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Chebyshev representation for rational functions

A.B. Bogatyrev

Abstract. An effective representation is obtained for rational functions all
of whose critical points, apart from g−1, are simple and their corresponding
critical values lie in a four-element set. Such functions are described using
hyperelliptic curves of genus g > 1. The classical Zolotarëv fraction arises
in this framework for g = 1.
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§ 1. Introduction

The following optimization problem arises in the natural way in the construction
of multiband digital and analogue filters.

Let E be a fixed system of disjoint closed intervals on the real axis. On each
interval a pulse function F (x) is set equal to 0 (stopband) or 1 (passband). Among
all real rational functions R(x) of fixed degree n find the best approximation to the
pulse function in the uniform metric on the intervals under consideration:

‖R− F‖E := max
x∈E

|R(x)− F (x)| −→ min.

The solution of this problem has 2n+2 alternance points (see [1]), that is, points
at which the deviation attains its norm (with alternating sign). Each alternance
point lying in the interior of E is a critical point of the solution; it corresponds
to a critical value in the set of 4 elements ±‖R − F‖E , 1 ± ‖R − F‖E . When E
consists of only a few intervals, the number of interior alternance points is almost
equal to 2n − 2, the total number of critical points of the solution counted with
multiplicities.

The aim of this paper is to find an effective representation for rational functions
the great majority of whose critical points are simple and correspond to four distinct
critical values. A similar problem arises in the investigation of the problem of least
deviation in the uniform norm for polynomials. Chebyshev invented a method for
describing polynomials the great majority of whose critical points are simple, with
the corresponding critical values belonging to a 2-element set. We will show how

This research was carried out with the support of the Russian Foundation for Basic Research
(grant nos. 08-01-00393, 08-01-00317, 09-01-12160 and 10-01-00407) and the programme “Current
problems in theoretical mathematics” of the Praesidium of the RAS.

AMS 2010 Mathematics Subject Classification. Primary 41A20; Secondary 30C15, 30F30,
65D20.



1580 A.B. Bogatyrev

Chebyshev’s construction can be modified to describe rational functions with four
exceptional critical values.

I dedicate this paper to the memory of V. I. Lebedev and F. Peherstorfer.

§ 2. Chebyshev representation for polynomials

We will give an overview of the Chebyshev construction for polynomials;
for a detailed presentation the reader can consult [2] and [3]. Without loss of
generality we assume that the two distinguished critical values are ±1. Informally
speaking, the extremality number of a polynomial is g if all the critical points of the
polynomial, apart from g of them, are simple and correspond to the values ±1. Here
‘extremality’ has two roles: first, we distinguish the critical points which do not
meet a certain general requirement; second, polynomials with small g = 0, 1, 2, . . .
are more likely to provide solutions to various extremal problems involving the
uniform norm.

2.1. The extremality number of a polynomial. By the extremality number
of a polynomial P (x) we mean

g =
∑

x:P (x) 6=±1

ordP ′(x) +
∑

x:P (x)=±1

[
1
2

ordP ′(x)
]
, (2.1)

where ordP ′(x) is the order of the zero of the derivative of the polynomial P at
x ∈ C and [ · ] is the integer part of a number.

2.2. The Riemann surface. In the Chebyshev framework, corresponding to
a polynomial P (x) there is a Riemann surface M = M(E) branched over the points
E := {es}2g+2

s=1 at which the polynomial takes values ±1 with odd multiplicity (so
that generically these are simple values). The affine part of the curve is described
by

w2 =
2g+2∏
s=1

(x− es), (x,w) ∈ C2. (2.2)

We can show (see [2] and [3]) that the extremality number (2.1) of a polynomial
is equal to the genus of the associated Riemann surface M . There are effective
methods to determine whether a fixed Riemann surface (2.2) is associated with
a polynomial. On M there is a unique Abelian differential of the third kind dηM

with simple poles at infinity, residues ±1 and purely imaginary periods. The curve
(2.2) is associated with a polynomial of degree n if and only if∫

C

dηM ∈ 2πi

n
Z ∀C ∈ H1(M, Z). (2.3)

The above inclusions impose 2g transcendental real conditions on the 2g−1 complex
moduli of the curve M(E). If the curve is real (for instance, it is associated with
a real polynomial), then half these conditions are automatically satisfied, thanks
to mirror symmetry, and we obtain g real constraints on the real moduli. The
polynomials generating the curve can be recovered by the explicit formula

P (x) = ± cos
(

ni

∫ (x,w)

(e,0)

dηM

)
, e ∈ E, (2.4)
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where the result of the calculation does not depend on the path of integration
on M , the two ways to choose w(x) or the branch point e taken as the initial point
of integration. For practical purposes it is also significant that the complexity of
the computation in (2.4) does not depend on the degree n of the polynomials. In the
special cases of g = 0 and g = 1 this formula yields the classical Chebyshev and
Zolotarëv polynomials, respectively. We shall call (2.4) the Chebyshev representa-
tion of a polynomial. The motivation behind this representation comes from the
classical Pell-Abel equation and its geometric interpretation.

2.3. The motivation behind the Chebyshev correspondence. Let P (x) be
a polynomial of degree n. Pulling out all the squared factors in P 2−1, the Pell-Abel
equation

P 2(x)−D(x)Q2(x) = 1

holds, where the polynomial D(x) is free from squares and has leading coefficient 1.
The zeros of the coefficient D(x) of the Pell-Abel equation form the branch divisor
E of the curve (2.2) associated with P (x). It is easy to see that Q(x) divides
dP (x)/dx, so that for some polynomial ρ(x) = xg + · · · we have

P ′(x) = nρ(x)Q(x).

As a result, the Pell-Abel equation turns into the differential equation

dP (x)√
P 2(x)− 1

= n
ρ(x) dx√

D(x)
,

which can readily be solved:

P (x) = ± cos
(

ni

∫ x

e

ρ(s) ds√
D(s)

)
.

Of course, if D(x) and ρ(x) are arbitrary polynomials, then the right-hand side of
the above formula is not a polynomial. To ensure that it is a single-valued function
of x the following inclusions are necessary and sufficient:∫

C

ρ(x) dx√
D(x)

∈ 2πi

n
Z

for all integer 1-cycles C on the Riemann surface M(E). In particular, the differen-

tial
ρ(x)dx√

D(x)
has only purely imaginary periods, so it coincides with the differential

dηM completely determined by the Riemann surface.

Remark 1. On the way we have obtained the following necessary and sufficient
solvability condition for the Pell-Abel equation (as regards some other conditions,
see [4] and [5]). On the curve w2 = D(x) determined by the coefficient D(x) of the
Pell-Abel equation, the particularly normalized Abelian differential 1

2πi dηM must
have rational periods. If this holds, then the solutions P and Q have the following
form:

P (x) = ± cosh
(

n

∫ (x,w)

(e,0)

dηM

)
, deg P = n,

Q(x)w(x) = ± sinh
(

n

∫ (x,w)

(e,0)

dηM

)
, deg Q = n− g − 1,
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where the integer n is a multiple of the denominators of all the periods. This repre-
sentation implies the following structure of solutions P (x) of the Pell-Abel equation:
there exists a unique solution P0(x) (up to sign) of lowest positive degree; all the
other solutions are composites of this prime solution with a classical Chebyshev
polynomial.

§ 3. The Chebyshev representation for rational functions

By a suitable linear fractional transformation we can take a 4-tuple of points in
the Riemann sphere to a set

Q = Q(κ) :=
{
−1, 1,− 1

κ
,

1
κ

}
, κ ∈ C \ {0,±1}.

Roughly speaking, the extremality number of a rational function is equal to g if all
its critical points apart from g − 1 are simple and correspond to values in Q. Of
course, the extremality number depends on the modulus κ, but throughout this
paper the set Q will be fixed, so this dependence will not be explicitly indicated.

3.1. The extremality number of a rational function. The extremality num-
ber of a rational function R(x) with respect to a set of values Q is

g = 1 +
∑

x:R(x) 6∈Q

ord dR(x) +
∑

x:R(x)∈Q

[
1
2

ord dR(x)
]
, (3.1)

where the sum is taken over all points in the Riemann sphere; ord dR(x) is the order
of the zero at the point x of the differential of the holomorphic map R : CP 1 → CP 1

(for instance, at simple poles of R(x) this quantity is equal to zero).
To describe rational functions that take one of the four prescribed values at most

critical points we take the Chebyshev approach.

3.2. The Riemann surface. With the rational function R(x) we associate the
two-sheeted Riemann surface M = M(E) branched over the points E := {es}2g+2

s=1 ,
at which the function takes values in Q(κ) with odd multiplicity (that is, generically
the values are simple). The affine part of the curve is described by

w2 =
2g+2∏
s=1

(x− es), (x,w) ∈ C2. (3.2)

If a branch point lies at infinity, then there is no corresponding factor in the equation
of the curve.

Lemma 1. The genus of a Riemann surface M(E) associated with the rational
function R(x) is equal to the extremality number of this rational function.

Proof. A rational function R(x) of degree n has 2n − 2 critical points (counting
multiplicities) on the Riemann sphere. Taking account of the definition (3.1) of the
extremality number and the identity[

a

2

]
+

[
a + 1

2

]
= a, a ∈ Z,
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we can write

2n− 2 =
∑

x

ord dR(x) = g − 1 +
∑

x:R(x)∈Q

[
1
2
(ord dR(x) + 1)

]
.

The total number of points in R−1Q with multiplicities taken into account is 4n, and
the number of points with odd multiplicities is by definition equal to the number
of branch points of the curve M(E):

4n =
∑

x:R(x)∈Q

(ord dR(x) + 1) = deg E +
∑

x:R(x)∈Q

2
[
1
2
(ord dR(x) + 1)

]
;

in the last equality we have used the fact that 2[a
2 ] is equal to a if a is even and to

a − 1 if a is odd. Comparing the last two equalities we obtain deg E = 2g + 2, so
that the hyperelliptic curve M(E) has genus g.

3.3. Motivation in the spirit of the Pell-Abel equation. Let R(x) be a ratio-
nal function represented as an irreducible fraction. We pull out all squared factors
in the numerator of the left-hand side of the following expression, obtaining

(R2(x)− 1)(κ2R2(x)− 1) =: D2g+2(x)S2(x), (3.3)

where S(x) is a rational function with denominator equal to the square of that of
R(x). The monic polynomial D(x) is as on the right-hand side of (3.2). It has
degree 2g + 2 if R(x) does not take a value in Q at infinity with odd multiplicity.
Otherwise D(x) is a polynomial of degree 2g + 1.

It is easy to see that the zeros of S(x) are also zeros of the derivative of R(x),
therefore

R′(x) = S(x)ρ(x), (3.4)

where ρ(x) is a polynomial. We can find its degree by comparing the asymptotic
behaviour of R(x) and S(x) at infinity (we must consider the cases when R(∞)
is infinite or belongs to the set Q separately). It turns out that we always have
deg ρ(x) < g. Now we can write the Pell-Abel equation (3.3) as a differential
equation:

dR√
(R2(x)− 1)(κ2R2(x)− 1)

=
ρ(x) dx√

D(x)
. (3.5)

The latter can readily be solved, giving a representation of the original rational
function in the form

R(x) = sn
(∫ x

e

ρ(x) dx√
D(x)

+ A(e)
)

, (3.6)

where we must choose the point e and the phase shift A(e) to be compatible, which
we will do later. The right-hand side of the above equality must be a single-valued
function of x, so the integrals of the holomorphic differential ρ(x)dx

w on M(E) over all
the integer 1-cycles on the surface must lie in the lattice 4K(κ)Z+2iK ′(κ)Z, where
K(κ) and K ′(κ) are the complete elliptic integrals with modulus κ. Of course,
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for such a differential to exist imposes constraints on the moduli of the Riemann
surface.

We call a representation of a rational function for the form (3.6) a Chebyshev
representation. As with polynomials, the complexity of calculations using this for-
mula is independent of the degree of the rational function, so this substitution can
be used in solving filter optimization problems. We show below that the classical
Zolotarëv fraction (solving the problem of finding the best rational approximation
to the signum function) can be represented in this way.

§ 4. The image of the Chebyshev correspondence

Theorem 1. A hyperelliptic curve is the image of some rational function under
the Chebyshev correspondence if and only if it is a (possibly ramified) cover of the
torus T (Q) with affine part given by

s2 = (r2 − 1)(κ2r2 − 1), (r, s) ∈ C2. (4.1)

Proof. 1. If a curve M is the result of applying the Chebyshev construction to the
rational function R, then the covering of the torus is defined by the rational map

M 3 (x,w)
eR−→ (R(x), wS(x)) = (r, s) ∈ T, (4.2)

where S(x) is the same function as in the Pell-Abel type equation (3.3). We see that
this covering map intertwines the hyperelliptic involutions JM (x,w) := (x,−w) on
the curve M and JT (r, s) := (r,−s) on the torus.

We can also give a purely topological proof of the existence of the covering
M → T commuting with the involutions. In the diagram

M(E)
eR //___

pM

��

T (Q)

pT

��
CP 1 R // CP 1

(4.3)

let pM (x,w) := x and pT (r, s) := r be the quotient maps of the actions of JM and
JT , respectively. They are 2-fold coverings branched over the points in E and Q,
respectively. The map R can be lifted to the covering space if and only if we have
the embedding of fundamental groups (see [6])

(R ◦ pM )π1(M \ p−1
M R−1Q) ⊂ pT π1(T \ p−1

T Q),

provided the base points of the fundamental groups are compatibly chosen. We shall
verify this embedding on the generators of the fundamental group of the punctured
surface M . For generators we take two kinds of loops:

(A) the 2g loops producing the canonical dissection of the nonpunctured surface;
(B) the loops enclosing the punctures p−1

M R−1Q on the surface and disjoint (apart
from the initial point) from the loops in (A).

We can pick loops in (A) so that the projection pM of each loop is the product
of two loops in π1(CP 1 \ R−1Q), each enclosing a unique point in E (Fig. 1). The
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Figure 1. The projection of the generators of the group π1(M \ p−1
M R−1Q)

onto the punctured sphere. Infinity is the base point of the fundamental

group; • denotes points in the branching divisor E; ◦ denotes other points

in R−1Q; α1, α2, . . . are the projections of the loops in class (A); β1 is the

projection of a loop in subclass (B1) and β2 of a loop in subclass (B2).

map R(x) takes a loop of this form into a product of two loops, each making an
odd number of circuits about some puncture in Q. This product can be lifted to
a loop on the torus.

A loop in class (B) either goes about a branch point (e, 0) —this is subclass (B1),
or— for subclass (B2)— about a puncture (x,w) such that R has an even branching
index at x. In either case the RpM -image of a loop in class (B) is a loop making
an even number of circuits about a point in Q. Such a loop can be lifted to a loop
on the torus.

From the construction of the lifting of the map we easily deduce the equivariance
already mentioned:

R̃JM = JT R̃. (4.4)

2. Conversely, let a hyperelliptic curve M cover the torus (4.1). We shall show
below that there also exists a covering R̃ intertwining the involutions JM and JT .
Once we have proved this, we can project the map R̃ to a map R between the bases
in the diagram (4.3). Since we have the equivariance (4.4), the map R̃ takes the fixed
points (e, 0) of the involution JM to fixed points of the involution JT on the torus
and has odd branching indices at these points. Correspondingly, the image of the
branch divisor RE lies entirely in Q and the branching index of R(x) at each point
e ∈ E is odd. At all other points in the inverse image x ∈ R−1Q this index is even
because the branching indices of maps in a composition multiply together and

ind pM (x, w) =

{
1, x 6∈ E,

2, x ∈ E,
ind pT (r, s) =

{
1, r 6∈ Q,

2, r ∈ Q.
(4.5)
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We see that the Chebyshev construction assigns precisely the curve M to the ratio-
nal function R(x).

Now we demonstrate how we can modify the fixed covering Ř : M → T to fulfill
the equivariance condition. We fix a holomorphic differential dη 6= 0 on the torus.
Its periods form a lattice

L = L(η) :=
{∫

C

dη, C ∈ H1(T, Z)
}

.

The torus can be represented as the quotient of the complex plane by this lattice,
and this correspondence T → C/L has the form

η(r, s) =
∫ (r,s)

(1,0)

dη (modL(η))

(changing the initial point of integration results in a translation of the torus). Now
we express the action of the covering Ř in this framework:

η(Ř(x,w))− η(Ř(e, 0)) =
∫ Ř(x,w)

Ř(e,0)

dη =
∫ (x,w)

(e,0)

dζ. (4.6)

Here dζ := Ř∗dη is the differential lifted from the torus to the curve M . It is holo-
morphic, so after the hyperelliptic involution it gets multiplied by −1: J∗M dζ = −dζ.
We can extend (4.6):∫ (x,w)

(e,0)

dζ = −
∫ (x,−w)

(e,0)

dζ = −
(
η(Ř(x,−w))− η(Ř(e, 0))

)
. (4.7)

Equalities (4.6) and (4.7) can be interpreted as the equivariance of Ř with respect
to the actions of the involution JM on M and the involution on the torus T that
acts in the η-plane as

η → 2η(Ř(e, 0))− η (modL).

This involution has 4 fixed points on the torus, η(Ř(e, 0))+L/2 (modL); generally
speaking it is distinct from the involution JT introduced before and acting in this
model as η → −η (modL). However, combining Ř with an appropriate translation
of the torus we can define a new covering R̃ satisfying the required equivariance
condition (4.4). It is easy to see that there are just 4 appropriate translations of
the torus. They produce 4 rational functions {±R,±1/(κR)}, which form the orbit
of the action of the Klein Vierergruppe and are associated with the same Riemann
surface M by means of the Chebyshev correspondence.

The proof of Theorem 1 is complete.

The image of the Chebyshev correspondence can also be described more explic-
itly, in the spirit of relations (2.3), which show that all the periods of a certain
Abelian differential on the surface are commensurable. There will be no great loss
of generality if we do this in the case of real rational functions and κ ∈ (0, 1),
which is important for applications. In this case M is a real curve and T is
a real torus, that is, they carry anticonformal involutions J̄M (x, w) := (x̄, w̄) and
J̄T (r, s) := (r̄, s̄). The action of these reflections imprints the structure of the
1-dimensional homology of the surface, which we discuss in the next section.
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§ 5. One-dimensional cycles on a real curve

Let M be a Riemann surface endowed with an anticonformal involution J̄ (a ref-
lection). The action of the reflection extends in a natural way to the real 2g-
dimensional first homology space of the surface, which decomposes into a sum of
the subspaces corresponding to the eigenvalues ±1 of the operator J̄ :

H1(M, R) = H+
1 (M, R)⊕H−

1 (M, R), H±
1 (M, R) := (I ± J̄)H1(M, R). (5.1)

We shall say that cycles C = J̄C in the space H+
1 (M) are even. Correspondingly,

cycles C = −J̄C in H−
1 (M) are said to be odd. The spaces of even and odd cycles

contain the full-rank lattices of integer cycles

H±
1 (M, Z) := H±

1 (M, R) ∩H1(M, Z) .

The space H1(M, R) ∼= R2g is endowed with a symplectic form, which is given
by the intersection index of cycles. Since the reflection J̄ reverses orientation at
each point of intersection of integer cycles, it follows that

J̄C1 ◦ J̄C2 = −C1 ◦ C2, C1, C2 ∈ H1(M, R). (5.2)

Hence we can easily deduce that the even and odd cycles form Lagrangian subspaces
(which means that the restriction of the intersection form to these spaces is trivial);
these have dimension equal to half the dimension of the ambient space.

Lemma 2. The space H±
1 (M, R) has dimension g.

Proof. It follows from the decomposition (5.1) that the sum of the dimensions of
the subspaces of even and odd cycles is 2g. We claim that none of these spaces can
have dimension greater than any other. Assume the converse: for instance, suppose
dim H+

1 (M, R) > dim H−
1 (M, R). The intersection form defines a linear action of

even cycles on the odd ones. In view of the inequality of dimensions, there must
exist an even cycle annihilating all the odd cycles. Then it has zero intersection
index with any element of H1(M, R), in contradiction to the nondegeneracy of the
intersection form.

Lemma 3. 1. A basis of the space of even (odd) cycles can be used to normalize
the Abelian differentials.

2. The following three statements are equivalent :
(i) a holomorphic differential dξ is real ;

(ii)
∫

C+
dξ ∈ R for all even cycles C+;

(iii)
∫

C−
dξ ∈ iR for all odd cycles C−.

Proof. 1. Let C1, C2, . . . , Cg be a basis in the space of even (odd) cycles. We must
show that if the integrals of some holomorphic differential over the above g cycles
vanish, then the differential itself is trivial. We complete this basis to a basis of the
full homology space. For the closed smooth 1-forms dω and dξ on the surface M
and for the (not necessarily canonical or integer) homology basis C1, C2, . . . , C2g
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we have Riemann’s bilinear relation (see [2])∫
M

dω ∧ dξ = −
2g∑

s,j=1

Fsj

∫
Cs

dω

∫
Cj

dξ,

where the matrix Fsj is the inverse of the intersection matrix Cs ◦ Cj . If we set
dξ = dω here we obtain

0 6 ‖dω‖2 = i

∫
M

dω ∧ dω = −i

2g∑
s,j=1

Fsj

∫
Cs

dω

∫
Cj

dω. (5.3)

If
∫

Cj
dω = 0 for j = 1, . . . , g, then the sum on the right-hand side only contains

terms with s, j > g. But then Fsj = 0. Indeed, the intersection matrix has a 2× 2
block structure with a zero g × g block at position (1, 1). The inverse matrix has
a zero block of the same size at position (2, 2). We see that only the trivial holo-
morphic differential has zero periods along all the even (odd) cycles.

2. A holomorphic differential dξ is said to be real if the reflection takes it to its
complex conjugate: J̄∗ dξ = dξ. If C ∈ H±

1 (M) is an even or odd cycle, then∫
C

dξ =
∫
±J̄C

dξ = ±
∫

C

J̄∗ξ = ±
∫

C

dξ = ±
∫

C

dξ.

Conversely, assume that a holomorphic differential dξ has real periods along all
the even cycles or has purely imaginary periods along all the odd cycles. Then the
differential J̄∗ dξ− dξ has zero periods along all even or odd cycles, respectively. It
follows from the first assertion of the lemma that this must be a trivial differential,
and this is equivalent to dξ being real.

§ 6. Bases for the lattices of even and
odd cycles on a hyperelliptic curve

To investigate the Chebyshev representation for real rational functions we need
bases for the lattices of even and odd integer cycles on a real hyperelliptic curve,
as well as bases for the sublattices of (anti)symmetrized cycles

L±M := (I ± J̄)H1(M, Z) ⊂ H±
1 (M, Z).

Assume that the branch divisor E of the Riemann surface (3.2) contains 2k real
points and g−k+1 pairs of complex conjugate points. If k > 0, then the topological
invariant k can be interpreted as the number of real ovals on the surface. The case
k = 0 has its own peculiarities, and we consider it separately.

6.1. The case k > 0. On the Riemann sphere we shall draw disjoint cuts which
join branch points on the surface pairwise and are invariant under complex conju-
gation. Real branch points will be joined by the k intervals on which w2(x) < 0.
Each pair of complex conjugate branch points will be joined by a simple arc so that
all the cuts in this system intersect the projection of the same real oval. As a model
of our curve we take two copies of the Riemann sphere glued crosswise along the
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cuts we have introduced. The reflection J̄ acts as complex conjugation on each
sheet. In Fig. 2 we draw the system of cuts in bold and use thin lines for the g odd
and g even cycles on the surface (a dashed line means that the part of the contour
lies on the lower sheet). For instance, odd cycles go on one sheet along the sides of
the cuts introduced; the first k−1 of the introduced even cycles are real ovals of the
curve. We have a lot of freedom in choosing the last g− k + 1 even and odd cycles.
See [2] for greater detail.

Figure 2. The system of cuts in the plane and the basis in the lattice

a) H−
1 (M, Z); b) H+

1 (M, Z).

The only entries of the intersection matrix corresponding to these 2g cycles
distinct from zero are the following:

C+
s ◦ C−

s = 1, s = 1, . . . , k − 1,

C+
s ◦ C−

s−1 = −1, s = 2, . . . , k − 1,

C+
s ◦ C−

s = 2, s = k, . . . , g.

(6.1)
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The intersection matrix is nonsingular, but not unimodal for k 6 g. So the cycles
under consideration form a basis of the real homology, but in general an expansion
of an integer cycle with respect to this basis has half-integer coefficients.

Lemma 4. For k > 0:
1) the cycles C±

1 , C±
2 , . . . , C±

g form a basis of the lattice H±
1 (M, Z);

2) the cycles 2C±
1 , 2C±

2 , . . . , 2C±
k−1, C

±
k , . . . , C±

g form a basis of the lattice L±M .

Proof. We shall give the proof for the lattices of odd cycles; for even cycles our
arguments will be the same.

1) It is sufficient to produce g linear functionals with values in Z such that their
values at C−

1 , . . . , C−
g fit into a matrix with determinant ±1. For these functionals

we take the intersection indices with the following integer cycles:

D1 := C+
1 ,

D2 := C+
2 + C+

1 ,

. . . . . . . . . . . . . . . . . . . . . .

Dk−1 := C+
k−1 + C+

k−2 + · · ·+ C+
1 .

(6.2)

The remaining cycles Dj are integer solutions of the equation

Dj + J̄Dj = C+
j , j = k, . . . , g;

and we have shown one such cycle in Fig. 2, a). For these we have 2Dj◦C−=C+
j ◦C−

for C− ∈ H−
1 , j = k, . . . , g. Now we can recover all the intersection indices from

(6.1); it is easy to calculate that the intersection indices Ds ◦C−
j form the identity

matrix.
2) An element of the lattice L−M of antisymmetrized integer cycles can be

expanded with respect to the basis of the lattice of odd integer cycles introduced
above. The coefficients of the expansion are equal to the intersection indices with
the cycles Dj . Note that D1, . . . , Dk−1 are even cycles, so the coefficients at the
generators C−

1 , . . . , C−
k−1 are even:

(C − J̄C) ◦ C+ = 2C ◦ C+, C ∈ H1(M, Z), C+ ∈ H+
1 (M, Z).

6.2. Example. The torus (4.1) with κ ∈ (0, 1) contains two real ovals. The
even and odd homologies are spanned by the cycles C+ and C− depicted in Fig. 3.

Figure 3. Generators of the lattices of even and odd cycles in the homology

space of the torus.

The torus carries a unique holomorphic differential normalized by∫
C+

dη := 2 (6.3)
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and defining the period

τ :=
∫

C−
dη ∈ iR. (6.4)

We need it in the next section; the differential is real and has the form

dη =
dr

2K(κ)s
.

6.3. The case k = 0. The case k = 0 never occurs in applications to approxima-
tion problems and we only consider it to give a complete picture. A real hyperelliptic
curve without real branch points does not necessarily have a real oval (one such
example is w2 + x4 + 1 = 0). Our curve (3.2) has one real oval for even g and two
real ovals for odd g. In these cases there is no longer any symmetry between even
and odd cycles.

As before, assume that complex conjugate branch points are joined by disjoint
cuts invariant under reflections in the real axis. Going along the sides of these cuts
(Fig. 4) we obtain g + 1 odd cycles with zero sum. Leaving out one of these cycles,
we denote the rest by C−

1 , C−
2 , . . . , C−

g (see Fig. 4, a)).

Figure 4. A real hyperelliptic curve without real branch points: a) a basis

for odd cycles; b) auxiliary cycles defining a basis of even cycles.

Now we consider the even cycles: C+
j := Dj + J̄Dj , j = 1, . . . , 2[g/2], where the

integer cycles Dj are as represented in Fig. 4, b). For odd g the remaining cycle

C+
g := D1 + D3 + D5 + · · ·+ Dg

is homologous to a real oval (either of the two) on the curve. For even g the real
oval is homologous to zero.
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Lemma 5. For k = 0:
1) the cycles C±

1 , C±
2 , . . . , C±

g form a basis in the lattice H±
1 (M, Z);

2) for even g the lattice L±M coincides with H±
1 (M, Z);

3) for odd g the lattice L−M is formed by integer linear combinations, the sum of
whose coefficients is even, of the odd basis cycles introduced above; the cycles C+

1 ,
C+

2 , . . . , C+
g−1, 2C±

g form a basis of L+
M .

The proof of this lemma is based on producing integer cycles whose intersec-
tion indices with the basis of the corresponding lattice give rise to the identity
intersection matrix. We omit it for reasons of space.

§ 7. The main theorem

Theorem 2. A real hyperelliptic curve M(E) is the image of a real rational func-
tion R(x) under the Chebyshev correspondence if and only if there is a holomorphic
differential dζ on the curve with periods satisfying∫

C

dζ ∈ 4Z, C ∈ L+
M := (I + J̄M )H1(M, Z), (7.1)∫

C

dζ ∈ 2τZ, C ∈

{
L−M := (I − J̄M )H1(M, Z), k > 0,

H−
1 (M, Z), k = 0,

(7.2)

where the modulus τ is defined in (6.4).
If the inclusions (7.1) and (7.2) hold, the rational function can be recovered by

the formula

R(x) = sn
(

2K(τ)
∫ (x,w)

(e,0)

dζ + A(e)
∣∣∣∣τ)

, A(e) := K(τ)

±1, R(e) = ±1,

±1 + τ, R(e) = ± 1
κ

,

(7.3)

in which the result of the calculations is independent of the path of integration on M ,
which of the two possible values of w(x) is chosen and the branch point e taken as
the initial point of integration.

Remark 2. 1) Changing the phase term A(e) in the recovery formula (7.3) gives
rise to the action of the Klein Vierergruppe on the set of four rational functions
±R(x), ±1/(κR(x)), which generate the same Riemann surface M(E).

2) One curve M(E) can carry several forms dζ satisfying (7.1) and (7.2).
3) One of inclusions (7.1) or (7.2) can be regarded as a normalization (definition)

of the holomorphic differential; then the other inclusions impose g real constraints
on the 2g − 1 real moduli of the Riemann surface M(E).

Proof of Theorem 2. 1. Assume that a real rational function generates a Riemann
surface. We know that this Riemann surface covers a torus so that the covering
intertwines the actions of the hyperelliptic involutions JM on the curve and JT on
the torus. It is easy to see (for example. from (4.2)) that the covering map also
intertwines the reflections J̄M and J̄T on the curve and the torus, respectively.
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The covering R̃ lifts the differential dη defined in (6.3) from the torus to the
surface M :

dζ := R̃∗ dη. (7.4)

For each integer cycle C on the surface we have∫
C±J̄M C

dζ =
∫

eRC± eRJ̄M C

dη =
∫

(I±J̄T ) eRC

dη, (I ± J̄T )R̃C ∈ 2ZC±,

which yields the inclusions (7.1), and for k > 0 also (7.2). For k = 0 we must
prove the inclusions (7.2) for all odd integer cycles on the surface, not only for
antisymmetrized ones.

Recall that, if k = 0, we can take the elements of a basis of odd cycles in the
form C = B − JB, where B = −J̄MB is a symmetric arc (open chain) joining
a pair of branch points. At the end-points of B the real function R(x) takes the
same value from the set Q, so R̃B is a closed chain on the torus. Correspondingly,
R̃C = 2R̃B ∈ 2H1(T, Z) since the hyperelliptic involution acts on the homology by
a sign change. Thus we have established (7.2) for k = 0 too.

Finally we obtain the recovery formula (7.3) for the rational function. We lift
the action of R̃ to the universal cover of the torus:∫ (x,w)

(e,0)

dζ =
∫ eR(x,w)

eR(e,0)

dη = η(R̃(x,w))− η(R̃(e, 0)), (7.5)

where η(r, s) :=
∫ (r,s)

(0,1)
dη is the (isomorphic) map of the universal cover of the torus

onto the complex plane. The function r(η) is periodic, with period lattice

L = L(η) := 2Z + τZ,

has simple zeros at η = 0, 1 and simple poles at η = τ/2, 1+ τ/2, and is normalized
by r(1/2) = 1. These data suffice for its recovery: r(η) = sn(2K(τ)η|τ), where
K(τ) is the complete elliptic integral with modulus κ(τ).

Since the diagram (4.3) is commutative, it follows that

R(x) = pT ◦ R̃(x, w) = r(η(R̃(x,w)) = sn
(

2K(τ)
(∫ (x,w)

(e,0)

dζ + η(R̃(e, 0))
)∣∣∣∣τ)

.

The phase shift in the last formula is determined from the image R(e) of the dis-
tinguished branch point e of the surface:

R(e) ∈ Q, η(±1, 0) = ±1
2

(modL), η

(
± 1

κ
, 0

)
= ±1

2
+

τ

2
(modL).

2. Conversely, assume that on the curve M(E) there exists a holomorphic dif-
ferential with periods satisfying inclusions (7.1) and (7.2). We claim that the
right-hand side of (7.3) defines a single-valued function on the sphere. Decompos-
ing an arbitrary integer cycle C on the surface M(E) into a sum of (half-integer)
even and odd components, from the embeddings (7.1) and (7.2) we obtain∫

C

dζ ∈ L := 2Z + τZ.
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Thus the argument of the elliptic sine in (7.3) is defined up to elements of the lattice
4KZ+2K ′Z. Therefore, the right-hand side of the formula does not depend on the
path of integration joining the branch point (e, 0) and the lift (x,w) of the point x
to the Riemann surface. The particular lift (that is, picking one of the two possible
values of w(x), which are distinct by a factor of −1) is also unessential: sn(A(e) +
u) is an even function of u, and under holomorphic involution the holomorphic
differential dζ gets multiplied by −1.

Singularities of the function on the right-hand side of (7.3) are at worst powerlike,
so it is a rational function of x. Now we will show that this function is real. We
see from (7.1) that the differential dζ has real periods over all the even cycles, so
it is itself real, that is, it satisfies the equality J̄M dζ = dζ. We have the chain of
equalities

R(x̄) = sn
(

2K(τ)
∫ (x,w)

(ē,0)

dζ + A(e)
∣∣∣∣τ)

= sn
(

2K(τ)
∫ (x,w)

(e,0)

dζ + A(e) + 2K(τ)
∫ (e,0)

(ē,0)

dζ

∣∣∣∣τ)
.

If e = ē, then there is no additional integral between branch points in the last
equality. Otherwise this term is half the integral over some generator of the lattice
L−M for k > 0 or of H−

1 (M, Z) for k = 0; hence∫ (e,0)

(ē,0)

dζ ∈ τZ, R(x̄) = R(x).

We claim that the curve associated with the resulting rational function R(x) by
the Chebyshev correspondence coincides with the original curve M(E). We will
find the full inverse images R−1Q of branch points on the torus T . The elliptic
sine function takes values in Q if and only if its argument lies in the translated
half-period lattice (1+L)K(τ). In other words all the points x in the inverse image
are determined from the inclusion

2
∫ (x,w)

(e,0)

dζ ∈ L.

All the branch points x = e∗ of the original curve lie in R−1Q because

2
∫ (e∗,0)

(e,0)

dζ =
∫

C

dζ ∈ L, C ∈ H1(M, Z).

Moreover, the branching indices of R(x) at all the points x = e∗ are odd, and at all
the other points in R−1Q they are even: this follows from the expression of R(x) in
local variables and the fact that sn(W +u) is an even function of u for W ∈ sn−1 Q.

The proof of Theorem 2 is complete.

Calculating the degree of the rational function. By contrast with the Chebyshev
representation for polynomials, the degree of the rational function is not used explic-
itly in the recovery formula (7.3). We can find it if we know the map in the homo-
logy induced by the covering map from the Riemann surface M onto the torus.
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We already know that the covering map intertwines the reflections on the surface
and the torus. Hence the even (odd) cycles on the surface are taken to even (odd,
respectively) cycles on the torus:

R̃D+
j := m+

j C+, R̃C−
j := m−

j C−, j = 1, . . . , g, m±
j ∈

{
Z, j < k,

2Z, j > k.

(7.6)
Here D+

j := C+
1 +C+

2 + · · ·+C+
j for j = 1, . . . , k−1 and D+

j := C+
j for j = k, . . . , g

is a new basis in the lattice of even cycles on M , and its intersection matrix with
the basis of odd cycles C−

s introduced above is diagonal.

Lemma 6. For k > 0

deg R =
∑
j<k

m+
j m−

j +
1
2

∑
j>k

m+
j m−

j . (7.7)

Proof. We consider the area 2-form i dη∧dη on the torus and lift it by the covering
map R̃ to the Riemann surface M , where it takes the form i dζ ∧ dζ. The degree
of the cover is equal to the ratio of the areas of the surface and the torus. The
area of the surface is related by Riemann’s formula (5.3) to the periods along
a basis of 1-cycles. Calculating the areas of the torus and the surface we arrive at
the required result:

vol(T ) = i

∫
T

dη ∧ dη = −i

(∫
C−

dη

∫
C+

dη −
∫

C+
dη

∫
C−

dη

)
= 4 Im τ > 0,

vol(M) = i

∫
M

dζ ∧ dζ = −i

(∑
j<k

(∫
C−j

dζ

∫
D+

j

dζ −
∫

D+
j

dζ

∫
C−j

dζ

))

− i

(
1
2

∑
j>k

(∫
C−j

dζ

∫
D+

j

dζ −
∫

D+
j

dζ

∫
C−j

dζ

))

= 4 Im τ

(∑
j<k

m+
j m−

j +
1
2

∑
j>k

m+
j m−

j

)
.

§ 8. Examples

Now we show how we obtain the classical Zolotarëv fraction (see [7]) in the
framework of our construction; we also discuss how to solve other problems of least
deviation from pulse functions. The corresponding numerical calculations were
performed by D.V. Yarmolich.

8.1. The Zolotarëv fraction. We fix a positive integer n and a modulus τ ∈ iR+.
In the complex u-plane we consider the rectangle

{|Re u| < 1; 0 < Im u < n|τ |}
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Figure 5. a) A large rectangle formed by smaller ones; b) the graph of the

Zolotarëv fraction of degree n = 8.

formed by n rectangles of size 1 × |τ |, as in Fig. 5. We denote conformal maps
onto the upper half-plane of the larger and smaller rectangles by x(u) and R(u),
respectively. After a normalization fixing the three points u = −1, 0, 1 these maps
become

x(u) = sn(K(nτ)u|nτ), R(u) = sn(K(τ)u|τ), (8.1)

but their concrete form is of no importance to us now. The reflection principle
shows that the function R(u) mapping the smaller rectangle

{|Re u| < 1; 0 < Im u < |τ |}

onto the upper half-plane can be also defined in the larger rectangle and is real on
its boundary. From this it is easy to see that R is a (single-valued) meromorphic
function of x on the whole of the Riemann sphere, that is, it is a rational function.
It is called the Zolotarëv fraction; it has simple zeros for x corresponding to u =
0,±2τ,±4τ, . . . and simple poles at the points corresponding to u = ±τ,±3τ, . . . .
All critical points of the rational function R(u(x)) lie on the real axis and correspond
to

u = ±1± τ, ±1± 2τ, . . . , ±1± (n− 1)τ ;

there are precisely 2n − 2 of them. The critical values belong to the set of four
points ±1, ±1/κ(τ), so the Zolotarëv fraction has a Chebyshev representation with
g = 1.

Indeed, the torus C/(4Z + 2nτZ) glued together from four copies of the larger
rectangle in Fig. 5, covers the torus C/(4Z + 2τZ) (glued together from 4 copies
of one of the smaller rectangles in Fig. 5) without ramification. In our variables
dζ = dη = du/2, and formula (7.3) becomes the parametric representation (8.1).

8.2. A cut rectangle. Deforming the construction of the Zolotarëv fraction we
can govern the critical values explicitly. This is similar to the way that, using the
Akhiezer ‘comb’, a classical Chebyshev polynomial (see [8]) can be transformed into
a Chebyshev polynomial on several intervals. We draw g−1 horizontal cuts starting
at the boundary of the larger rectangle at heights which are multiples of τ , as in
Fig. 6. Let R(u) be the same function as in (8.1) and let x(u) map the cut rectangle
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Figure 6. a) The larger rectangle with two cuts; b) the graph of the

deformed Zolotarëv fraction of degree n = 12; c) the fine structure of

the graph to the left and right of the front (rescaling the x-axis).

Figure 7. a) The two-sheeted octagonal rectangle; b) the graph of the

rational function of degree n = 12.
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conformally onto the upper half-plane. As in § 8.1, we can readily show that the
pair of functions R(u), x(u) defines a rational function on the Riemann sphere
parametrically. All the critical points of this function are real and the values taken
at them lie in the set ±1, ±1/κ(τ), apart from the g− 1 points x corresponding to
the end-points of the cuts in the u-plane.

This rational function can also be described by means of the Chebyshev con-
struction. The inverse function of x(u) can be expressed by the Schwarz-Christoffel
integral, which now is a holomorphic Abelian integral on a hyperelliptic curve of
genus g. All the branch points of the curve are real; they are x-images of the ver-
tices of the cut rectangle which have right angles. We see that the rational function
R(u(x)) has a representation in the form (7.3).

8.3. A many-sheeted rectangle. Now we present an example which has a direct
bearing on uniform rational approximation of pulse functions. Consider a two-
sheeted rectangular octagon with interior branch point u∗, as in Fig. 7. All of its
four horizontal sides lie at heights which are multiples of τ . The pair of functions
R(u), x(u), where R(u) is as before and x(u) maps the two-sheeted octagon confor-
mally onto the upper half-plane, defines a real rational function R(u(x)) paramet-
rically. This function has two complex conjugate critical points x(u∗) and x(u∗);
its other critical points are real and the values at them belong to the four-element
set ±1, ±1/κ(τ). The rational function obtained is 3-extremal, so it has a repre-
sentation (7.3) with Abelian integral on a genus 3 curve. This Abelian integral is
the Schwarz-Christoffel integral mapping the upper half-plane onto the two-sheeted
octagonal rectangle.
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