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Effective approach to least deviation problems

A.B. Bogatyrëv

Abstract. A hierarchy of extremal polynomials described in terms of real hyper-
elliptic curves of genus g � 0 is constructed. These polynomials depend on g
integer-valued and g continuous parameters. The classical Chebyshev polynomials
are obtained for g = 0 and the Zolotarëv polynomials for g = 1.
Bibliography: 17 titles.

§ 1. Statement of the problem
Starting from Chebyshev, many authors (see the references in the monographs

[1] and [2]) have considered extremal problems with constraints in the space of real
polynomials {

Pn(x) =
n∑
s=0

csx
s

}
∼= Rn+1 (1)

with uniform norm ‖Pn‖E := maxx∈E |Pn(x)|, where E is a compact subset of
the real axis. The following two examples relate to the optimization of numerical
algorithms [3].

Problem A. Let E be a system of several real intervals. Minimize the norm ‖Pn‖E
of a polynomial with fixed linear constraints imposed on its coefficients c0, c1, . . . , cn.

The zeros of a monic polynomial of least deviation can be used as iteration
parameters in the inversion of symmetric matrices with spectrum in E. The
Zolotarëv problem [1] corresponds to E = [−1, 1] and several fixed leading coef-
ficients of the polynomial.

Problem B. Find the maximal interval E = [0, t], t > 0, such that the unit ball
{Pn : ‖Pn‖E � 1} in the space (1) intersects the plane of codimension r consisting
of the polynomials approximating exp(−x) at the origin with order r − 1.
This problem (due to Lebedev) occurs in the construction of stable explicit inte-

gration schemes of (r− 1)th order accuracy for stiff systems of ordinary differential
equations.
The numerical solution of these and similar extremal problems for the degrees

n ≈ 1000 (of practical interest) is notorious for its complexity. The known
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algorithms of Remez [4], Lebedev [5], Peherstorfer–Schiefermayr [6], or convex
programming methods are computationally expensive for the following reasons: the
solution is sought by iterations in a space of large dimension (of order n) and
the norm of a polynomial is a non-smooth function of its coefficients, which is
difficult to evaluate.
The central point of the approach to least deviation problems put forward below

is as follows: we do not seek the solution in the entire space of polynomials, but
only on certain low-dimensional submanifolds of it. Criteria for the attainability
of the minimum — for instance, Chebyshev’s alternance principle [1] — suggest
that the following situation must be typical. Overwhelmingly, the critical points
of the solution T (x) are simple, lie in the set E, and the values of the polynomial
at these points are ±‖T (x)‖E . Polynomials of this kind are very special and form
low-dimensional submanifolds of the space (1). The geometric interpretation is as
follows. The solution of the extremal problem corresponds to the tangency between
the (linear) submanifold of the space (1) describing the constraints of the problem
for polynomials and the sphere consisting of polynomials of equal norm. The sphere
corresponding to the uniform norm is not smooth: it is the boundary of a convex
curvilinear polyhedron. Low-dimensional faces of the ball are its most ‘protruding’
parts, therefore it is no surprise that the various surfaces are more often tangent to
these faces. It will be shown in § 2 that polynomials most commonly encountered
among the solutions of least deviation problems have this form. This observation
underlies the following definition.
We call a real polynomial P (x) a (normalized) g-extremal polynomial if all its

critical points, except g of them, are simple and correspond to the values ±1. The
parameter g involved in this definition (the number of exceptional points) can be
calculated by the following formula:

g =
∑

x : P(x)�=±1
ordP ′(x) +

∑
x : P(x)=±1

[
1

2
ordP ′(x)

]
, (2)

where ordP ′(x) is the order of the zero of the derivative of P at the point x ∈ C
and [ · ] is the integer part of a number. Polynomials with ‘extremality parameters’
g = 0 and g = 1 were discovered one and a half centuries ago and are known as
the Chebyshev and the Zolotarëv polynomials, respectively. We present the graphs
of several 2-extremal polynomials in Fig. 2. For applications to least deviation
problems more important are polynomials with small g; they can be parametrized
and effectively calculated.
In the present paper we study general g-extremal polynomials. Polynomials

(along with rational and algebraic functions) with few critical values are the classi-
cal subject of mathematical studies, lying at the juncture between continuous and
discrete. One traditional approach in these studies goes back to Hurwitz (1891)
and relates to the description of branched covers over a sphere, the investigation
of the strata of the resulting discriminant set, of the Lyashko–Loojenga map, and
so on. This approach has been actively pursued in recent years; see the comments
and the bibliography to problem 1970-15 in ‘Arnol’d’s problems’ [8]. Another tra-
dition goes back to Chebyshev (1853), and in effect to Abel (1826) and relates
to the investigation of Pell’s equation with polynomial coefficients, to expansions
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in continued fractions, and to conditions ensuring the degeneracy of hyperelliptic
integrals so that they can be expressed in terms of logarithms. A survey of these
results can be found in [9]; their characteristic features are effective calculations
and connections with applications. Our motivations described in the beginning of
this paper explain why we take the second approach and are striving to reduce it
to effective numerical calculations [10], [11].
In § 3 we associate with each polynomial P (x) a hyperelliptic curve

M =

{
(x, w) ∈ C2 : w2 =

2g+2∏
s=1

(x− es)
}

ramified over the odd-order zeros of the polynomial P 2(x) − 1. The genus of the
curveM associated with a g-extremal polynomial is equal to the number g of excep-
tional critical points of the polynomial calculated by formula (2). A polynomial of
degree n can be recovered up to a sign from its hyperelliptic curve by the explicit
formula

Pn(x) = ± cos
(
ni

∫ (x,w)
(e,0)

dηM

)
, x ∈ C, (x, w) ∈M,

where dηM is an Abelian differential of the 3rd kind with poles at infinity uniquely
assigned to M . The last formula generalizes the classical representations of the
Chebyshev and the Zolotarëv polynomials in terms of sines and elliptic functions,
respectively. We see that for small g extremal polynomials can be described by
means of few parameters, the moduli of the associated curve. Unfortunately, these
parameters are not free, but must satisfy certain relations.
The curves M generated by polynomials of degree n satisfy Abel’s equations∫

C−s

dηM = 2πi
ms

n
, s = 0, 1, . . . , g,

considered in § 4, in which the C−s form a basis in the lattice of odd 1-cycles on
the curve M and the ms are certain integers. It is convenient to assume that the
polynomial P is taken to a point in the 2g-dimensional real space Hg, the moduli
space of real hyperelliptic curves of genus g with distinguished point on the real oval.
The left-hand sides of Abel’s equations, the periods of the differential dηM assigned
to the curve, extend in the natural way to the components Hkg , k = 0, . . . , g + 1,
of the moduli space. Although the resulting map is multivalued, this complication

can be overcome by proceeding to the universal cover H̃kg on which the period map
is a submersion (a map of maximum rank). Polynomials of degree n correspond
in the moduli space to smooth g-dimensional fibres of the period map projecting
onto the lattice defined by the right-hand side of Abel’s equation. As n→∞, this
lattice becomes dense in the range of the map, therefore each neighbourhood of an
arbitrary point in the moduli space contains pointsM corresponding to polynomials
(maybe of high degree).
Associating curves with polynomials in this way one constructs a hierarchy whose

gth grade consists of polynomials related to curves of genus g and depending on
g integer-valued parameters m1, . . . , mg and on g continuous parameters, local
coordinates in the fibre of the period map.
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How can one solve concrete least deviation problems in the framework of this
approach? A formula for the recovery of a polynomial Pn from its associated
curve M can be made effective via Riemann theta-functions of Schottky auto-
morphic functions [10]. Hence one can solve extremal problems by picking an appro-
priate substitution (=Ansatz). First , one must ‘guess’ the Ansatz, that is, analyse
the problem and find the values of the discrete parameters g and m0, m1, . . . , mg
corresponding to its solution. This corresponds to determining the low-dimensional
face of the ball in the space of polynomials (1) containing the solution Pn. Next ,
one must make up and solve numerically 2g transcendental equations for the con-
tinuous parameters of the Ansatz, the moduli of the curve M associated with the
solution. This system includes Abel’s equations and the data of the optimization
problem: the constraints, the boundary of the set E. Conceptually and technically,
this approach is more complicated than the ones mentioned before. Its advantages
are as follows: the complexity of the computation of the solution Pn by explicit
analytic formulae does not depend on the degree n of the polynomials, which is
clear in the case of Chebyshev’s and Zolotarëv’s classical formulae. On the other
hand, the amount of calculations rapidly increases with g, therefore the natural
domain of this method is solutions of large degree n with few constraints for their
coefficients and the set E consisting of few components.

§ 2. Least deviation problems
The most common solutions of least deviation problems are polynomials with

normalizations that are extremal in the sense of the above definitions. The reason
for this is explained by convex analysis [1], [7]. We now discuss Problem A from
the introduction.
Assume that we look for the solution of Problem A in the space (1) on a fixed

affine plane Ln+1−r of codimension r. Such an (n+1−r)-plane can be described as
a translation of the annihilator of an r-dimensional subspace L∗r of the dual space.
With each non-trivial polynomial T (x) in (1) we associate a convex polyhedral
cone in the same dual space, which we defined below. By the extremal points of
the polynomial T (x) with respect to E we shall mean the set

extE(T ) := {x ∈ E : T (x) = ±‖T‖E},

where we associate with each point x a functional x∗ on the space of polynomials:
〈x∗|P 〉 := P (x) · signT (x). The conical hull of these functionals

cone{x∗1, x∗2, . . . , x∗m} :=
{ m∑
s=1

αsx
∗
s : αs � 0,

m∑
s=1

αs > 0

}
, m = #extE(T ), (3)

does not contain the origin because
〈∑m

s=1 αsx
∗
s | T

〉
=
∑m
s=1 αs‖T‖E > 0; we

associate it with the polynomial T . By the dual cone we shall mean the cone of
polynomials positive at each functional in (3) (note that only the non-negativity is
required in the standard definition).

Theorem 1. A polynomial T ∈ Ln+1−r delivers a minimum in the least deviation
Problem A if and only if the director plane L∗r intersects the cone (3) associated
with the polynomial.
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Remark. The cone in this statement, which is generated by all extremal points of
the polynomial T can, in view of Carathéodory’s principle, be replaced by a cone
generated by at most n+2−r extremal points. Thus adjusted, Theorem 1 becomes
an interpretation of the criterion of extremality in [1].

Proof. A polynomial T ∈ Ln+1−r fails to be a solution of Problem A if and only if
the norms of the polynomials decrease along some ray issuing from T in a direction
tangent to the plane Ln+1−r. Such a direction can be defined by a polynomial P (x)
annihilating all functionals in L∗r and taking values of the same sign as T at the
extremal points of T . The following two assertions are therefore equivalent: T is
a solution of Problem A and the annihilator of L∗r is disjoint from the cone dual
to (3). Dualizing the second assertion one obtains the result of the theorem.
(1). Assume that the intersection of the lineal L∗r with the cone (3) is non-

empty and contains a functional p∗. Taking the intersection of the dual objects,
(L∗r)

⊥ ∩ {the dual cone} 
 P (x) leads to a contradiction: 0 = 〈p∗ | P 〉 > 0.
(2) Assume that L∗r is disjoint from the cone (3); recall that the latter does not

contain its vertex. Using induction we now increase L∗r to a hypersurface disjoint
from the cone. It is the annihilator of a polynomial belonging to both the dual cone
and the annihilator of L∗r . At each step, if r < n, then we consider a two-dimensional
subspace L∗2 linearly independent of L

∗
r . Its intersection with the convex cone

L∗r + cone{x∗1, x∗2, . . . , x∗m} is a convex two-dimensional sector with opening less
than π for it does not contain the origin. Hence L∗2 contains a one-dimensional
subspace L∗1 disjoint from L

∗
r + cone{x∗1, x∗2, . . . , x∗m}. Setting L∗r+1 := L∗1 + L∗r we

complete the induction step.

Problems A on least deviation for a fixed subset E of the real axis differ in the
position of the plane Ln+1−r and therefore can be indexed by points in the real
projective Grassmannian Gr(n + 2, n+ 2 − r) of dimension r(n + 2 − r). We see
that more problems can be posed than there exist solutions, so that the question
of the rate of the occurrence of each polynomial in (1) among the solutions of least
deviation problems suggests itself. The affine planes Ln+1−r incident to a fixed
point in the space will be indexed by the directing lineals L∗r ∈ Gr(n+ 1, r).
Theorem 2. A fixed polynomial T is a solution of a set of Problems A correspond-
ing in the Grassmannian Gr(n+1, r) to a closed subset with non-empty interior of
a Schubert cycle of codimension max(n+ 2− r −#extE(T ), 0).
Proof. The lineals L∗r intersecting the cone (3) form a closed subset of the Grass-
mannian Gr(n + 1, r), because this cone becomes closed after the addition of its
vertex. The set in question lies in some Schubert cycle.
Assume that the linear span of the cone (3) belongs to a filtration of the dual

space of (1):
0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn+1.

If a subspace L∗r intersects the cone, then we obtain the first inequality in the
following system (while the other inequalities hold by dimensional considerations):

dim(L∗r ∩ Rmin(m,n+1)) � 1, dim(L∗r ∩ Rn+s+1−r) � s, s = 1, 2, . . . , r,

which means that L∗r lies in the Schubert cycle whose Young diagram is a
(n+1−r)×r rectangle without the (horizontal) row of length max(n+2−r−m, 0)
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in the lower right corner. We shall now indicate a subdomain of this Schubert cycle
the elements of which intersect the cone (3).

In the proof of Theorem 1 we established the existence of a support hyperplane
of the cone (3) containing its origin, but disjoint from the cone proper. Consider
now an arbitrary subspace L∗l of dimension l := min(m, n + 2 − r) − 1 lying in
the intersection of this hyperplane and the linear span of the cone. For a fixed
point p∗ in the relative interior of the cone there exists a neighbourhood of the
origin O ⊂ L∗l such that p∗ + O lies in the cone. We consider now the set of pairs
(y∗, L∗r−1), where y

∗ ∈ O and L∗r−1 is a subspace of the support hyperplane such that
dim(L∗r−1 ∩L∗l ) = 0. Such subspaces L∗r−1 fill an open subset of the Grassmannian
Gr(n, r− 1), which contains at any rate a Schubert cell of the maximum dimension
(r−1) ·(n+1−r). Each pair (y∗, L∗r−1) defines an r-subspace spanned by L∗r−1 and
the vector p∗ + y∗ and intersecting the cone. By construction distinct pairs define
distinct r-subspaces. We have thus defined an embedding in the set of r-subspaces
intersecting the cone (3) of a domain in the space of dimension

(r − 1) · (n + 1− r) + l = r(n+ 1− r)−max(n+ 2− r −m, 0)

equal to the dimension of the Schubert cell in the previous paragraph.

Of course, our arguments do not mean that a slight perturbation of the conditions
of an arbitrary problem brings the number of extremal points of the solution T
(which may also be non-unique) close to the expected quantity n+2−r. Although
each polynomial with # extE(T ) < n + 2 − r is a solution of fewer problems, the
number of such polynomials is much greater. A crude dimension evaluation shows
that these two effects roughly counterbalance each other: in (1) the polynomials
with # extE(T ) = m lie on submanifolds of codimension m − 1 and each is a
solution of an ((r − 1) · (n + 1 − r) +m − 1)-dimensional set of problems, which
yields precisely the dimension of the Grassmannian Gr(n+ 2, n+ 2− r), the index
set of least deviation problems.
Which least deviation problems automatically have extremal polynomials as solu-

tions? Each extremal point of a polynomial T lying in the interior of E is critical,
and the value ±‖T‖E at this point has even multiplicity. That is, we are interested
in problems whose solutions have many extremal points, provided that the bound-
ary of E consists of few points. For instance, the number of extremal points of a
solution is at least n + 2 − r if the polynomials satisfying the homogeneous con-
straints of the problem form a Chebyshev subspace. This means that a non-trivial
polynomial in (L∗r)

⊥ has at most dim(L∗r)
⊥ − 1 = n − r zeros in E. The main

source of Chebyshev subspaces is provided by divisor spaces occurring in algebraic
geometry. Let D be a divisor (that is, a formal finite sum of points with integer
multiplicities) in the Riemann sphere that is symmetric relative to the real axis and
assume that D+n ·∞ � 0. By the space of this divisor we shall mean the subspace
of polynomials in (1) such that the multiplicities of their zeros at an arbitrary point
in the Riemann sphere (a pole has a negative multiplicity) are no smaller than the
multiplicity of this point in the divisor:

L(−D) := {P ∈ R[x] : (P ) � D}, codimL(−D) = min(degD + n, n+ 1). (4)
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If the support of the divisor D is disjoint from the set E, then the divisor space
is Chebyshev on E. The constraints in the corresponding least deviation problem
fix the values of the solution T at the finite points in D (and the values of its first
derivatives if the multiplicity of the point is larger than 1), and also fix several
leading coefficients of T if the point at infinity has multiplicity greater than −n in
the divisor.

Theorem 3 [2]. (1) If a lineal (L∗r)
⊥ is Chebyshev on a set E, then the solution of

the corresponding least deviation problem A has at least n + 2 − r extremal points
in E.
(2) If the same lineal is Chebyshev on the convex hull of E, then the solution

is unique and is characterized by the property of having an (n + 2 − r)-alternance
on E.

Proof. (1) If T (x) is a solution of the least deviation problem, then by Theorem 1
for some extremal point xs of this polynomial and positive weights αs we obtain

m∑
s=1

αs · signT (xs) · P (xs) = 0 for each P ∈ (L∗r)⊥. (5)

Assume that there exist m < n + 2 − r extremal points. The dimension of (L∗r)⊥
is n + 1 − r, therefore there exists a polynomial P (x) ∈ (L∗r)⊥ vanishing at n − r
points: at x1, x2, . . . , xm−1 and at arbitrary n + 1 − r −m points in E \ extE(T ).
Since (L∗r)

⊥ is a Chebyshev space, it follows that P (xm) �= 0, therefore in (5) we
have αm = 0, a contradiction.
(2) Assume that the solution T (x) has the same sign at two neighbouring points

xs and xs+1. We consider a polynomial P (x) ∈ (L∗r)⊥, vanishing at the remaining
n − r extremal points (see the remark to Theorem 1). Then equality (5) takes
the form αsP (xs) + αs+1P (xs+1) = 0. This means that P (x) must also have a
zero on the interval [xs, xs+1], in contradiction with the Chebyshev property of the
space (L∗r)

⊥ on convE. Thus, each solution T has an (n+ 2− r)-alternance on E.
Conversely, each polynomial T (x) ∈ Ln+1−r having an (n + 2 − r)-alternance on
E is a unique solution. If there exists another polynomial whose deviation on E
is not worse than that of T (x), then their difference belongs to (L∗r)

⊥ and has at
most n+ 1− r zeros on convE, so that it is trivial.

The Lebedev problem is not formally a least deviation problem, but its solution
is at the same time a solution of a certain Problem A, therefore convex analysis
enables one to determine the form of the solution of Problem B.

Theorem 4. For r > 1 Problem B is uniquely soluble and its solution has an
(n+ 2− r)-alternance on E \ {0}.

Proof. As t increases, the unit ball in (1) with respect to the norm of C[0, t] (linearly,
but anisotropically) contracts and, in the limit as t → ∞, contains only constant
polynomials, which cannot satisfy the constraints if r > 1:

Pn(x) = 1− x+
x2

2
− · · ·+ (−x)

r−1

(r − 1)! + x
rPn−r(x), deg Pn−r(x) � n− r. (6)
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Hence there exist a largest interval E := [0, t0] and a polynomial T (x) with
deviation 1 on E satisfying the constraints. We claim that T (x) is at the same
time a solution of Problem A with constraints (6) on the interval E′ = [ε, t0]; here
ε is a positive quantity that is smaller than 1, t0/2, and 1/max |P ′′(x)|, where the
maximum is considered over the compact set

{(P, x) : x ∈ [0, t0/2], ‖P‖[t0/2,t0] � 1, deg P � n}.
Assume that there exists a polynomial P (x) with behaviour (6) and deviation less
than 1 on E′. In view of the local decrease of P (x) in the neighbourhood of the
origin and the smallness of ε, ‖P‖E � 1. Since the value of P (x) at the end-point
x = t0 is less than 1 in absolute value, E can be increased while keeping the norm
of P (x) the same, which contradicts the maximality of E.
The linear subspace corresponding to the constraints (6) is defined by a divisor

D with support at the origin and at infinity, which does not intersect E′. By
Theorem 3(2) the solution T (x) is unique and has an (n+ 2− r)-alternance on E′.

§3. Chebyshev representation of polynomials
Chebyshev and his students Zolotarëv, the brothers V. A. and A.A. Markov,

Korkin, and Posse reduced extremal problems for polynomials to Pell’s equation, a
geometric interpretation of which is suggested in the following construction.

Construction. One associates with an arbitrary polynomial P (x) the two-sheeted
Riemannian surface

M =M(e) =

{
(x, w) ∈ C2 : w2 =

2g+2∏
s=1

(x − es)
}

(7)

ramified over the points e := {es}2g+2s=1 at which the polynomial takes the values ±1
with odd multiplicity (that is, these are simple values in the general case).

Discussion. The motivation of the construction [10], [12] is purely topological.
Consider the diagram

(x, w) ∈M(e) P̃−−−−→ CP1 
 u

χ

� �σ
x ∈ CP1

P−−−−→ CP1

(8)

in which: χ(x, w) := x is a two-sheeted cover ramified over the points in e;
σ(u) := 1

2

(
u + 1

u

)
is a two-sheeted cover ramified over ±1 (the Zhukovskǐı func-

tion). Each map P̃ between the covering spaces satisfying the equivariance condi-

tion P̃ (x,−w) = 1/P̃ (x, w) can be lowered to a map P of the bases which has an
odd branching index at the points in e ⊂ P−1(±1) and an even index at the points
in P−1(±1) \ e. The converse result also holds: each map P ramified with an even
order over ±1, except at the points in e, can be lifted to an equivariant map of the
covering spaces in the diagram (8). In this way we obtain a description of extremal
polynomials P using few parameters, the modules of the curve M . Almost all the
critical points of the polynomial P generated by an equivariant map of the covering
spaces are automatically simple and correspond to the values ±1.
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Lemma 1. The genus of the curve associated with a polynomial P (x) is equal to
the integer g in (2).

Proof. A polynomial P of degree n has n− 1 critical points in C:

n− 1 =
∑
x

ordP ′(x) = g +
∑

x:P(x)=±1

[
1

2
(ordP ′(x) + 1)

]
.

We now calculate deg e, the number of odd-order zeros of the polynomial P 2(x)−1:

2n =
∑

x:P(x)=±1
(ordP ′(x) + 1) = deg e+

∑
x:P(x)=±1

2

[
1

2
(ordP ′(x) + 1)

]
,

which shows that deg e = 2g(M) + 2, that is, the genus of the hyperelliptic curve
M(e) is g.

Example. Let E be a closed interval and assume that the r constraints in extremal
Problem A define a Chebyshev subspace (L∗r)

⊥. Then the normalized solution
Pn(x) := Tn(x)/‖Tn‖E corresponds to a curve M of genus g � r − 1. In fact, the
full inverse image P−1n (±1) contains 2n points counted with multiplicities. At least
n− r points of even multiplicity from the inverse image lie in the interior of E. At
the 2g + 2 ramification points of M the value of Pn has odd multiplicity, therefore
2n � 2(n− r) + 2g + 2.
3.1. Real hyperelliptic curves. We recall several concepts of the geometry of
hyperelliptic curves [13]. A compact complex curve Mc of genus g is said to be
hyperelliptic if it admits a conformal involution J with 2g+2 fixed points. If g > 1,
then such an involution is unique (if it exists), while for g = 0, 1 there exist infinitely
many involutions J . A curve Mc is said to be real if it admits an anticonformal
involution J̄ (a reflection). Whatever the genus, there can exist several anticonfor-
mal involutions, therefore one must consider a pair (Mc, J̄). We now discuss the
connections between these concepts. If a curveMc admits a hyperelliptic involution
J and an anticonformal involution J̄ , then they commute for g > 1 (J̄JJ̄ is another
hyperelliptic involution). This is in general not so for g = 0, 1, but we shall assume
that J̄J = JJ̄ . The interchangeability of the involutions means that J̄ acts on
CP1 = Mc/J . The anticonformal involution of the Riemann sphere interchanges
the interior and the exterior of its isometric circle. The points on this circle are
either fixed (for instance, when J̄x = 1/x̄) or are taken to the antipodal points
(for instance, when J̄x = −1/x̄). Hence the real hyperelliptic curves fall into two
classes: with orientable quotient Mc/〈J, J̄〉 (= a disc) and with non-orientable one
(= the projective plane). In what follows we consider only the first class, of real
orientable hyperelliptic curves.
We lift the circle of J̄-fixed points from the sphere to the curveMc. On the curve

we obtain real ovals that are fixed under the J̄-action on Mc and coreal ovals that
are fixed under the action of J̄J . If there exist 2k ramification points (fixed points
of the involution J), k = 0, 1, . . . , g + 1, projecting onto the circle of fixed
points in the sphere, then for k > 0 there exist on Mc precisely k real
and k coreal ovals with alternating projections onto the circle of fixed points.
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The case k = 0 drops out of the general picture: for real g there exists only one
oval, either real or coreal, while for odd g there exist two ovals of the same name.

Real orientable hyperelliptic curves have a convenient algebraic model (7) in

which all branch points es are distinct and form the branch divisor e := {es}2g+2s=1

symmetric with respect to the real axis. In Fig. 1 we plot by bold lines the system
of cuts Λ on C \ e outside which the function w(x) has a single-valued branch.
The curve M(e) can be thought of as two sheets of C \ Λ glued crosswise along
the cuts. The compactification Mc of the curve (7) is obtained by the addition of
a pair of points ∞± at the infinity of each sheet. In this model the hyperelliptic
and the anticonformal involutions have the following form: J(x, w) := (x,−w),
J̄(x, w) := (x̄, w̄). For such a choice of J̄ the punctures ∞± lie on a real oval and
the topological invariant k of the real curve M can be defined as the number of
coreal ovals on it.

3.1.1. Homology space and the lattice LMLMLM . The curve M can be obtained
from the compact curve by the deletion of the two points at infinity, therefore one
must add to the usual 2g independent 1-cycles the cycle encircling an (arbitrary)
puncture. In the (2g +1)-dimensional real homology space H1(M,R) we obtain an
action of the anticonformal involution J̄ , which decomposes it into the sum of the
eigenspaces H±1 (M,R) corresponding to the eigenvalues ±1. The even 1-cycles C
satisfy the equality J̄C = C and form the g-dimensional subspace H+1 (M). For
k > 0 one can take for the first k− 1 cycles of a basis C+1 , C+2 , . . . , C+g in this space
the finite real ovals, similarly to Fig. (1)(a) (the dashed line indicates that the
contour traverses the lower sheet). The odd 1-cycles C, defined by the condition
J̄C = −C, give rise to the (g + 1)-dimensional subspace H−1 (M). The cycles
C−0 , C

−
1 , C

−
2 , . . . , C

−
g in Fig (1)(b), the first k of which are coreal ovals, form a

basis in H−1 (M). The sum C∞ := C
−
0 + C

−
1 + C

−
2 + · · · + C−g is homologous to

the cycle encircling the puncture on the curve at infinity and spans a distinguished
1-dimensional subspace H∞1 (M) of H

−
1 (M). The restriction of the intersection

form to the subspaces H±1 (M) is trivial: the involution J̄ reverses the orientation,
therefore J̄C ◦ J̄C ′ = −C ◦C ′, C,C ′ ∈ H1(M,R). Only the following entries of the
intersection matrix with respect to the above basis are distinct from zero:

C+s ◦ C−s = 1, s = 1, . . . , k− 1,
C+s ◦ C−s = 2, s = k, . . . , g,

C+s ◦ C−0 = −C+s ◦C−s , s = 1, . . . , g.
(9)

Using the intersection form one can show that the above-considered systems of
cycles form bases not only in the Euclidean spacesH±1 (M,R), but also in the lattices
H±1 (M,Z) := H

±
1 (M,R)∩H1(M,Z). Important for the investigation of the Cheby-

shev construction is the sublattice LM of the lattice of odd cycles generated by the
elements 2C−0 , 2C

−
1 , . . . , 2C

−
k−1;C

−
k , C

−
k+1, . . . , C

−
g . For k = 0 the lattices LM and

H−1 (M,Z) are equal, while for k > 0 the lattice LM has the following ‘coordinate-
less’ description.
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Figure 1. The system of cuts Λ in the plane and the basis in the lattice
(a) H+1 (M,Z), (b) H

−
1 (M,Z)

Lemma 2. If k > 0, then the following two lattices coincide with LM :

(1) the projection of the lattice 2H1(M,Z) onto the subspace H
−
1 (M,R) along

H+1 (M,R);
(2) the cycles H−1 (M,Z) having even intersection indices with all components
of the real ovals M (the punctures at infinity partition one real oval).

Proof. The projection of the space H1(M,R) onto H
−
1 along H

+
1 has the form

C → 1
2(C − J̄C). The assertions in question can be verified on the generators of

the lattices.

3.1.2. Space of differentials on the curve. The Abelian differentials dξ on M
the only possible singularities of which are simple poles at infinity ∞± make up a
complex linear space of dimension g + 1. The Riemann bilinear relations [14], in
view of what is known about the intersection form of the homology basis, ensure
that there exists in this space a unique meromorphic differential with fixed residue
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at infinity and fixed g periods over the cycles in the basis H+1 (M) (or in the basis
H−1 (M)/H

∞
1 (M)). The anticonformal involution J̄ of the curve also acts in the

space of differentials: dξ → J̄ dξ. Fixed points of this action make up what is
usually called [13] the space of real differentials. In the model (7) these differentials
have the representation dξ = w−1Pg(x) dx with real polynomial Pg(x) of degree at
most g; they take real values on the cycles in H+1 (M) and purely imaginary values
on the cycles in H−1 (M). The period map Π(dξ):

〈Π(dξ) | C+ +C−〉 :=
∫
C+
dξ − i

∫
C−
dξ, C± ∈ H±1 (M,R), (10)

assigns to each real differential dξ an element of the real cohomology groupH1(M,R)
of the curve M .
The space under consideration contains a unique differential dη = dηM with

residue −1 at the point ∞+ in the upper sheet of M and with period zero over
all real 1-cycles. We can verify that this differential is real: the meromorphic
differential J̄ dηM has residues ∓1 at the points ∞± and periods zero over even
cycles. By the uniqueness of the differential so normalized we obtain J̄ dηM = dηM .
The differential dηM associated with the curve can be also characterized by the
property that all its periods on M are purely imaginary.

3.2. Polynomials and curves. The following result describes the range of the
Chebyshev map taking polynomials to curves and the inverse map.

Theorem 5. The construction described in the beginning of § 3 establishes a one-
to-one correspondence between real polynomials Pn(x) of degree n considered up to
the sign and real orientable hyperelliptic curves M for which the period map of the
differential dηM associated with the curve yields a 4πn

−1Z-valued functional on
the lattice LM . The polynomial can be recovered from the associated curveM by the
formula

Pn(x) = Pn(es) cos

(
ni

∫ (x,w)
(es,0)

dηM

)
, (11)

where the result is independent of the integration path on M , of the choice between
the two possible values of w(x), and of the branch point es, s = 1, . . . , 2g+2, taken
for the initial point of integration.

Remark. For k > 0, in the case important for applications to extremal polynomials,
there exists an equivalent and more easily understandable condition describing the
curves M corresponding to polynomials of degree n: Π(dηM) ∈ 2πn−1H1(M,Z).
Proof. (1) The correspondence Pn→M . If a curve M of the form (7) corresponds
to a polynomial Pn(x), then there exists a real polynomial Pn−g−1(x) such that
P 2n(x) − 1 = w2P 2n−g−1(x). On the compact curve Mc we consider the function
P̃ (x, w) := Pn(x) + wPn−g−1(x) introduced by N. Akhiezer and satisfying the
condition of equivariance with respect to the covering groups of the covers χ and σ in

the diagram (8): P̃ (x,−w) = Pn(x)−wPn−g−1(x) = 1/P̃ (x, w). The meromorphic
differential

dη :=
1

n

dP̃

P̃
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is equal to the differential dηM associated with the curve. In fact, the only
singularities of dη are simple poles at infinity, with residues ±1. All the periods
of dη are purely imaginary because on the closed contours C ⊂M we have∫

C

dη = n−1 log P̃ (x, w)
∣∣
C
∈ 2πi
n
Z.

We claim that on the lattice LM the functional Π(dηM ) takes values in 4πZ/n.

We now calculate the index of the intersection of the image P̃ (C) of an arbitrary
contour C in this lattice with the positive half-axis. Slightly modifying the con-
tour in its homology class we can assume that all its intersections with the set

{P̃ (x, w) > 0} = {Pn(x) � 1} are transversal. The latter set is J̄-invariant, there-
fore outside real ovals it intersects the cycle C = −J̄C at an even number of points.
On each component of real ovals P 2n � 1, and the intersection index of the cycle
with these components is also even. This demonstrates that the increment of log P̃
over a cycle C in the lattice LM is an even multiple of 2πi.
Inversion formula (11) follows from the equalities

Pn(x) =
1

2

(
P̃ (x, w) + P̃ (x,−w)

)
= cos

(
i log P̃ (x, w)

)
= cos

(
i log P̃ (es, 0) + ni

∫ (x,w)
(es,0)

dηM

)
= Pn(es) cos

(
ni

∫ (x,w)
(es,0)

dηM

)
.

(2) The correspondence M → Pn. If the curve M satisfies the assumptions of
the theorem, then the functional Π(dηM) is 2πZ/n-valued on the (integer) cycles.
For if C ∈ H1(M,Z), then the cycle C − J̄C belongs to the lattice LM , therefore
〈Π(dηM) | C〉 = 1

2 〈Π(dηM) | C − J̄C〉 ∈ 2πZ/n.
For Pn(es) = ±1 the right-hand side of (11) well-defines a meromorphic function

on Mc that is stable under involution and has poles of order n at infinity. This is
a polynomial of degree n in x, and it is real because

Pn(x̄) = Pn(es) cos ni

(∫ (ēs,0)
(es,0)

dηM +

∫ (x̄,w̄)
(ēs,0)

dηM

)

(∗)
= Pn(es) cos ni

∫ (x,w)
(es,0)

dηM = Pn(x);

in the transition (∗) we use the inclusion
∫ (ēs,0)
(es,0)

dηM ∈ 2πiZ/n, and the fact that

dηM is a real differential. It is easy to verify that Pn(x) takes values ±1 of odd
multiplicity at the branch points of the curve M and only at these points.

§ 4. Abel’s equations
We now study the structure of the set of curves M associated with polynomials

of degree n by means of the Chebyshev correspondence. In view of Theorem 5,
the branch points of curves of this type having a fixed genus g are constrained by
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the following relations:∫
C−s

dηM = 2πi
ms

n
, ms ∈

{
Z, s = 0, 1, . . . , k− 1,
2Z, s = k, . . . , g,

(12)

where {C−s }
g
s=0 is the basis in the lattice H

−
1 (M,Z) fixed above. The Riemann

bilinear relations, in view of the fact that dηM has periods zero over the cycles
in H+1 (M), bring the system of equations (12) to Abel’s classical criterion for the
existence of a meromorphic function1 on M with divisor n · (∞+−∞−). Only g of
Abel’s equations (12) are independent because the cycle

∑g
s=0C

−
s contracts to a

pole of dηM with a fixed residue. The left-hand sides of Abel’s equations are locally
single-valued analytic functions of the branch points of the curve; however, they are
globally multivalued: interchanging two branch points in the upper half-plane one
obtains another basis in the lattice of odd cycles. This laxity is described in terms
of braids acting on the universal cover of the space of curves. We now introduce
the requisite concepts.

4.1. Moduli spaces of curves. We fix the topological invariants of a real ori-
entable hyperelliptic curve: its genus g � 0 and the number k of coreal ovals
0 � k � g + 1. Let e be an unordered system of distinct points e1, . . . , e2g+2
including 2k real points and g − k + 1 pairs of complex conjugate points. We have
a free action of the group A+1 of orientation-preserving affine motions of the real

axis on such systems: e = {es}2g+2s=1 → Ae + B = {Aes + B}
2g+2
s=1 , A > 0, B ∈ R.

We call the orbits of this action the space Hkg . Associating each symmetric simple

divisor e with a hyperelliptic curve (7) we arrive at the equivalent definition of Hkg
as the space of moduli (= conformal classes) of real orientable hyperelliptic curves
of genus g with k coreal ovals and with distinguished point ∞+ on an oriented real
oval that is distinct from the ramification points.
The space Hkg is a 2g-dimensional real manifold. For the introduction of coor-

dinates we locally number the points in the system e and fix a pair of complex
conjugate points or a pair of real points e2g+1, e2g+2. For local coordinate variables
in Hkg we take the variables Re es in the case of real points es and Re es, Im es in
the case of points es in the real half-plane H, 1 � s � 2g.
Lemma 3. The fundamental group of the moduli space π1(H

k
g) is isomorphic to

the (g − k + 1)-string braid group of the plane Brg−k+1(H).
Proof. Elements of Hkg are orbits of the affine group A

+
1 . For k > 0 each orbit

contains a unique divisor e such that the extreme points of the set R ∩ e are ±1.
For k < g + 1 the orbit contains a unique divisor e such that the barycentre of
the set H ∩ e is at i. Thus, the moduli space Hkg can always be embedded in the
space of symmetric divisors e with the same invariants g and k. This space of
divisors can be contracted to Hkg , therefore they have equal fundamental groups.
A symmetric divisor is completely defined by its parts lying in H (g− k+1 points)
and R (2k points), therefore the space of such divisors is the product of the quotient
of the space Hg−k+1 \ {the diagonals} by the rearrangements of the variables and
a 2k-dimensional cell. The fundamental group of such a space [15] is precisely the
braid group Brg−k+1(H).

1The Akhiezer function P̃ of the diagram (8).
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The universal cover H̃kg of the moduli space (= the set of homotopy classes of

paths in Hkg starting at the distinguished point M0 = M(e
0)) is topologically a

2g-cell.

4.2. Bundles. Over the moduli space Hkg we consider two vector bundles: the

bundle of homology groups H1H
k
g and the bundle of real meromorphic differentials

Ω1Hkg . The fibre of the real bundle H1H
k
g over a point M ∈ Hkg is the (2g + 1)-di-

mensional homology space H1(M,R) of the curve M . The local trivialization of the
bundle of homology groups is described, for instance, in [16]. This bundle splits in
the natural way into the sum of subbundles H+1 H

k
g and H

−
1 H

k
g the fibres of which

are the eigenspaces corresponding to the values ±1 of the operator of anticonformal
involution J̄ acting on homology.
It is known that the vector bundle under consideration possesses the natural flat

Gauss–Manin connection [16], which allows one to shift homologies to neighbouring
fibres. The action of this connection on cycles in H1(M,Z) can be described as
follows. On the two-dimensional model of the curve M we draw a closed contour
representing the cycle and lying away from the ramification points. Keeping this
contour fixed and perturbing the ramification points we transfer the cycle to nearby
curves M . The parallel shift of cycles defined by the Gauss–Manin connection is
compatible with the splitting of the homological vector bundle into the subbundles
H±1 H

k
g pointed out above and preserves all the integer homology lattices considered

before.
The flat connection enables one to define the action of the braid group Brg−k+1

in the cohomology space H1(M0,R) of the distinguished curve. Namely, we define
the action of β ∈ π1(Hkg ,M0) on a functional C∗ ∈ (H1(M0))∗ by the formula
〈β · C∗ | C〉 := 〈C∗ | the parallel translation of C along a loop in the class β〉,
C ∈ H1(M0). The matrix description of the braid group action on functionals in
(H−1 (M0))

∗ coincides with the Burau representation [15].

4.2.1. Global period map. The fibre of the second vector bundle Ω1Hkg over
the curve M is the (g + 1)-dimensional space of real meromorphic differentials dξ
on M , the only allowed singularities of which are simple poles at the distinguished
points ∞±. The period map (10) enables one to couple local sections of the pairs
Ω1Hkg and H1H

k
g . A transition to the universal cover gives us the global period

map described below.

The universal cover H̃kg → Hkg applied in the standard fashion [17] to the

above-discussed vector bundles produces bundles H1H̃
k
g , H

±
1 H̃

k
g , and Ω

1H̃kg . The
Gauss-Manin connection enables us to identify the fibres of the bundle of homo-

logy groups H1H̃
k
g over the universal covering space with its fibre over the distin-

guished point M̃0 ∈ H̃kg . The bracket in (10) defines now the global period map
Π: Ω1H̃kg → H1(M0,R). The composite of Π and the restriction of functionals
to the subspace H•1 (M0,R) ⊂ H1(M0,R), where the index • can take the values
+,−,∞, defines a partial period map Π• : Ω1H̃kg → (H•1 (M0,R))∗. The fibres of
the period maps are studied in the next subsection.
The simplest period map Π∞ defines the residue of the differential at infinity.

Its typical fibre N := {dξ : 〈Π(dξ) | C∞〉 = 2π} is a smooth 3g-dimensional



1764 A. B. Bogatyrëv

cell of differentials with residues ±1 at the distinguished points ∞∓ in the curve
M̃ ∈ H̃kg . The cell N is partitioned into smooth submanifolds (strata) consisting of
the differentials of the following form:

dξ =

2g+2∏
s=1

(x−es)εs
l∏
j=1

(x−aj)αj
dx

w
, εs � 0, αj � 1,

2g+2∑
s=1

εs+
l∑
j=1

αj = g, (13)

with fixed orders of zeros, where all the zeros aj �= es of the differential are distinct
and form a symmetric subset relative to the real axis. For local variables on such
a (2g + l)-dimensional stratum one can take the quantities Re es, Reaj in the case
of real points es and aj and Re es, Reaj, Im es, Im aj in the case of es and aj lying
in the upper half-plane, s = 1, . . . , 2g, j = 1, . . . , l � g.

4.3. Properties of the period map. We shall write out the equations of the
fibres of the global period map. We fix 1-cycles C+1 , C

+
2 , . . . , C

+
g and C

−
1 , . . . , C

−
g ,

C∞ forming bases in the homology subspaces H
+
1 (M0) and H

−
1 (M0), respectively,

where C∞ encircles the puncture at∞+ counterclockwise. Pairing these fibres with
differentials by formula (10) gives us 2g + 1 real analytic functions γ+1 , γ

+
2 , . . . , γ

+
g

and γ−1 , . . . , γ
−
g , γ∞ = −2πRes dξ

∣∣
∞+
on the bundle Ω1H̃kg . The space N of dif-

ferentials with residues ±1 is defined by the equation γ∞ = 2π, and the fibres of
the partial period maps Π• restricted to N are defined by the additional equations
γ•s (dξ) = const

•
s, s = 1, . . . , g, • = +,−. In view of Theorem 5, we are interested in

manifolds along which the functions γ+s vanish and the γ
−
s take fixed values in 2πQ.

We have the following result.

Theorem 6. (1) The fibres of the maps Π± : N → (H±1 (M0,R))∗ are smoothly
embedded 2g-cells projecting without singularities onto the base of the vector bundle

Ω1H̃kg .
(2) The fibres of Π± are transversal to the strata (13) in the space N and the

fibres of Π∓.
(3) The ‘rational’ fibres Π, that is, the fibres such that Π(dξ) ∈ 2πH1(M0,Q),

are dense in N.

Proof. We claim that the functions γ+1 , . . . , γ
+
g and γ

−
1 , . . . , γ

−
g defining the fibres of

the period map can be complemented on each stratum (13) to a system of local coor-
dinate variables. Hence the differentials of these functions form a 2g-dimensional
subspace of the cotangent space to each (2g+l)-dimensional stratum, and therefore
they are also linearly independent in the ambient space N. This means that the
period map has smooth fibres with transversality property (2) and the ‘rational’
fibres are dense (3).
We shall now define locally on each stratum (13) other l real analytic func-

tions ϕs, s = 1, . . . , l. On the curve M we consider a path Fs connecting two zeros
(as,±w(as)) of the differential dξ projecting onto the same point in the x-plane. In
a small neighbourhood on the stratum this path can be assumed to continuously
depend on dξ: the end-points of Fs ‘float’ together with the zeros of the differential
(see Fig. 1(a)). The choice of Fs is homotopically non-unique, but two possible
paths differ by a cycle on M : if the zero as lies on the projection of a real oval
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onto M , then Fs − J̄Fs ∈ H−1 (M,Z); if as lies in the projection of a coreal oval,
then Fs + J̄Fs ∈ H+1 (M,Z); for a pair of complex conjugate zeros as, as̄ we have
J̄Fs − Fs̄ ∈ H1(M,Z).
A fixation of the paths Fs allows one to introduce locally on the stratum l

complex-valued functions fs :=

∫
Fs

dξ whose real and imaginary parts give us the

missing coordinate variables. Namely, for each zero as in a real oval on M we set
ϕs := Re fs; for as in the coreal oval on M we set ϕs := Im fs; finally, for a pair of
complex conjugate zeros as, as̄ we set ϕs := Re fs, ϕs̄ := Im fs̄.

Lemma 4. The functions γ±s , s = 1, . . . , g; ϕj, j = 1, . . . , l, make up a local real
analytic system of coordinates on the stratum (13).

Proof. The positions of the branch points e1, . . . , e2g of the curve M and the zeros
a1, . . . , al of the differential dξ are complex-valued functions of local coordinates on
the stratum. The differentials of the new coordinate functions have the following
expressions:

dγ+s = −
( 2g∑
j=1

[(
εj −

1

2

)∫
C+s

dξ

x− ej

]
dej +

l∑
j=1

[
αj

∫
C+s

dξ

x− aj

]
daj

)
,

s = 1, . . . , g,

dγ−s = i

( 2g∑
j=1

[(
εj −

1

2

)∫
C−s

dξ

x− ej

]
dej +

l∑
j=1

[
αj

∫
C−s

dξ

x− aj

]
daj

)
,

s = 1, . . . , g,

dϕs = −


Reor
Im


( 2g∑

j=1

[(
εj −

1

2

)∫
Fs

dξ

x− ej

]
dej +

l∑
j=1

[
αj

∫
Fs

dξ

x− aj

]
daj

)
,

s = 1, . . . , l.

If they are linearly independent, then there exists onM a non-trivial real differential

dω =

( 2g∑
j=1

Ej

x− ej
+

l∑
j=1

Aj

x− aj

)
dξ,

with constants Ej and Aj such that all integrals over the cycles C
±
s vanish, as

well as the real or imaginary (in accordance with the definition of ϕs) parts of the

integrals over the paths Fs. The real symmetry

∫
Fs

dω =

∫
J̄Fs

dω and the above

relations between J̄Fs and Fs yield the relations

∫
Fs

dω = 0, s = 1, . . . , l.

The poles of dω can be located only at ramification points of the curve M , and
the residues at these poles are zero because dω is antisymmetric with respect to the
hyperelliptic involution. Since the cyclic and the polar periods of dω alike are equal
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to zero, the Abelian integral ω(x, w) :=

∫ (x,w)
(e2g+2,0)

dω is a single-valued function on

M . The integral ω is also antisymmetric with respect to the involution of the curve,

therefore the equalities

∫
Fs

dω = 0 mentioned above mean that ω vanishes at the

points in M lying over the as, s = 1, . . . , l. The even function wω has a unique
singularity, a pole at infinity, and therefore it is a polynomial in x. The degree of
the polynomial wω is at most g+1, and it has g+2 zeros with multiplicities taken
into account: the zeros ej of multiplicities εj for j = 1, . . . , 2g and multiplicity
1 + εj for j = 2g + 1, 2g + 2, and the zeros aj of multiplicities αj, j = 1, . . . , l.
Hence dω = 0 and the differentials of the real analytic functions γ±s , s = 1, . . . , g;
ϕj , j = 1, . . . , l, are linearly independent on the stratum (13).

To complete the proof of Theorem 6 we unravel the situation of the projections
of fibres of partial period maps onto the base. On a fixed curve M there exists a
unique real differential dξ with residue −1 at ∞+ and with prescribed real periods
γ+1 , . . . , γ

+
g (or with prescribed imaginary periods iγ

−
1 , . . . , iγ

−
g ). This produces a

bijection of the fibres Π± onto the base H̃
k
g , which is a cell. The non-degeneracy

(= the maximum possible rank) of the restriction of the projection N → H̃kg to
the fibre Π± follows from the infinitesimal version of these arguments. Indeed, a
vertical vector tangent to N at the point dξ is identified with a holomorphic real
differential dω on the curve M carrying dξ. If this vector is tangent to the fibre
of the period map, then all the integrals of dω over the cycles C+s (respectively,
over the cycles C−s ) s = 1, . . . , g, vanish. Hence dω, and therefore also the vertical
tangent vector to the fibre Π±, are trivial.

4.4. Period map on the moduli space. For the study of Abel’s equations (12)

we identify the submanifold of Ω1H̃kg consisting of the differentials dηM associated
with curves M and the base of this vector bundle. We know from Theorem 6(1)

that the manifold N ∩ (Π+)−1(0) projects onto H̃kg without singularities. Now, the
partial period map Π− is defined directly on the universal covering space of the
moduli space. On it, similarly to the cohomology H1(M0), we have the action of
the braid group on g − k + 1 strings (see § 4.2).
Lemma 5. The period map Π− : H̃

k
g → (H−1 (M0,R))∗ is interchangeable with the

action of Brg−k+1.

Proof. If an element C of the homology fibrationH−1 H
k
g projects to the initial point

of a path τ in the base Hkg , then we can perform a parallel translation of C along
this path using the natural flat connection. We denote the result of this translation
by C · τ ; this action of paths on cycles is associative: C · (τ1τ2) = (C · τ1) · τ2, and
depends only on the homology class of the path. Points in the universal covering

space H̃kg are homotopy classes of paths τ ⊂ Hkg starting at the distinguished
point M0. The braid group Brg−k+1 ∼= π1(Hkg ,M0) 
 [β] acts on them by covering
transformations [τ ]→ [βτ ]. The assertion of the lemma follows from the chain of
the equalities

〈Π−([β] · [τ ]) | C〉 := −i
∫
C·(βτ)

dηM = −i
∫
(C·β)·τ

dηM =: 〈[β] · Π−([τ ]) | C〉.
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We shall call the inverse image of a functional C∗ ∈ (H−1 (M0,R))∗ in the uni-
versal covering space H̃kg the manifold T(C∗). For instance, Abel’s equations (12)
define locally such a manifold for the functional C∗ defined on the basis of the
lattice of odd 1-cycles in M by the equalities 〈C∗ | C−s 〉 = 2πms/n, s = 0, 1, . . . , g.
We now list the properties of these manifolds that we know already from Theo-
rems 5, 6 and Lemma 5.

Theorem 7. (1) T is a smooth g-dimensional submanifold of H̃kg .
(2) Two T-manifolds are either disjoint or coincide.

(3) T(β · C∗) = β · T(C∗), C∗ ∈ Π−(H̃kg), β ∈ Brg−k+1.
(4) Points in the universal cover H̃kg associated with polynomials of degree n fill

T-manifolds corresponding to functionals in the inverse lattice 4πn−1(LM0)
∗.

(5) The ‘rational’ manifolds T(C∗), C∗ ∈ 2π(H−1 (M0,Q))∗, corresponding to
various polynomials are dense in H̃kg .

Figure 2. Extremal polynomials P50(x) for g = 2, k = 3, 2, 1

The following questions arise in the further study of the period map of the moduli
space.

(1) Find the image of H̃kg under the partial period map Π−. It was shown in [12]
that the image of the universal covering space for k = g + 1 is the interior of a
g-simplex; for k = g it is a union of k open g-simplexes, and for k < g it is
a countable union of open g-simplexes indexed by braids.
(2) Describe the topology of a T-manifold. As shown in [10], it is always a cell

for k = g + 1. Using the methods of [12] one can obtain a cell decomposition of
a T-manifold and the question of its topology reduces to combinatorics. However,
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to describe the topology knowing the neighbourhood relations between cells in the
decomposition requires hard work even for small g. Our calculations for g = 1, 2, 3
and all k = 0, . . . , g + 1 show that in these cases T is also a cell, whatever the
functional in the range of Π− might be. Probably, the following result holds.

Conjecture. A T-manifold is always a cell.

(3) Is the T-manifold folded by the projection onto the moduli space Hkg? In

other words, has the action of the braid group on the functionals in (H−1 (M0,R))
∗

fixed points in the range of the period map? In [12] the reader can find an example
of a fibre of this map that is invariant under the action of a certain braid. It is
likely that the topology of a T-manifold can change after the projection onto the
moduli space Hkg .

(4) Learn to effectively solve Abel’s equations (12), that is, to find the position

of a fixed T-manifold in the space H̃kg . The latter can be realized as a subdomain of
the Euclidean space with points corresponding to the generators of Schottky groups
of a special type. Similar calculations are the subject of [11]. The graphs of three
2-extremal polynomials of degree n = 50 obtained by computer calculations are
plotted in Fig. 2.
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