns on the corresponding circle dr, dg and db times when
the argument y runs around the ’red’,’green’ and ’blue’ boundary component of
P(R3) respectively. We can apply the just introduced construction 1 and glue
the three discs Ur, Ug, Ub, to the holes of the pants. Essentially, we arrive at a
commutative diagram:

P(R3)
inclusion−→ CP 1

@
@
@
@
@
@R

p(y)

?

p̃ is branched
covering.

CP 1 (4.3)

Applying the Riemann–Hurwitz formula for the holomorphic mapping p̃ with
four ramification points (three of them are in the artificially glued discs and the
fourth is inside the pants) we immediately get:
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dr + dg + db = 2N, N := deg p̃. (4.4)

4.1.3. Intersection of Circles.

Lemma 4.1. The circle C does not intersect the two other circles ε±1R̂. Therefore
the spectral parameter 1 < λ < 2 when the projective structure p(y) branch point
is inside the pants.

Proof. : We know that the point 0 lies in the intersection of two of our circles: εR̂

and ε2
R̂. The total number ♯{p̃−1(0)} of the pre-images of this point (counting the

multiplicities) is N and cannot be less than db + dg – the number of pre-images
on the blue and green boundary components of the pants. Comparing this to (4.4)
we get dr ≥ N which is only possible when

dr = dg + db = N. (4.5)

Assuming that the circle C intersects any of the circles ε±1R̂ we repeat the
above argument for the intersection point and arrive at the conclusion db = dr +
dg = N or dg = dr + db = N which is incompatible with the already established
equation (4.5). �

Remark 4.2. In section 3.4.3 we promised to show that any meromorphic function
p mapping the boundaries of the pants to the circles (3.29) has a critical point.
Indeed, the inequalities db + dg ≤ N and dr ≤ N remain true whatever the
branching of the structure p is, while (4.4) originating from the Riemann–Hurwitz
formula takes the form db + dg + dr = 2N + 1 for the unbranched structure which
leads to a contradiction.

4.1.4. Image of the Pants. Let us investigate where the artificially glued discs are
mapped to. Suppose for instance that the disc Ur is mapped to the exterior of the
circle C. The point 0 will be covered then at least dr + dg + db = 2N times which
is impossible. The discs Ug and Ub are mapped to the left of the lines εR and ε2R

respectively, otherwise points from the interior of the circle C will be covered more
that N times. The image of the pair of pants P(R3) is shown on the left of the
Fig. 6.

We use the ambiguity in the construction of the glueing of the disks to the
pants and require that the critical values of p̃ in the discs Ug, Ub coincide. Now
the branched covering p̃ has only three different branch points shown as •, ◦ and
∗ on the Fig. 6a). The branching type at those three points for dg = 2, db = 3,
d = N = 5 is shown on the Fig. 6b). The coverings with three branch points are
called Belyi maps and are described by certain graphs known as Grothendieck’s
”Dessins d’Enfants”. In our case the dessin is the lifting of the segment connecting
white and black branch points: Γ := p̃−1[•, ◦].
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C

*

Point Branching typec ````
``  
!!

dg

dbs ````````#
# dr

* ``  2

Figure 6. (a) Shaded area is the image of pants (b) Branching
type of the branch points

4.1.5. Combinatorial Analysis of the Dessins. There is exactly one critical point
of p̃ over the branch point ∗. Hence, the complement to the graph Γ on the upper
sphere of the diagram (4.3) contains exactly one cell mapped 2 − 1 to the lower
sphere. The rest of the components of the complement are mapped 1 − 1. Two
types of cells are shown in figures 7 a) and b), the lifting of the red circle is not
shown to simplify the pictures. The branch point ∗ should lie in the intersection
of the two annuli α and α, otherwise the discs Ug, Ub glued to different boundary
components of our pants will intersect: the hypothetical case when the branch
point of p(y) belongs to one annulus but does not belong to the other is shown in
Fig. 7 c).

* *

(a) (b) (c)

Figure 7. (a) Simple cell (b) Double cover (c) Impossible double cover

The cells from Fig. 7 a), b) may be assembled in a unique way shown in
Fig. 8. The pants are colored in white, three artificially sewed discs are shaded.
Essentially this picture shows us how to sew together the patches bounded by our

three circles C, ε±1R̂ to get the pants conformally equivalent to P(R3). As a result
of the surgery procedure we obtain the pants P1(λ, h1, h2|dg − 1, db − 1).
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"red"

"green"

"blue"

Figure 8. Dessin for dg = 3, db = 2; the pre-image of the branch
point ∗ is at the infinity

4.2. Simple branch points on the boundary of the pants

Our strategy remains the same: to fill in the holes in the pants and to convert p(y)
into a branched covering with a simple type of branching.

4.2.1. Construction 2. Let again p(y) be a holomorphic mapping of a bounded
Riemann surface M to the sphere with the selected boundary component (∂M)∗
being mapped to the boundary of the unit disc U. Now the mapping p(y) has two
simple critical points on the selected boundary component (the case of coinciding
critical values is not excluded). Those two points divide the oval (∂M)∗ into two
segments: (∂M)+∗ and (∂M)−∗ . Let the increment of arg p(y) on the segment
(∂M)+∗ be 2πd+ − φ, 0 < φ ≤ 2π, and the decrement on the segment (∂M)−∗ be
2πd−−φ, the point y moves around the selected oval in the positive direction and
d± are positive integers. We are going to fill in the hole in the Riemann surface
M with two copies of the unitary disc (4.1): U+ and U−.

We define the mapping from the disjoint union M∪ U+∪ U− to the sphere:

p̃(y) :=





p(y), y ∈ M,

L−(yd−

), y ∈ U−,

L+(y−d+

), y ∈ U
+,

(4.6)

where L±(·) are the (at the moment arbitrary) linear fractional mappings keeping
the unitary disc (4.1) invariant. The choice of L±(·) will be specified later to
simplify the combinatorial analysis.

Identifying the points y with the same value of p̃(y) we glue the segments
(∂M∗)± of the selected boundary oval of M to the portions of the boundaries of
the discs U± respectively. The remaining parts of the boundaries of U± are glued
to each other as shown in Fig. 10a).

4.2.2. Branched Covering of a Sphere. At the moment we do not know which of
the three boundary ovals of the pants P(R3) contains the critical points of p(y).
Therefore we introduce the ’nicknames’ {1, 2, 3} for the set of colors {r, g, b} so
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Figure 9. Mapping of the boundary component (∂M)∗ with two
simple branch points ∗ on it and winding indices d+ = 1, d− = 2.
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Figure 10. (a) Filling in the hole bounded by (∂M)∗ (b) The
shaded area is the image of P(R3).

that the critical points will be on the oval number 3. The usage of construction
2 from section 4.2.1 allows us to glue two discs U

±
3 to the latter boundary. The

usage of construction 1 from section 4.1.1 fills in the remaining two holes with two
discs U1 and U2. Positive integers arising in those constructions are denoted by
d±3 , d1, d2 respectively.

Again, we split the mapping p(y) from the pants to the sphere as in the
diagram (4.3): p = p̃◦ inclusion with the branched covering p̃. The latter mapping
has six critical points: two simple ones inherited from the pants and four at the
centers of the artificially glued discs and multiplicities d±3 − 1, d1 − 1, d2 − 1
respectively. The Riemann–Hurwitz formula for this covering gives

d1 + d2 + d+
3 + d−3 = 2N, N := deg p̃. (4.7)

Lemma 4.3. The images of the ovals with numbers 1 and 2 do not intersect.

Proof. Suppose the opposite is true and a point Pt lies in the intersection of the
images of the first two ovals. Then N ≥ ♯p̃−1(Pt) ≥ d1 + d2. On the image of the
third oval there is a point (e.g. in the right side of Fig. 9 this is a point i) with
d+
3 + d−3 ≤ N pre-images. Comparing the last two inequalities to (4.7) we get the
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equalities

d1 + d2 = d+
3 + d−3 = N

and Pt is covered at least d1 + d2 + min(d+
3 , d−3 ) > N times. �

Corollary 4.4. Two circles ε±1R̂ intersect, therefore the critical points of p(y) lie
either on the blue or on the green boundary of pants. Moreover, the circle C –
the image of the red boundary oval – does not intersect the two mentioned circles
which may only happen when µ ∈ (1

2 , 1), or equivalently λ ∈ (1, 2).

Convention: We assume that both critical points of p lie on the blue oval.
The remaining case when they belong to the green oval is absolutely analogous to
the case we consider. Now the notations U

±
b , Ur, Ug, d±b , dr, dg have the obvious

meaning.

4.2.3. The Image of the Pants. Let us show that the the image of the pants remains
the same as in section 4.1.4.

Lemma 4.5. The image p(P(R3)) of the pants lies in the intersection of annuli α
and ᾱ – see Fig. 10b)

Proof. We refer to the four sectors: C \ ε±1R as to ’top’, ’down’, ’left’ and ’right’.
It is a matter of notation to say that the disc U

+
b is mapped to the ’top’ and ’left’

sectors while the disc U
−
b is mapped to the ’down’ and ’right’ sectors.

The disc Ug covers either the ’top’ or the ’left’ sector and both are covered
by the disc U

+
b . Therefore, dg + d+

b ≤ N . In a similar way we get dr + d−b ≤ N .
The obtained inequalities and the Riemann–Hurwitz formula (4.7) – which in our
notations becomes dr + dg + d+

b + d−b = 2N – give us

dr + d−b = dg + d+
b = N.

If the disc Ur is mapped to the exterior of the circle C, then either ’left’ or
’top’ sector is covered dr + dg + d+

b > N times. If the disc Ug is mapped to the

right of the line εR, then the interior of the circle C is covered dr + dg + d−b > N
times.

We see that the ’left’ sector and the interior of the circle C are covered by
the artificially inserted discs only. �

Corollary 4.6. Both critical values of p(y) lie on the ray −ε2(0,∞).

Corollary 4.7. The integer d−b is equal to 1, since the point 0 is covered at least

dg + d+
b + d−b − 1 ≤ N times.

Let us recall that the constructions of attaching discs to the pants allow us
to move branch point (= the critical value of p̃(y) in the inserted disc) within the
appropriate circle. In particular, the critical values of p̃(y) in the discs Ug, U

+
b

may be placed to the same point in the ’left’ sector, say to p = −1 (point ◦ in
Fig. 10b) while the critical values in the discs Ur, U

−
b may be placed to the same

point inside C, say to p = 1 ( point • in Fig. 10b). Now we lift the segment [◦, •]
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Table 2. Flat surfaces F covering the disc with the branching
number B ≤ 2

number of sheets B surface F picture
1 0 disc Fig. 7(a)
2 1 disc Fig. 11(a)
3 2 disc Fig. 11(b)
2 2 annulus Fig. 11(c)

*Ob

–

Ob

+

Ob

+

*

*

Ob

–

Or

Or

**

(a) (b) (c)

Figure 11. Flat surfaces F covering the disc with the branching
numbers B = 1, 2.

connecting the branch points to the upper sphere of the diagram (4.3) and analyze
the arising graph Γ := p̃−1([◦, •]).

4.2.4. Combinatorial Analysis of the Graph. The restriction of p̃ to every compo-
nent F of the compliment Ĉ\Γ to the graph is naturally continued to the branched

coverings over the disc2 Closure(Ĉ \ [◦, •]). We can list all flat surfaces F covering
a disc with the branching number B ≤ 2. To this end we use the Riemann–Hurwitz
formula for the branched coverings of the bordered surfaces:

2 + B = ♯{∂F} + deg p̃|F
which relates B – the total branching number of p̃ in the selected flat surface F
covering a disc; ♯{∂F} – the number of its boundary components and deg p̃|F –
the degree of the restriction of the covering p̃ to the component F . Taking into
account that ♯{∂F} ≤ deg p̃|F we obtain the list shown in Tab. 2.

The combinatorics of the green and blue circles lifted to the listed covering
surfaces F is shown in the Fig. 7a) and Fig.11a-c). Let us denote the centers of
the four artificially glued discs Ur, Ug, U

+
b U

−
b as respectively Or (black vertex of

graph Γ with valency dr), Og, O+
b (white vertexes with valencies dg, d+

b ) and O−
b

(dangling black vertex). Their mutual positions in the graph Γ are subject to the
following restriction:

2Closure here has the same meaning as in the formula (2.1)
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Og Ob

–

Figure 12. If Og and O−
b were neighbors, the discs U

−
b and Ug

would intersect.

Lemma 4.8. The vertices Og and O−
b are not neighbors in Γ.

Proof. The disjoint discs U
−
b and Ug of the upper sphere in the diagram (4.3)

would intersect otherwise – see Fig. 12. �

Corollary 4.9. The vertices on the border of the triply covering disc F – see Fig.
11b) – appear in the following order: Og, Or, O+

b , O−
b , O+

b , Or.

They may be uniquely ascribed to the vertices in the picture after the obser-
vation: the blue line divides the vicinity of any critical point ∗ into four quadrants,
two of which belong to the pair of pants, one belongs to the disc U

−
b , and the rest

is contained in the disc U
+
b .

Corollary 4.10. The complement to the graph Γ cannot contain two doubly covering
discs F .

Indeed, the point O−
b lies on the boundary of one of those discs. Both neigh-

boring vertices on the boundary of the disc F should be O+
b according to the

lemma. But this contradicts the above observation: two quadrants of this covering
disc belong to U

+
b – see Fig. 11a).

4.2.5. Assembly Scheme. We see that there remain only two possibilities for the
complement to the graph Γ. It consists either of (a) one disc mapped 3-1 and
N − 3 simple cells mapped 1-1 or (b) an annulus mapped 2-1 and N − 2 simple
discs mapped 1-1. The graphs Γ with compliment containing no simple cells are
shown in Fig. 13. They correspond to the pants P2(. . . |0, 1) (a) and P2(. . . |0, 0)
(b). The graphs with simple cells in the complement are obtained from those two
basic pictures as a result of the surgery. We cut the graph along the the edge OrOg

and insert dg − 1 simple discs in the slot as in Fig. 8. The graph on the left side
of the Fig. 13 admits another surgery: we cut the graph along the edge OrO

+
b and

sew in d+
b − 2 patches shown in Fig. 7a) in the slot. The arising graph corresponds

to the pair of pants P2(. . . , dg − 1, d+
b − 1).

4.3. Remaining cases

If the branch points of the projective structure p := p+ belong to the green oval
of the pants we arrive at the pair of pants Ps of fashion s = 3. Finally, when the
branch points merge the limit variant of construction 2 may be applied for the
analysis and we arrive at the pants of intermediate types s = 12, 13.
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Figure 13. Graph Γ for the basic mappings with dg = 1, d+
b =

dr = 2, N = 3 (a) and dg = d+
b = dr = 1, N = 2 (b). Artificially

inserted discs are shaded.

5. Conclusion

A similar analysis based on the geometry and combinatorics may be applied to
obtain the representations of the solutions of the PS-3 integral equation in all the
omitted cases. Much of the techniques used may be helpful for the study of other
integral equations with low degree rational kernels.
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