
PS  integral equations and projective structures on Riemann surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 Sb. Math. 192 479

(http://iopscience.iop.org/1064-5616/192/4/A01)

Download details:

IP Address: 83.149.207.101

The article was downloaded on 04/02/2011 at 15:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1064-5616/192/4
http://iopscience.iop.org/1064-5616
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Sbornik: Mathematics 192:4 479–514 c©2001 RAS(DoM) and LMS
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PS3PS3PS3 integral equations and projective

structures on Riemann surfaces

A.B. Bogatyrev

Abstract. A complex-geometric theory of the Poincaré–Steklov integral equation
is developed. Solutions of this equation are effectively represented and its spectrum
is localized.
Bibliography: 15 titles.

§ 1. Origins of the PSPSPS equation and a survey of results
An arbitrary non-singular change of variable R(t) on the closed interval [−1, 1]

can play the role of the functional parameter in the (Poincaré–Steklov) singular
integral equation of the following form:

λV.p.

∫
I

u(t)

t− x
dt− V.p.

∫
I

u(t) dR(t)

R(t)− R(x)
= const, x ∈ I := (−1, 1), (1)

where λ is the spectral parameter, u(t) is the unknown function, and const is an
unknown constant. The problem consists in finding eigenvalue-eigenvector pairs
(λ, u(t)) of equation (1) with non-trivial function u(t) from a prescribed function
class.

The subject of the present paper is the Poincaré–Steklov equations with param-
eter R3(t) that is a rational function of degree 3; we call them in what follows
Poincaré–Steklov equations of degree 3 or PS3. The main result of the paper is the
establishment of a one-to-one correspondence between eigenvalue-eigenvector pairs
of PS3 and linearly polymorphic functions (= projective structures [1]) on Riemann
surfaces, which can be effectively calculated in terms of R3. This result enables us
to find explicit geometric representations for eigenvalue-eigenvector pairs of (1). As
a by-product, a localization of the spectrum of the PS3 equations is obtained as a
consequence of constraints on the monodromy of projective structures.

In the numerical solution of boundary-value problems for the Laplace equation
one uses the method of domain partitioning: the domain Ω in which the solution
is sought is partitioned into smaller subdomains by artificial inner boundaries. At
these artificial boundaries one sets arbitrary Dirichlet data and solves the resulting
boundary-value problems in the subdomains. Of course, the solutions do not com-
bine together into a solution of the original problem because the normal derivatives
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of the solutions at the inner boundaries make jumps. At the second step of the
procedure one sets new boundary conditions depending on the discrepancy of the
normal derivatives of the solutions obtained at the first step. The procedure is then
repeated until the jumps of the normal derivatives of the solutions become small.
For the proof of convergence and for the optimization of this iterative procedure in
concrete cases one requires information about the spectrum of the problem below.

Figure 1. (a) Partitioning of the solution domain; (b) change of variable R : I → I

Let Γ be a smooth arc partitioning a plane domain Ω into subdomains Ω1 and Ω2
(see Fig. 1(a)). Consider the eigenvalue problem

∆U1 = 0 in Ω1; U1 = 0 at ∂Ω1 \ Γ;
∆U2 = 0 in Ω2; U2 = 0 at ∂Ω2 \ Γ;
U1 = U2 at Γ;

− λ
∂U1

∂n
=

∂U2

∂n
at Γ;

(2)

here ∆ is the Laplace operator , λ is the spectral parameter , and n is the normal to Γ.
The same spectral problem arises in the analysis of the stability of the free interface
between two fluids (water–oil) when one of them is displaced in a porous medium
(sand). Similar problems with spectral parameter in the boundary conditions for
one domain were considered by Poincaré and Steklov about a century ago.

The traces of eigenfunctions of (2) at the inner boundary Γ satisfy a certain
Poincaré–Steklov equation (1). For if the normal derivatives at Γ of the harmonic
functions U1 and U2 are proportional with coefficient −λ, then the tangential (to Γ)
derivatives of the conjugate harmonic functions V1 and V2 are also related by the
coefficient −λ. Integrating along Γ we obtain

λV1(y) + V2(y) = const, y ∈ Γ. (3)

If the domain Ωk (k = 1, 2) is a half-plane, then the boundary values of the Vk are
the Hilbert transforms of the boundary values of the Uk. In the case of arbitrary
(simply connected) domains Ω1 and Ω2 one can consider their conformal maps ω1
and ω2 onto the upper half-plane normalized by the conditions ωk(Γ) = I, k = 1, 2.
Equation (3) can now be written as follows:

−λ

π
V.p.

∫
I

U1(ω
−1
1 t)

t− ω1y
dt− 1

π
V.p.

∫
I

U2(ω
−1
2 t′)

t′ − ω2y
dt′ = const, y ∈ Γ.
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Introducing the new notation

x := ω1y ∈ I;

R := ω2 ◦ ω−11 : I → Γ→ I;

u(t) := U1(ω
−1
1 t)

and making the change of variable t′ = R(t) in the second integral we arrive at the
Poincaré–Steklov equation (1). We point out that the function R(x) is decreasing
in this case.

The boundary-value problem (2) in the Sobolev space W 1
2 has been considered

in [2]–[4]. It is shown in [2] that the spectrum of this problem is concentrated on
the positive semi-axis; its upper and lower bounds are also found in that paper and
a model problem is solved by separation of variables. In [4] this author investigated
the case of a smooth arc Γ whose tangent at each end-point of Γ is the bisector of
the angle between the one-sided tangents to the boundary ∂Ω. Under the above
assumptions the spectrum of (2) is discrete; it has a unique accumulation point
λ = 1; the quantity

∑
λ∈Sp |λ− 1|2 is finite and admits an effective estimate; and

the traces at Γ of the eigenfunctions of the problem make up an orthogonal basis in

the Sobolev space W̃
1/2
2 (Γ). By contrast, if Γ is not smooth or the tangent to Γ is

not a bisector at some end-point, then there exists an interval filled with continuous
spectrum, which can be explicitly calculated [3].

Attempts to solve the PS integral equation in closed form for concrete analytic
functions R(t) [5] have led to the discovery of a close connection between equations
with rational parameter Rn and the classical problem posed by Riemann [6], [7]: find
a collection of n analytic functions on the Riemann sphere with punctures a1, . . . , ap,
with at most power growth in the neighbourhood of the points ak such that on going
around each of the punctures they undergo a prescribed linear substitution with
constant coefficients.

The idea of the replacement of the PS equation by the Riemannmonodromy prob-
lem is that in principle there arises the opportunity to reduce the spectral problem
for an integral equation to a finite system of transcendental equations. These equa-
tions connect the so-called accessory parameters and the position of the ‘dummy
poles’ of a Fuchsian ODE of order n with its monodromy [6]. This approach enables
one to find effective representations and, in particular, explicit formulae [5], [8] for
eigenvalue-eigenvector pairs of the integral equation.

This paper is organized as follows: in the next section we discuss in detail the
connections existing between the PS equation with rational parameter R and the
Riemann problem. In § 3 we find the monodromies corresponding to various ratio-
nal functions R3 of degree 3. These monodromies are always locally finite, so that
the solution W of the Riemann problems becomes analytic when lifted onto the
compact Riemann surface M(R3) selected in § 4. In § 5 we observe that the mono-
dromy matrices in our problem are (pseudo-)orthogonal and therefore the solution
W ranges in a (possibly degenerate) quadric in C3. A non-degenerate projective
quadric is isomorphic to CP1 ×CP1, therefore a solution of the monodromy prob-
lem defines a pair of multivalued meromorphic functions p+ and p− on M(R3).
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These functions turn out to be linearly polymorphic, that is, they transform
linear fractionally as the independent variable proceeds along cycles on M.
Linearly polymorphic functions have a geometric representation as so-called
membranes; this goes back to Klein’s work and describes in effect the eigenvalue-
eigenvector pairs of the PS3 integral equation. In the last section we find bounds
for the spectrum of the PS3 equation using the fact that the monodromy of the
projective structure is not unitary.

§ 2. PSnPSnPSn equations and the Riemann monodromy problem

We shall seek Hölder solutions u of the PSn equation in which R = Rn is a
rational function of degree n defining a non-singular1 change of variable on [−1, 1],
that is,

d

dt
Rn(t) 	= 0, t ∈ [−1, 1]. (4)

For fixed x ∈ I we expand the kernel of the second integral in (1) in a sum of
elementary fractions:

Ṙn(t)

Rn(t)− Rn(x)
=

n∑
k=1

1

t− zk(x)
− Q̇(t)

Q(t)
, (5)

whereQ(t) is the denominator of the functionRn(t) represented as a non-cancellable
ratio of polynomials; z1(x) = x, z2(x), . . . , zn(x) are all the solutions of the equation
Rn(zk) = Rn(x) (including the multiple ones and the one equal to∞). This expan-
sion abounds with Cauchy kernels, which allows us to write integral equation (1)
in terms of the Cauchy-type integral

Φ(x) :=

∫
I

u(t)

t− x
dt+ const′, x ∈ Ĉ \ I, (6)

so that the solution u(t) can be subsequently recovered by the Sokhotskǐı–Plemelj
formula:

u(t) = (2πi)−1[Φ(t+ i0) −Φ(t − i0)], t ∈ I. (7)

The constant const′, which we set here to be

const′ :=
1

λ− n

[∫
I

u(t)Q̇(t)

Q(t)
dt− const

]
, (8)

is added to compensate for the constants arising in the substitution of (6) in (1).
In this way we prove the following result.

Lemma 1 [8]. For λ 	= 1, n the transformations (6) and (7) bring about a one-to-
one correspondence between eigenvalue-eigenvector pairs (λ, u(t)) of the PSn equa-

tions and the holomorphic (in Ĉ \ I) non-trivial solutions Φ(x) of the functional

1Non-singularity condition (4) means that Γ satisfies the above-stated assumptions, which
ensures that the problem (2) has a discrete spectrum.
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equation

Φ+(x) + Φ−(x) = δ

n∑
k=2

Φ(zk(x)), x ∈ I, (9)

δ =
2

λ− 1
, (10)

with boundary values Φ±(x) := Φ(x± i0) satisfying the Hölder condition at I.

2.1. Motivation for introduction of monodromy. Functional equation (9)
enables one to find the maximal domain of holomorphy of the function Φ(x), which
is originally defined in the complement of the cut I. In fact, non-singularity condi-
tion (4) means that Rn(x) is univalent in some neighbourhood U ⊃ I. If x = z1(x)
is a point in this neighbourhood, then the other points z2(x), . . . , zn(x) lie outside
U, that is, in the holomorphy domain of Φ. Hence the right-hand side of (9) is a
holomorphic function of x in U (although some terms in this sum may have branch
points in U, the sum as a whole is holomorphic). Now, the equality

Φ+(x) = −Φ−(x) + δ

n∑
k=2

Φ(zk(x))

defines an analytic continuation of Φ+ downwards, across the cut. In particular, the
analytic continuation of the germ of Φ± across the cut, along a path from one bank
of the cut to the other bank, gives us Φ∓. In other words in a small neighbourhood
of I the function Φ is holomorphic on the Riemann surface of

√
1− x2.

To investigate the global domain of holomorphy of Φ(x) it is useful to consider
the (only locally defined) vector W (x) := (Φ(z1(x)),Φ(z2(x)), . . . ,Φ(zn(x)))

t. It
may fail to be analytic for two reasons: (1) at points x ∈ R−1n (±1) the variable
zk(x) corresponding to some component of the vector W takes one of the values ±1,
which are the branch points of Φ, or (2) at a branch point of one of the algebraic
functions zk(x) the corresponding component of the vector also branches. On going
around points of the first type one of the components of the vector is transformed —
in accordance with (9) — into a linear combination of the components; for instance,
if x = ±1, then W1 is replaced by −W1 + δ

∑n
j=2Wj. The remaining components

may rearrange at worst. On going around points of the second type we arrive at
a vector with rearranged components. Thus, the vector W constructed from a
solution of the PSn integral equation solves some Riemann monodromy problem.

2.2. Monodromy of PSnPSnPSn equation. Our first aim is to find the monodromy T
corresponding to the Poincaré–Steklov equation of degree n. It can be calculated
as a modification of the monodromy T∗ of the n-sheeted cover Rn(x) : CP1 → CP1.

Let a1, . . . , ap be the critical values of Rn; they can include the points ±1, which
require special attention (see Fig. 2(a)) because they are the projections of the
ramification points of Φ. We define both monodromies on the punctured sphere
Y := CP1 \ {a1, . . . , ap,−1, 1}. The cover of the base Y by the space X := R−1n (Y)
is non-ramified, therefore one can define in the standard manner [9] a represen-
tation T∗ from π1(Y) into the symmetric group of degree n (the monodromy of
the cover). Namely, let y0 ∈ Y be the base point of the fundamental group,
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Figure 2. (a) Branch points of the cover Rn; (b) selection of the deformation of the
cut I

x1, x2, . . . , xn the points in X lying over it, and let r ⊂ Y be a loop with initial
point y0. Then there exists a unique permutation matrix T∗ such that

T∗([r]) · (x1, . . . , xn)t := (x1 · r, x2 · r, . . . , xn · r)t. (11)

Here the path r on the base acts on a point x in the covering space if x projects onto
the initial point of r; we denote by x · r the end-point of the lift of r to the covering
space with initial point x. This action is associative: (x · r1) · r2 = x · (r1 · r2). The
group property of the map T∗ is ensured by the following result.

Lemma 2 [8]. Let s be a path and r a loop in Y, both with initial point y0. Then

T∗([r])(x1 · s, x2 · s, . . . , xn · s)t = (x1 · rs, x2 · rs, . . . , xn · rs)t. (12)

The monodromy T : π1(Y)→ GLn(C) depends on the spectral parameter λ. For
its calculation we consider a simple arc D from the puncture −1 to the puncture 1
that lies entirely in the neighbourhood Rn(U) of the interval I and avoids the
punctures of Y. We take for D the interval I in the case when it does not contain
critical values of Rn, or a small deformation of it otherwise (see Fig. 2). We fix a
‘lasso’ d encircling one of the points ±1 and intersecting D once — for definiteness,
from the right to the left. Then the following result distinguishes a point in the set
{x1, . . . , xn} := R−1n (y0).

Lemma 3 [8]. The inverse image R−1n (y0) contains a unique point x1 such that
the lift to X of the loop d starting at this point is a lasso encircling one of the
points ±1.

Having fixed the cut D and the loop d intersecting it at a single point we obtain
a decomposition of the fundamental group into free generators:

π1(Y, y0) = 〈π1(Y \D, y0), [d]|∅〉 . (13)

We define the restrictions of the representation T to these generators:

T([d]) := DT∗([d]) = T∗([d])D; T([r]) := T∗([r]), [r] ∈ π1(Y \D, y0), (14)
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where

D :=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−1
... δ δ . . . δ

. . . . . . . . . . . . . . . . . .
... 1
... 1
...

. . .
... 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∈ GLn(C); (15)

we indicate only the entries of the matrix that are distinct from zero. The matrixD
commutes with each permutation matrix fixing the first element and, in particular,
with T∗([d]), as follows by Lemma 3. The square of D is the identity matrix.

Figure 3. (a) Decomposition of the lasso sd′s−1 into generators; (b) lasso r′ and its
decomposition into generators

2.3. Ambiguity in definition of monodromy. We show below that the freedom
in our choice of the cut D, the ‘lasso’ d, the base point y0, and the numbering of
the covering points x2, x3, . . . , xn results — at worst — in the conjugation of the
representation T by a permutation matrix.

For a fixed cut D we consider two suitable collections of a lasso, a base point,
and points covering the base point: {d; y0; x1, . . . , xn} and {d′; y′0; x′1, . . . , x′n}. We
assume that the points x1 and x′1 are the ones described by Lemma 3. The following
result relates the pairs of monodromies T∗, T

′
∗ and T, T′ corresponding to these

collections.

Lemma 4. Let s be a path from y0 to y′0 disjoint from D. LetK be the permutation
matrix such that

K · (x1 · s, x2 · s, . . . , xn · s)t := (x′1, . . . , x
′
n)
t.

Then the monodromies corresponding to distinct collections are conjugate:

T′∗([s
−1rs]) = KT∗([r])K

−1,

T′([s−1rs]) = KT([r])K−1,
[r] ∈ π1(Y, y0). (16)
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Proof. For the monodromy of the covering we have the chain of equalities

T′∗([s
−1rs])(x′1, . . . , x

′
n)
t := (x′1 · s−1rs, x′2 · s−1rs . . . , x′n · s−1rs)t

= K(x1 · rs, x2 · rs, . . . , xn · rs)t

= KT∗([r])K
−1(x′1, . . . , x

′
n)
t.

We verify the second equality in (16), which connects T and T′, for the free gen-
erators (13). It has already been proved for the subgroup π1(Y \ D, y0) and it
remains to calculate T′([s−1ds]). We factor the loop sd′s−1 in a product of the
generators (13):

sd′s−1 = rdt, [r], [t] ∈ π1(Y \D, y0).

The construction of the loops r and t is clear from Fig. 3(a). We note the following
equalities, which hold by the construction of the loops:

x1 · r−1s = x′1, x1 · ts = x′1. (17)

We have the following calculation:

T′([s−1ds]) = T′([s−1r−1s] · [d′] · [s−1t−1s])
:=KT∗([r

−1])K−1 ·D ·KT∗([rdt])K−1 ·KT∗([t−1])K−1

(
)
= KDT∗([d])K

−1 =: KT([d])K−1.

In the equality marked by (�) we interchanged the factors T∗([r
−1])K−1 and D

because the permutation corresponding to the former leaves the first element fixed:

T∗([r
−1])K−1 · (x′1, . . . , x′n)t = T∗([r−1]) · (x1 · s, . . . , xn · s)t

= (x1 · r−1s, . . . , xn · r−1s)t
(17)
= (x′1, ∗, . . . , ∗)t.

We now study the influence of variations of the cut D on the monodromyT. For
two cuts, D and D′, we select the same base point y0, the lasso d, and the points
x1, . . . , xn ∈ R−1n (y0). This gives us monodromies T and T′.

Lemma 5. The monodromies T and T′ are the same.

Proof. We consider an elementary modificationD→ D′ of the cut: the replacement
of the left detour of the puncture ak ∈ I by the right one (see Fig. 3(b)). An
arbitrary modification of the cut is a composite of these elementary modifications.

Consider now a lasso r′ encircling the point ak and disjoint from D′. We have
the following decomposition of the fundamental group into (free) generators:

π1(Y) = 〈π1(Y \D) ∩ π1(Y \D′), [d], [r′]|∅〉 .

For the first two generators the equality T = T′ is a direct consequence of the
definition. To verify that T([r′]) = T′([r′]) we factor [r′] in a product of the
generators (13):

r′ = td−1rdt−1, [r], [t] ∈ π1(Y \D).
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The constructions of the loop t and the lasso r are clear from Fig. 3(b); in particular,
we point out the equality

x1 · r = x1. (18)

We have the following equalities:

T([r′]) := T∗([td
−1])DT∗([r])DT∗([dt

−1])

(
)
= T∗([td

−1rdt−1]) = T∗([r
′]) =: T′([r′]).

In the equality (�) we use here the interchangeability of D and T∗([r]), which
follows from (18), and also the relation D =D−1.

2.4. Connection between the integral equality and the Riemann prob-
lem. The following result holds for the above-defined monodromy T.

Theorem 1 [8]. For λ /∈ {1, n} the eigenvalue-eigenvector pairs (λ, u(t)) of PSn
equation (1) are in one-to-one correspondence with non-trivial solutions W of the
Riemann problem with monodromy T defined in (14) and (15), these solutions being
analytic on Y and bounded in the neighbourhood of the punctures ±1, a1, . . . , ap; here
δ is as in (10).

Scheme of the proof. (1) For a fixed ‘eigenpair’ (λ, u(t)) of the PSn equation we
consider a solution W of the Riemann monodromy problem. It is not single-valued
on the punctured sphere Y and can be defined in this way only on its universal

cover Ỹ. Let ỹ0 ∈ Ỹ be a point over the base point y0 ∈ Y. Then points of the
universal cover have the form ỹ = ỹ0 · s, where s ⊂ Y is some path.

For points ỹ ∈ Ỹ with projections lying outside the cut D we define the vector W
by the formula

W (ỹ0 · s) := T([r])T∗−1([r])
(
Φ(x1 · s),Φ(x2 · s), . . . ,Φ(xn · s)

)t
, (19)

where Φ is the solution of functional equation (9) corresponding to the ‘eigenpair’
(λ, u(t)), r := s · t−1 is a loop, and the path t ⊂ Y is arbitrary but disjoint from D.
This definition does not depend on one’s choice of a path t completing s to a loop.

It turns out that the vector W has the same boundary values from the left and

from the right on the components of the inverse image of D in Ỹ in view of the
fact that Φ satisfies (9). Hence W extends to a holomorphic vector-valued function
on the entire universal cover. Covering transformations multiply W by constant
matrices:

W ([r] · ỹ) = W (ỹ0 · r · s) = T([r])W (ỹ), [r] ∈ π1(Y, y0), ỹ := ỹ0 · s, s ⊂ Y.
(20)

(2) Conversely, let W be the solution of the Riemann problem defined on the uni-

versal cover Ỹ. On the sphere with n cuts X \R−1n (D) we consider the holomorphic
function

Φ(x) = Φ(xk · s) := Wk(ỹ0 · s), k = 1, . . . , n; (21)

here the path s ⊂ Y is disjoint from D and xk ∈ R−1n (y0). This definition is also
independent of our choice of the path s and the index k.
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On the component R−1n (D) that is a small deformation of I the function Φ turns
out to satisfy (9), while its jumps at the other n − 1 cuts are equal to zero. The
analytic continuation of Φ is holomorphic on CP1 \ I and satisfies (9) at the points
in I. By Lemma 1 the function

u(t) = (2πi)−1[Φ(t+ i0) −Φ(t − i0)], t ∈ I, (22)

and the quantity λ := 1 + 2/δ make up an eigenvector-eigenvalue pair of the PSn
equation.

(3) The correspondences in parts (1) and (2) of the proof are reciprocal.

In our derivation of the Poincaré–Steklov equation it is obvious that the change
of variable R(t) is not uniquely defined by the domains in which one poses the
differential problem (2); however, it is unique to within taking the composite map
with two linear fractional transformations of the kind

Λα(t) :=
t + α

αt+ 1
, α ∈ (−1, 1), (23)

preserving the interval [−1, 1]. Of course, such transformations cannot influence
the spectrum of the integral transform. This is also obvious from Theorem 1.

Corollary. Let (λ, u(t)) be an eigenvalue-eigenvector pair of the PSn equation with
rational function Rn. Then (λ, u ◦ Λα(t)) is an eigenvalue-eigenvector pair of the
equation with parameter Λα′ ◦Rn ◦ Λα, where α, α′ ∈ (−1, 1).

In what follows we shall not distinguish between PS equations with parameters
related by transformations

Rn→ Λα′ ◦Rn ◦ Λα, α, α′ ∈ (−1, 1). (24)

In particular, the space of PS3 equations considered in this paper and of the corre-
sponding monodromies has real dimension 3.

§ 3. Calculation of monodromy for PS3 equation

We now show the way to an effective calculation of the representation T in § 2.2
in terms of the coefficients of the functionRn for n = 3. To describe the monodromy
more geometrically we shall use a graph equipped with matrices the edges of which
connect boundary components of the base space. We draw several simple disjoint
oriented curves D1, D2, . . . , Dk connecting boundary points (punctures) of Y and
equip them with matricesT(D1),T(D2), . . . ,T(Dk) fromGLn(C). By definition we
set the monodromy of a path r intersecting some cuts Di1 , Di2 , . . . , Dis transversally
one after another to be

T([r]) := Tε1(Di1)T
ε2(Di2) · · ·Tεs(Dis ),

where εk = 1 if r transverses (locally) the cut Dik from right to left and εk = −1
if it transverses the cut in the reverse direction.

We now introduce our notation for 3× 3 permutation matrices:

D1 · (x1, x2, x3)t := (x1, x3, x2)
t,

D2 · (x1, x2, x3)t := (x3, x2, x1)
t,

D3 · (x1, x2, x3)t := (x2, x1, x3)
t,

D0 · (x1, x2, x3)t := (x3, x1, x2)
t.

(25)
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3.1. Typical covers. By the Riemann–Hurwitz formula the cover R3 has in the
general case four simple branch points a1, a2, a3, and a4, so that lying over each
point ak are a double point bk and a simple point ck, k = 1, . . . , 4. Finding these
12 points requires a solution of an equation of degree 4. Below we classify the
functions R3 in accordance with the position of the branch points with respect to
the real axis. This classification will show that one can always connect the branch

points by two disjoint cuts D1 =
�

a1a3 and D2 =
�

a2a4 such that the monodromy of
the cover R3 is trivial over the doubly connected domain O := CP1 \{D1∪D2}. We
can assume without loss of generality that the cut D lies in O; incidentally, each of
its end-points can be a branch point of R3 (see Fig. 4(a)).

Figure 4. (a) Cuts on Y; (b) attachment of components Ok and three lassos

Simple combinatorial arguments show that the three components of R−13 (O) are
a (topological) annulus O1 and two (topological) discs O2 and O3 with slits glued
as in Fig. 4(b).

Assume that the base point y0 of the fundamental group π1(Y) lies in O. We
number the points lying over it so that x1 ∈ O1, x2 ∈ O3, and x3 ∈ O2. A loop
disjoint from the cuts D1, D2, and D has the trivial monodromy (see Fig. 4(b)).
Loops intersecting once one of the cuts Dk, k = 1, 2, have monodromy Dk+1 (their
orientation at the intersection point is inessential because D2k+1 = 1). Finally,
the monodromy of a loop intersecting the cut D once depends on the component
of R−13 (O) containing R−13 (D) ∩ U, a small deformation of the interval I. Taking
for d the projection of one of the lassos in Fig. 4(b) we see that this monodromy
is DkDDk if the corresponding component is Ok, k = 1, 2, 3. This proves the
following result.

Lemma 6. For a generic function R3 the monodromy T is determined up to conju-

gation by the disjoint cuts D1 =
�

a1a3, D2 =
�

a2a4, and D and the matrices D2, D3,
and DkDDk assigned to them, where k is such that Ok ⊃ {R−13 (D) ∩ U}.

In the remaining part of this section we partition the space of PS3 equations into
distinctive blocks and solve two problems in each of them: we determine the config-
uration of the cuts D, D1, D2 and the component Ok containing (the deformation
of) I, which gives us the monodromy T.

3.1.1. Branch points a1, a2, a3, a4a1, a2, a3, a4a1, a2, a3, a4 are real. Note that the points on the extended

real axis R̂ that are distinct from a1, a2, a3, a4 can be of two types: the points y of
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type 3:0 have three points in the inverse image R−13 (y), while the inverse images of
points of type 1:2 contain one real point and a pair of complex conjugate ones. The
type of a point is locally constant and changes on passing over a branch point. In our

case there exist precisely two subintervals of R̂ consisting of points of type 1:2; we
denote them by D1 := (a1, a3) and D2 := (a2, a4) (see Fig. 5(a)). The monodromy
of the cover is trivial in the complement of these intervals. To prove thatT∗ is trivial
in CP1 \ {D1 ∪D2} we use the following result, which constrains the monodromy
of the ‘real cover’ R3.

Lemma 7. Let y0 be a real base point. If one associates with it the 3×3 permutation
matrix K such that

K · (x1, x2, x3)t := (x1, x2, x3)
t,

then the following relation holds for the monodromies of complex conjugate loops r
and r:

T∗([r]) = KT∗([r])K. (26)

Proof. We have the chain of equalities

T∗([r])(x1, x2, x3)
t := (x1 · r, x2 · r, x3 · r)t = (x1 · r, x2 · r, x3 · r)

t

= K(x1 · r, x2 · r, x3 · r)
t
= KT∗([r])K(x1, x2, x3)

t.

Consider a loop r with initial point y0 of type 3:0 that is symmetric relative to R̂
and goes around the interval (a1, a3) (see Fig. 5(a)). This loop encircles two simple
branch points a1 and a3, therefore the permutation T∗([r]) is a product of two
transpositions, that is, it is either the identity or a cyclic permutation of order 3.
The second case is impossible by Lemma 7, which asserts that T∗([r

−1]) = T∗([r])
(26)
= T∗([r]).

Figure 5. All branch points, a1, a2, a3, and a4, are real

To find the monodromy T it suffices by Lemma 6 to find the intersection sets

of the extended real axis R̂ and the components Ok, k = 1, 2, 3. The extended real
axis in the covering sphere is partitioned into eight intervals by the eight points
bk, ck, k = 1, . . . , 4, lying over the branch points. Two of these intervals cover the
cuts (a1, a3) and (a2, a4) and the remaining six cover the complement of these cuts,
which consists of the points of type 3:0. The adjacency relations between these
eight intervals are uniquely recovered on the basis of the following observation.
Two intervals separated by a point bk cover the same interval with end-point ak
and consisting of 3:0 points. Two intervals separated by ck cover the two distinct
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intervals with end-point ak. In particular, the eight points in the inverse images
of the branch points lie on R̂ in the following order up to direction (see Fig. 5(b)):
b1, c4, c2, b3, b2, c3, c1, b4. Thus, we obtain four well-defined disjoint intervals (b1, b3),
(b3, b2), (b2, b4), and (b4, b1), which define the required partitioning of the extended
real axis of the covering sphere:

O1 ∩ R̂ = [b3, b2] ∪ [b4, b1], O2 ∩ R̂ = [b1, b3], O3 ∩ R̂ = [b2, b4].

All these arguments prove the following result.

Theorem 2.1.1. In the case of four real branch points a1, a2, a3, a4 the mono-
dromy T is defined by the three intervals D1 := (a1, a3), D2 := (a2, a4), and
D := (−1, 1) equipped with matrices in accordance with the following table.

Condition T(D1) T(D2) T(D) Comment

I ⊂ (b1, b3) D2 D1 D +

I ⊂ (b2, b4) D1 D3 D +

I ⊂ (b3, b2) ∪ (b4, b1) D3 D2 D

Remark. Two intervals, D and Dk, k = 1, 2, corresponding to a line in the table
marked by ‘+’ may intersect. In that case one must slightly deform them — no
matter how — to avoid the intersection. Another solution is to replace the two
intersecting intervals by three: their intersection and the two intervals making up
the symmetric difference. One assigns to the intersection the product of matrices
associated with the intersecting intervals (taken in an arbitrary order because these
matrices are D1 and D), and to the remaining parts the matrices corresponding to
the full intervals.

3.1.2. Points a1a1a1, a3a3a3 are real and a2a2a2, a4a4a4 are complex conjugate. If there
exist two branch points in the extended real axis, then they are end-points of an
interval of 1:2-points. We take this interval for D1 := (a1, a3). For the second cut

D2 :=
�

a2a4 we take an arc that is symmetric relative to R̂, avoids I, and connects
the complex conjugate branch points. In the general case there exist two non-
equivalent ways to select such an arc. Changing our notation for the end-points
of the first interval if necessary we can assume that D2 intersects the real axis
between a1 and I (see Fig. 6(a)).

Figure 6. Points a1, a3 are real and a2, a4 are complex conjugate
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Repeating word for word the paragraph following Lemma 7 we can prove that the
monodromy of the cover is trivial over the resulting doubly connected domain O.
Lifting the interval (a1, a3) and its complement (a3, a1), which consists of 3:0-points,
to the covering sphere we see that the inverse images of the real branch points a1
and a3 lie on R̂ in the following order (up to direction): b1, b3, c1, c3. Thus, we have
the four well-defined disjoint intervals (b1, b3), (b3, c1), (c1, c3), and (c3, b1) of the
extended real axis. We use this notation in the statement of the following result
(see Fig. 6(b)).

Theorem 2.1.2. In the case of two real branch points a1 and a3 and two com-
plex conjugate ones, a2 and a4, the monodromy T is defined by the three cuts

D1 = (a1, a3), D2 =
�

a2a4, and D := (−1, 1) equipped with matrices in accordance
with the following table.

Condition T(D1) T(D2) T(D) Comment

I ⊂ (b1, b3) D2 D1 D

I ∩ (c1, c3) 	= ∅ D1 D3 D +

I ⊂ (c3, b1) D1 D3 D

I ⊂ (b3, c1) D3 D2 D

3.1.3. Two pairs of conjugate branch points; R̂̂R̂R has type 1:2. In the absence
of branch points on the real axis all its points have the same type, which is 1:2 in
the present case. We take for the cuts the two complex conjugate straight line
intervals D1 := (a1, a3) and D2 := (a2, a4) lying entirely in the upper and lower
half-planes, respectively (see Fig. 7(a)).

Figure 7. (a) Four complex branch points; (b) R−13 (R̂) consists of three components

Let r be the real axis. As before, T∗([r]) is the identity or a cyclic permutation
of order 3. The latter is ruled out by Lemma 7, which asserts that we have T∗([r])

= T∗([r])
(26)
= KT∗([r])K = T−1∗ ([r]), where K is a second-order permutation. For

the configuration in question we always have I ⊂ O1 (see Fig. 7(b)), therefore the
following result holds.

Theorem 2.1.3. If the cover R3 has two pairs of conjugate branch points a1 = a2
and a3 = a4 and the real axis consists of points of type 1:2, then the monodromy T
is defined by the three disjoint straight line cuts D1 := (a1, a3), D2 := (a2, a4), and
D := (−1, 1) equipped with the matrices D3, D2, and D, respectively.
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3.1.4. Two pairs of complex conjugate branch points; R̂̂R̂R has type 3:0. In
the remaining case all points in the extended real axis have type 3:0. Joining the

complex conjugate branch points by cuts D1 :=
�

a1a3 and D2 :=
�

a2a4 avoiding I as

in Fig. 8(a) and symmetric relative to R̂ we obtain a doubly connected domain O
with trivial monodromy of the cover R3. For the proof consider a symmetric loop r
with homotopy class generating π1(O). This loop encircles a pair of branch points
of R3 and r ∼ r−1, so that the monodromy along r is trivial (see the paragraph
following the proof of Lemma 7).

We now find the partitioning of the extended real axis by the components Oj .

We denote the points in the inverse image of the intersection of Dk, k = 1, 2, and R̂
by {ek1, ek2, ek3}, where ek1 lies on the component of the inverse image of the cut that
connects ck and ck+2. Lifting the extended real axis to the covering sphere one
interval after another we see that the points e∗∗ with superscripts 1 and 2 alternate,
while the interval between successive points with subscript 1 contains two points
with other subscripts. We shall assume without loss of generality that these points
lie on the extended axis in the following order: e11, e

2
2, e
1
3, e
2
1, e
1
2, e
2
3, so that we have

four well-defined disjoint intervals (e13, e
1
2), (e12, e

2
3), (e23, e

2
2), and (e22, e

1
3). These

intervals make up the required partitioning (see Fig. 8(b)):

O1 ∩ R̂ = [e12, e
2
3] ∪ [e22, e

1
3], O2 ∩ R̂ = [e13, e

1
2], O3 ∩ R̂ = [e23, e

2
2].

All these arguments prove the following result.

Theorem 2.1.4. If the cover R3 has two pairs of complex conjugate branch points
a1 = a3 and a2 = a4 and the real axis consists of points of type 3:0, then the

monodromy is defined by the three disjoint cuts D1 :=
�

a1a3, D2 :=
�

a2a4, and

D := (−1, 1), that are symmetric with respect to R̂ and are equipped with matrices
in accordance with the following table.

Condition T(D1) T(D2) T(D)

I ⊂ (e13, e
1
2) D2 D1 D

I ⊂ (e23, e
2
2) D1 D3 D

I ⊂ (e12, e
2
3) ∪ (e22, e

1
3) D3 D2 D

Figure 8. (a) Four complex branch points; (b) R−13 (R̂) consists of one component
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3.2. Multiplicity-one degeneracy of the cover. By a multiplicity-one degen-
eracy we mean the coalescence of two simple branch points of a cover into one
‘complex’ branch point. All results in this section can be obtained by formally
setting a1 = a4 in § 3.1.

Let a2 and a3 be simple branch points of R3 and let a1 be a ‘complex’ branch
point, that is, there is a triple point b1 over it. We connect the three branch

points by simple disjoint arcs D1 :=
�

a1a3 and D2 :=
�

a2a1 avoiding the cut D (see
Fig. 9(a)). The three components of the inverse image of the simply connected
domain O := CP1 \ {D1 ∪D2} are glued as in Fig. 9(b). The following result is a
complete analogue of Lemma 6.

Figure 9. Simple degeneracy of the cover R3: (a) cuts of the base Y; (b) gluing the
components Ok

Lemma 8. Up to conjugation, in the case of a multiplicity-one degeneracy of

the cover R3 the monodromy T is defined by the three disjoint cuts D1 :=
�

a1a3,

D2 :=
�

a2a1, and D equipped with the matrices D2, D3, and DkDDk, respectively,
where k is such that Ok ⊃ {R−13 (D) ∩ U}.

The blocks in the space of PS3 equations defined below have real dimension 2;
they lie at the boundary of the three-dimensional blocks considered in § 3.1.
3.2.1. The simple branch points a2a2a2 and a3a3a3 are real. This is the limit case
of § 3.1.1. The extended real axis of the base sphere contains two intervals with
end-point a1 consisting of 1:2-points. We set these intervals to be the cuts (a1, a3)

and (a2, a1). The points over the branch points lie on the ‘circle’ R̂ in the following
order: b1, c2, b3, b2, c3. They define a partitioning of this circle by the components
Ok:

O1 ∩ R̂ = [b3, b2], O2 ∩ R̂ = [b1, b3], O3 ∩ R̂ = [b2, b1].

The closed intervals here are the closures of the disjoint open intervals (b1, b2),
(b2, b3), and (b3, b1) from the partitioning of the extended real axis by the points
b1, b2, b3. This proves the following result.

Theorem 2.2.1. In the case of simple real branch points a2 and a3 the mono-
dromy T is defined by the three intervals D1 := (a1, a3), D2 := (a2, a1), and D :=
(−1, 1) equipped with matrices in accordance with the following table.

Condition T(D1) T(D2) T(D) Comment

I ⊂ (b1, b3) D2 D1 D +

I ⊂ (b2, b1) D1 D3 D +

I ⊂ (b2, b3) D3 D2 D



PS3 integral equations and projective structures on Riemann surfaces 495

3.2.2. The simple branch points a2a2a2 and a3a3a3 are complex conjugate. This
is the limit case of the configuration in § 3.1.3. We join a1 to a2 and a3 by complex
conjugate straight line cuts. The cut I of the covering Riemann sphere lies in the
component O1, therefore we have the following result.

Theorem 2.2.3. If the cover R3 has a pair of complex conjugate simple branch
points a2 = a3, then the monodromy T is defined by the three disjoint straight-line
cuts D1 := (a1, a3), D2 := (a2, a1), and D := (−1, 1) equipped with the matrices
D3, D2, and D, respectively.

3.3. Multiplicity-two degeneration of the cover. Consider now the case of
two ‘complex’ branch points a1 and a2, real or complex conjugate. We connect

these branch points by a simple arc D0 :=
�

a1a2 avoiding the cut I. We have the
following result.

Theorem 2.3. If R3 is a cover with two branch points a1 and a2, then the mono-

dromy T is defined up to conjugation by the two disjoint cuts D0 :=
�

a1a2 and
D := (−1, 1) equipped with the matrices D0 and D, respectively.

The change of the orientation of D0 corresponds to the conjugation of the rep-
resentation T by the matrix D1, therefore we can fix an arbitrary orientation on
�

a1a2.

§ 4. Monodromy problem on a Riemann surface
Each puncture a = ±1, a1, a2, a3, a4 of Y is a branch point of the solutionW (y) of

the Riemann monodromy problem. The branching order r(a) is finite and equal to
2 or 3, for the local monodromy matrix is similar to one of the matrices D, D0, D1,
D2, D3, and DD1 = D1D. It will be convenient to proceed to a monodromy prob-
lem such that its solution has no local branchings. To this end we introduce the com-
pact Riemann surface M =M(R3) with ramification of order r(a) over each punc-
ture a. For instance, in the general position case all the six punctures a are distinct,
all the orders r(a) are equal to 2, and thereforeM =

{
w2 = (y2−1)

∏4
k=1(y−ak)

}
is

a hyperelliptic surface of genus 2. Lifted toM, the solutionW (y) of the monodromy
problem in Theorem 1 becomes a holomorphic vector WM with new monodromy
TM and with additional symmetries connected with conformal motions of M.

4.1. The Riemann surface MMM. Let D1 =
�

a1a3, D2 =
�

a2a4, D =
�
−11 be the

cuts of Y defining the monodromy of T (in the case of double degeneracy of R3 we
consider the cuts D and D0). We define a representation T∗l of the fundamental
group Y into the symmetric group Sl by assigning to each cut a permutation so as
to take account of the number of punctures a and the corresponding orders r(a),
in accordance with Table 1.

The expression 2α3β in the first column of the table means that Y has α punc-
tures with r = 2 and β punctures with r = 3. The second column indicates the
order of the symmetric group. In the columns from third to sixth we list the per-
mutations corresponding to the cuts of the punctured sphere Y.

We consider now l copies of the surface Y \ {D ∪D1 ∪D2} (or — in the case of
a multiplicity-two degeneracy — of Y \ {D ∪D0}) and glue the right bank of each
cut D• on the kth sheet with the left bank of a similar cut on the sth sheet in the
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Table 1

R3 l T∗l(D•)(m1, m2, . . . , ml) g(M) dimH1s (M)

D• = D1 D• = D2 D• = D D• = D0

2630 2 (m2, m1) (m2, m1) (m2, m1) – 2 2

2530 4 (m4, m3, (m4, m3, (m2, m1, – 2 1
m2, m1) m2, m1) m4, m3)

2430 4 (m2, m1, (m4, m3, (m1, m2, – 1 0
m4, m3) m2, m1) m3, m4)

2431 6 (m2, m1, (m6, m3, (m6, m3, – 3 1
m4, m3, m2, m5, m2, m5,

m6, m5) m4, m1) m4, m1)

2331 12 (m2, m1, (m6, m3, (m7, m8, – 2 0
m4, m3, m2, m5, m9, m10,

m6, m5, m4, m1, m11, m12,

m8, m7, m12, m9, m1, m2,

m10, m9, m8, m11, m3, m4,

m12, m11) m10, m7) m5, m6)

2232 6 – – (m4, m5, (m2, m3, 2 0
m6, m1, m1, m5,

m2, m3) m6, m4)

case when T∗l takes mk to ms, k = 1, . . . , l; here D• = D,D1, D2. We denote the
resulting surface byM◦, seal the punctures inherited from Y, and obtain a compact
surface M. We depict two such surfaces in Fig. 10(a),(b). If mk is a point lying
over y0 on the kth sheet, then T∗l is the monodromy of the (regular, as we show
below) l-sheeted cover pr in the diagram

M◦
ı−−−−→ M�pr �pr

Y
ı−−−−→ CP1

. (27)

Here ı is the natural embedding.
Constructed as an l-sheeted cover of the Riemann sphere, M is not the unique

surface suitable for our aims, but it is in a certain sense the simplest one: for
instance, it has the smallest genus g(M).

4.2. Geometry of surface MMM. In the study of the monodromy we require infor-
mation on the geometry of the surface M constructed in § 4.1 and, in particular, on
the group of its conformal motions and the existence of holomorphic differentials
with a certain symmetry.

We have the following result.
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Lemma 9. (i) The cover pr in (27) is ramified of order r(a) over each puncture a
of the surface Y.

(ii) The genus of M is as indicated in the seventh column of Table 1.

(iii) Let pr∗ and ı∗ be the maps of the fundamental groups induced by the dia-
gram (27); then the subgroups pr∗π1(M◦, m1) and pr∗ ker ı∗ are normal in π1(Y, y0).
The first subgroup is the kernel of the representation T∗l, while the second lies in
the kernel of T, which enables one to define in a natural way the monodromy TM
making the following diagram commutative:

π1(M◦, m1)
ı∗−−−−→ π1(M, m1)�pr∗ �TM

π1(Y, y0)
T−−−−→ GL3(C)

. (28)

Proof. (i) We verify the lemma, for instance, in the case 2431 corresponding to the
polynomial R3 in general position. In this case there exist four punctures a with
r(a) = 2 (the free end-points of the cuts D, D1, and D2) and one puncture with
r(a) = 3 (the common end-point of D1 and D2 — see Fig. 11). Going around the
first four points corresponds to the permutations T∗6(D), T∗6(D1), and T∗6(D2),
which are formed by cycles of length 2; the fifth point corresponds to the permuta-
tion T∗6(D1)T∗6(D2), formed by cycles of length 3.

Figure 10. Surface M in cases (a) 2530; (b) 2431

(ii) We apply the Riemann–Hurwitz formula to the cover pr.

(iii) We claim that the covering group of pr is kerT∗l and it is therefore a
normal subgroup of π1(Y). Let m1 be the base point of the fundamental group of
M◦. Then the projection of π1(M◦, m1) onto π1(Y, y0) is generated by the classes of
loops r ⊂ Y such that the permutation T∗l([r]) fixes the first element. As regards
the monodromy group, the permutations in it, except for the trivial one, have no
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cycles of length 1. We demonstrate this in case 2431. We consider two permutations
commuting with the permutations in the monodromy group T∗6:

S1(m1, m2, . . . , m6) = (m3, m4, m5, m6, m1, m2),

S2(m1, m2, . . . , m6) = (m2, m1, m6, m5, m4, m3).

If K := T∗6([r]) fixes the first element, then the permutations S±11 KS
∓1
1 (= K)

fix the third and the fifth elements and the permutation S2KS
−1
2 (= K) fixes the

second, fourth, and sixth elements. Hence the permutation K is trivial.
We proceed now to the second subgroup pr∗ ker ı∗. The kernel of ı∗ is generated

by the lassos inM◦ encircling the punctures. Accordingly, the subgroup in question
is generated by the lassos in Y that encircle the punctures a and make r(a) circuits
about them. This class of generators is invariant under conjugations in π1(Y, y0)
and by part (i) of the lemma lies in the kernel of T.

4.2.1. Motions of the surface. The fundamental group π1(Y) acts in the natural

way in M and its universal cover M̃, so that M/π1(Y) = M̃/π1(Y) = CP1. For a
point m ∈M◦ this action is described by the formula

[r] ·m = [r] · (m1 · s) := m1 · rs, [r] ∈ π1(Y)/pr∗π1(M◦),

where s is the projection onto Y of a path in M◦ joining the base point m1 to the
variable point m. Since pr∗π1(M◦) is a normal subgroup of π1(Y), the right-hand
side of the formula is independent of one’s choice of the path s.

The definition of the action of π1(Y) in the universal cover M̃ is only slightly more
complicated. The embedding ı : M◦ →M generates a map of universal covers:

Ỹ = M̃◦
ı̃−−−−→ M̃� �

M◦
ı−−−−→ M

. (29)

We select in Ỹ a base point ỹ0 lying over m1, and for the points ı̃(ỹ0 · s) = m̃ ∈ M̃
with projections lying outside the punctures of M◦ we set

[r] · m̃ = [r] · ı̃(ỹ0 · s) := ı̃(ỹ0 · r · s), s ⊂ Y, [r] ∈ π1(Y)/pr∗ ker ı∗. (30)

The result of this action does not depend on our choice of s: if ı̃ glues together
points ỹ0 · s1 and ỹ0 · s2, then [s1 · s−12 ] ∈ pr∗ ker ı∗. Since pr∗ ker ı∗ is a normal
subgroup of π1(Y), the element [rs1 · (rs2)−1] also lies in pr∗ ker ı∗, and therefore ı̃
glues together the points ỹ0 · rs1 and ỹ0 · rs2.

The action of π1(Y) on the punctures of M◦ and on the points in the universal

cover M̃ lying over them is defined by continuity.

4.2.2. Even paths and symmetric differentials on MMM. We start with two
definitions. Let sign : π1(Y)→ {±1} be the representation such that

sign([r]) := detT([r]), [r] ∈ π1(Y). (31)
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We say that the classes of loops in the kernel of sign are even, while the rest are odd.
The parity of the class of a loop is equal to the parity of the number of intersections
of this loop with the cuts D,D1, and D2, provided that these intersections are
transversal.

We say that a holomorphic differential ω on M is symmetric if

ω([r] ·m) = sign([r])ω(m), m ∈M, [r] ∈ π1(Y)/pr∗π1(M◦). (32)

The sets of even loops and symmetric differentials are described by the two lemmas
below.

Figure 11. Arrangements of cuts and the generators d,d1,d2; r1, r2 ∈π1(Y, y0)

Lemma 10. The group ker sign of even loops on the surface Y is generated by the
covering group pr∗π1(M◦) and one (in cases 2530, 2431, 2430, and 2232) or both
(in case 2331) of the classes [r1] and [r2] with representatives indicated in Fig. 11.

Proof. A direct verification on the generators of the fundamental group of the
covering space shows that all loops in pr∗π1(M◦) are even. We now define the
missing generators. The classes of the three lassos d, d1, and d2 in Fig. 11 (the cases
2430 and 2232 require separate consideration, but the corresponding arguments are
similar to the ones below) and the subgroup π1(Y \ {D ∪D1 ∪D2}) generate the
entire fundamental group π1(Y, y0). The fundamental group of the sphere with
cuts lies in the covering group of pr, therefore each even element of π1(Y) has a
representation [md
] such that [m] ∈ pr∗π1(M◦), and [d
] is the product of an
even number of elements of the set {[d]±1, [d1]±1, [d2]±1}. The element [d
] can
be represented as a product of the squares of the elements [d], [d1], [d2], which
always belong to kerT∗l, and the pairwise products [dd2], [d1d2]. In case 2331 the
last two products do not belong to the kernel of T∗l; in cases 2530 and 2431 one
of these products does not belong to the kernel of T∗l; finally, in general-position
case 2630 both products are in kerT∗l. The pairwise products that do not occur
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in kerT∗l = pr∗π1(M◦) coincide up to an element of the covering group of pr with
the classes [r1] and [r2] indicated in Fig. 11.

Lemma 11. The dimension of the space H1s (M) of symmetric holomorphic differ-
entials ω on the surface M is as indicated in the last column of Table 1.

Proof. Let ω be a symmetric differential onM. Equalities (32) for even motions [r]
show that ω projects onto a holomorphic differential on the quotient of M by the
group ker sign /pr∗π1(M◦) of its even motions. However, the surface

N =M/(ker sign /pr∗π1(M◦)),

which covers CP1 in a two-sheeted way, is a Riemann sphere in cases 2430, 2331,
and 2232; a torus in cases 2530 and 2431; and it is the surface M itself in general-
position case 2630. There exist no holomorphic differentials on the sphere, only one
differential on a torus and a pair of linearly independent holomorphic differentials
on a surface of genus 2. Lifting these differentials from N to M we always obtain
symmetric differentials, because an odd motion of M results in a permutation of
sheets (= an involution) on N and in a change of sign of a holomorphic differential
on N.

If N is a torus, then the divisor (ω) of a symmetric differential is precisely the
ramification divisor of the cover M → N, that is, the support of (ω) is the pair of
points fixed by the rotation [r1] of the surface M; they are labelled by bold dots in
Fig. 10(a),(b).

4.3. Lifting the monodromy problem. The solution W (ỹ) of the Riemann
problem from Theorem 1 can be lifted to M. The resulting vector WM is analytic
on M and has monodromy TM; it also has additional symmetries related to the
motions M in the covering group of the (ramified) cover pr.

Let m̃ = ı̃(ỹ0 · s) be a point in M̃ with projection outside the punctures of M◦.
We set by definition

WM(m̃) = WM(̃ı(ỹ0 · s)) := W (ỹ0 · s), s ∈ Y. (33)

This is a consistent definition: if the map ı̃ glues together a pair of points ỹ0 ·s1 and
ỹ0 · s2 in the universal cover Ỹ, then the class [s1 · s−12 ] lies in pr∗ ker ı∗ and — by
Lemma 9(iii) — in the kernel of T, so that the vector W takes equal values at these

two points. The set of points in M̃ lying over the punctures of M◦ is discrete and
we can define WM at these points by continuity because the solution W is bounded
in the neighbourhood of the punctures of Y.

The vector WM defined in this way inherits, of course, the symmetries (20)

of W . In terms of the action of the fundamental group π1(Y) in the cover M̃ the
transformation formula of WM can be written as follows:

WM([r] · m̃) = T([r])WM(m̃), m̃ ∈ M̃, [r] ∈ π1(Y, y0). (34)

In particular, the monodromy of WM on M is TM.
All these arguments are reversible, therefore we have the following result.

Theorem 3. The eigenvalue-eigenvector pairs (λ, u(x)) of the PS3 equation for
λ /∈ {1, 3} are in one-to-one correspondence with non-trivial holomorphic vector-
valued functions WM on M(R3) possessing the symmetries (34).
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§ 5. Projective structures on M(R3)M(R3)M(R3)

A projective structure [1], [10]–[13] on a Riemann surface M is a multivalued
meromorphic function p(m̃) that transforms linear fractionally on going around
closed paths in M. The corresponding homeomorphism π1(M) → PSL2(C) is
called the monodromy of the structure. A classical example, which goes back
to Poincaré, is a Fuchsian projective structure mapping the universal cover of a
hyperbolic surface M onto the unit disc. A projective structure p(m̃) with critical
points is called a branched structure. For such a structure one can define the
branching divisor

D(p) :=
∑
m∈M

(k(p,m)− 1) ·m. (35)

Here k(p,m) is the branching index of p at a point m, and the degree degD(p) is
called the (total) branching number of the projective structure.

We show in this section that each eigenvalue-eigenvector pair (λ, u) of the PS3
integral equation is related to the existence on the surface M(R3) of a projective
structure of a special form.

5.1. Invariant of monodromy group. The key factor relating the PS3 equations
to projective structures is that the monodromy T defined by equalities (14) has a
quadratic invariant

J(W ) :=
n∑
k=1

W 2
k − δ

n∑
j<s

WjWs. (36)

For n = 3 the form J is non-degenerate if−2 	= δ 	= 1. The value of J on the solution
W (ỹ) of the Riemann problem is constant because this solution is bounded in the
neighbourhood of the punctures of Y. Hence for 0 	= λ 	= 3 the solution W either
ranges in the non-degenerate quadric {J(W ) = J0} or in the cone {J(W ) = 0}.

5.2. Geometry of quadric and cone.

5.2.1. Coordinates p±p±p± on a quadric. On a non-degenerate projective quadric
{J(W ) = J0} we introduce global coordinates p+ and p− ranging in the Riemann
sphere. Recall that a non-degenerate quadric contains two families of linear ele-
ments, which we shall conveniently denote by the signs ‘+’ and ‘−’. Distinct lines
in one family are disjoint and two lines from distinct families must intersect. For
an arbitrary point W := (W1,W2,W3)

t in the quadric we consider the pair of lines
through this point; they intersect with the plane at infinity at the points

W±(W ) = (W±
1 : W±

2 : W±
3 )t ∼


 τΣW1 ± (W2 −W3) + τ−1

τΣW2 ± (W3 −W1) + τ−1

τΣW3 ± (W1 −W2) + τ−1


 ∈ CP2,

Σ := W1 +W2 +W3, τ :=

√
δ − 1

J0
,

(37)

which lie in the non-degenerate conic at infinity

C := {(W1 : W2 : W3)t ∈ CP2 : J(W ) = 0}. (38)
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Conversely, corresponding to each pair of points W± in the conic C there is a
unique point W in the projective quadric. It lies at the intersection of the element
of the ‘+’ family passing through W+ and the element of the ‘−’ family passing
through W−. The homogeneous coordinates of W are bilinear forms of the homo-
geneous coordinates of W+ and W−, but their explicit expressions are too lengthy
and we do not present them here.

Identifying the conic C and a projective line by means of a stereographic projec-
tion we can associate each point in the projective quadric with an ordered pair of
complex ‘numbers’ p± ∈ CP1, the stereographic coordinates of the points W±. The
part of the quadric lying at infinity (= C) corresponds to the diagonal {p+ = p−}
of CP1 × CP1.

The linear transformations T preserving J form the complex group O3(J) and
act in the natural way in the conic at infinity C ∼= CP1. This action defines, up to
conjugation, a (spinor) representation in the group of linear fractional maps:

χ : O3(J)→ PSL2(C). (39)

The transformation of the coordinates p± on the quadric under the action of
T ∈ O3(J) depends on whether T preserves the ‘±’ families of linear elements
or transforms them into each other:

p±(TW ) = χ(T)p±(W ), T ∈ SO3(J),

p±(TW ) = χ(T)p∓(W ), T ∈ O3(J) \ SO3(J).
(40)

For explicit formulae of the stereographic coordinate p(W ) and the linear
fractional map χ(T) we bring J(W ) to the form J•(V ) := V1V3 − V 22 (which is
convenient for calculations) by the map W = KV with matrix

K := (3δ + 6)−1/2

∥∥∥∥∥∥
1 1 1
1 ε2 ε
1 ε ε2

∥∥∥∥∥∥ ·
∥∥∥∥∥∥
0 µ−1 0
0 0 1
1 0 0

∥∥∥∥∥∥ ,
ε := exp(2πi/3), µ :=

√
δ − 1

δ + 2
=

√
3− λ

2λ
.

(41)

The isomorphism (W1 : W2 : W3)
t ∈ C ∼= CP1 � p gives us the formulae

p(W ) :=
V2(W )

V1(W )
=

V3(W )

V2(W )
= µ

W1 +W2 +W3

W1 + ε2W2 + εW3
= µ−1

W1 + εW2 + ε2W3

W1 +W2 +W3
,
(42)

(W1 : W2 : W3)
t(p) ∼


 p2µ+ p+ µ

p2µε2 + p+ µε
p2µε+ p+ µε2


 . (43)

Fixing stereographic coordinates on the conic defines completely the homomor-
phism (39); its further properties are collected in the following lemma.
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Lemma 12. (i) The action of the (pseudo-)orthogonal group O3(J) defines a rep-
resentation χ in (39) such that

p(TW ) = χ(T)p(W ), W = (W1 : W2 : W3)
t ∈ C, T ∈ O3(J). (44)

The restriction of χ to the connected component SO3(J) is an isomorphism.
(ii) The action of O3(J) in the cone {J(W ) = 0} in C3 satisfies the identity

(detT)TK


 1

p
p2


 =

[
d

dp
χ(T)p

]−1
K


 1

χ(T)p
(χ(T)p)2


 ,

T ∈ O3(J), p ∈ C, χ( · ) ∈ PSL2(C),

(45)

which makes it possible to recover the expression for χ(T). In particular,

χ(D0)p = εp, ε := exp

(
2πi

3

)
,

χ(D1)p =
1

p
,

χ(D)p =
µp− 1

p− µ
, µ :=

√
δ − 1

δ + 2
=

√
3− λ

2λ
.

(46)

Proof. The matrix K−1TK is J•-orthogonal and takes a vector V := (1, p, p2)t in
the cone {J•(V ) = 0} to a vector (P1(p), P2(p), P3(p))

t in the same cone, where the
Pk(p) are polynomials of degree at most 2. Each zero of the polynomial P2(p) is
simple and it is also a zero — moreover, a double zero — of precisely one of the
polynomials P1(p) and P3(p). This follows from the non-singularity of the matrix
K−1TK. The image of V can be uniquely, up to the simultaneous change of the
signs of the complex numbers a, b, c, and d, represented in the following form:

K−1TKV =


 (cp+ d)2

(ap+ b)(cp+ d)
(ap+ b)2


 = (ad− bc)

[
d

dp
χ(T, p)

]−1 1
χ(T, p)
χ2(T, p)


 , (47)

where we set by definition χ(T, p) :=
ap+ b

cp+ d
=: χ(T)p.

We claim that detT = ad − bc. A direct calculation making use of (47) shows
that detT = (ad − bc)3. The equality (ad − bc)2 = 1 is a consequence of the
(pseudo-)orthogonal invariance of the bilinear form J•( · , · ) polar to the quadratic
form J•( · ). Let V (1) := (1, p1, p

2
1)
t and V (2) := (1, p2, p

2
2)
t be vectors in the cone

{J•(V ) = 0}. Then

J•(K
−1TKV (1),K−1TKV (2)) = (ad− bc)2

(χ(T, p1)− χ(T, p2))
2

χ̇(T, p1)χ̇(T, p2)

= (ad− bc)2(p1 − p2)
2

= (ad− bc)2J•(V
(1), V (2))

= J•(V
(1), V (2)). (48)
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We have thus established (45) for the above-defined linear fractional map χ. We now
prove the transformation law (44) for the stereographic coordinate (42). The point
W ∼ K(1 : p : p2)t ∈ C has the coordinate p and TW ∼ K(1 : χ(T, p) : χ2(T, p))t

has the coordinate χ(T, p), so that (44) holds.
It remains to show that χ is an isomorphism between SO3(J) and PSL2. The

injectivity of χ follows by (45). We now discuss its surjectivity. Each χ ∈ SL2
defines by formula (47) a matrix K−1TK, which we claim to be J•-orthogonal. It
suffices to show that this matrix preserves the quadratic form J•( · ) and the bilinear
form J•( · , · ) for the vectors in the cone {J•(V ) = 0}. The first is obvious by (47),
and the second by (48). The equality detT = (ad − bc)3 = 1 has already been
established.

5.2.2. Coordinate ppp and form ωJωJωJ on a cone. Unfortunately, one cannot
introduce two global coordinate functions on the cone {W ∈ C3 : J(W ) = 0}.
Nevertheless, projecting the cone from the origin onto the conic C at infinity we
can for W 	= 0 define the coordinate function p(W ) by formula (42). The role of
the second ‘coordinate function’ in our analysis of the monodromy problem will be
taken by the 1-form furnished by the following result.

Lemma 13. (i) Let W 	= 0 be a point in the cone {J(W ) = 0} and let Z be a
vector tangent to the cone at W . Then the form ωJ defined as the ratio of two
collinear vectors

〈ωJ(W ), Z〉 := (W × Z) : ∇J(W ) (49)

(× is the vector product in C3 and ∇ is the gradient operator) is holomorphic for
W 	= 0.

(ii) The form ωJ is invariant under motions of the cone:

ωJ(TW ) = (detT)ωJ(W ), T ∈ O3(J). (50)

(iii) The forms ωJ and dp are proportional :

(detK)Wdp(W ) = K


 1

p(W )
p2(W )


ωJ ; (51)

here W 	= 0 is a point in the cone and K is the matrix (41) taking J to the form J•.

Proof. (i) We prove that the vectors in the definition of ωJ are collinear:

∇J(W )× (W × Z) = 2WJ(W,Z)− 2ZJ(W ) = 0;

here J( · , · ) is the polar bilinear form of the quadratic form J( · ). The form ωJ has
the coordinate representation

ωJ(W ) =
W1dW2 −W2dW1

2W3 − δW1 − δW2
=

W2dW3 −W3dW2

2W1 − δW2 − δW3
=

W3dW1 −W1dW3

2W2 − δW3 − δW1
, (52)

which shows that this form is holomorphic for W 	= 0.
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(ii) We have

〈ωJ(TW ),TZ〉 := (TW ×TZ) : ∇J(TW )

= (detT)T−1t(W × Z) : T−1t∇J(W )

= (detT)(W × Z) : ∇J(W ) =: (detT)〈ωJ(W ), Z〉.

(iii) Formula (51) holds for each non-degenerate form J(W ) if the stereographic
coordinate p on the cone is selected so as to conform with the matrix K taking J
to the form J•(V ), that is, p(W ) = V2(W )/V1(W ) and W = KV . For J = J• the
equality can be immediately verified:

(V1, V2, V3)
td(V3/V2) =

(
(V2/V3)dV3 − dV2

)(
1, V3/V2, (V3/V2)

2
)t
.

In the case of an arbitrary form J we make the linear change KV = W and keep
the old definition of the stereographic coordinate p. Taking account of the identity
ωJ(KV ) = (detK)ωJ•(V ) we arrive at relation (51).

5.3. Solution on a non-degenerate quadric. In this subsection we prove the
following result.

Theorem 4. For λ /∈ {0, 1, 3} the eigenvalue-eigenvector pairs (λ, u(t)) of the PS3
integral equation with non-trivial invariant J0 are in one-to-one correspondence
with projective structures p(m̃) on M(R3) with total branching number 2g(M) − 2
such that the symmetries

p([r] · m̃) = χ ◦T([r])p(m̃) (53)

hold for all m̃ ∈ M̃ and all even classes [r] ∈ π1(Y) and fail at least at one point m̃
for some odd class [r].

Remark. By Lemma 10 the existence of the symmetries (53) for all even loops [r]
indicates that the monodromy of the structure is χ◦TM and there exist one (cases
2530, 2431, 2430, 2232) or two (case 2331) additional symmetries. In case 2630 of
an equation in general position there are no additional symmetries.

Proof of Theorem 4. (1) The correspondence (λ, u)→ p. Let (λ, u(t)) be an ‘eigen-
pair’ of a PS3 of the required form. By Theorem 3 it corresponds to an analytic
vector-valued function WM(m̃) on M(R3) ranging in the non-degenerate quadric
{J(W ) = J0}. This vector defines by formulae (37) and (42) a pair of meromorphic

functions p±(m̃) on M̃ whose symmetries (34) can be expressed as follows:

p±([r] · m̃) = χ ◦T([r])p±(m̃), [r] ∈ ker sign ⊂ π1(Y), (54)

p±([r] · m̃) = χ ◦T([r])p∓(m̃), [r] ∈ π1(Y) \ ker sign . (55)

The last equality shows how one can recover one of the structures p± from the
other. In particular, the branching divisor D(p+) can be obtained from D(p−) by
an arbitrary covering transformation of M.
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We claim that both structures p± have branching number 2g(M)−2. For a proof
we consider the (Klein) quadratic differential

Ω(m) =
dp+(m̃)dp−(m̃)

(p+(m̃)− p−(m̃))2
, m ∈M, m̃ ∈ M̃. (56)

This expression is the infinitesimal form of the cross-ratio of four points and is
therefore preserved by simultaneous linear fractional transformations of the vari-
ables p+ and p− (cf. equality (48)). The holomorphy of WM is equivalent to the

inequality p+(m̃) 	= p−(m̃) everywhere on M̃, therefore for each point m̃ one can
find a linear fractional change of variables taking p± to the values p+(m̃) = 1 and
p−(m̃) = 0. Expanding now the functions in the neighbourhood of m̃ in powers of
the local variable we see that

D(p+) + D(p−) = (Ω).

On the other hand, the degree of the zeros of a quadratic differential is 4g(M)− 4.
We take the projective structure p+(m̃) for the required structure p. It has

branching number 2g− 2, and equalities (53) hold for all even [r], while for odd [r]
the symmetry (53) can be expressed as the equality p+(m̃) = p−(m̃), and it fails
for each m̃. Note that the structure p−(m̃) has the same properties.

(2) The correspondence p → (λ, u). Let p(m̃) be a projective structure having
all the properties listed in the theorem. We set p+(m̃) := p(m̃). Then equality (55)
defines a new projective structure p−. It is easy to verify that the definition of
this new structure is independent of one’s choice of the even class [r], and the
transformation law for p− is as in (54).

We claim that p+(m̃) 	= p−(m̃) everywhere. By the assumptions of the theorem
p+(m̃) 	≡ p−(m̃), therefore (56) defines a meromorphic quadratic differential on M.
Reducing the functions p± locally to a form convenient for estimates we can see
that

D(p+) + D(p−) � (Ω),

where the strict inequality indicates the existence of points at which p+ = p−.
However,

degD(p+) + degD(p−) = 4g(M)− 4 = deg(Ω),

so that there can be no such points.
Recovering the pointsW± in the conic C from their stereographic coordinates (43)

and recovering the point in the quadric from these points in the conic (we use here
the invariant J0) we obtain from p±(m̃) a holomorphic vector-valued function WM.
The transformation laws (54), (55) for the pair of structures become the law (34) for
the transformations of WM. By Theorem 3 this vector corresponds to an ‘eigenpair’
of the PS3 integral equation.

Remark 1. It is clear from the proof of the theorem that there exist in fact two
correspondences (λ, u)↔ p associating an eigenpair of PS3 with a special projective
structure: the one taking the pair (λ, u) to the structure p+, and the other taking
it to p−. The transposition of subscripts of p± results in a change of sign of the
eigenfunction u(t).
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Remark 2. It follows from the symmetries (53) of the projective structure p that
the branching divisor of p is invariant with respect to even covering transforma-
tions [r] ∈ ker sign /pr∗π1(M◦) of M. For instance, in cases 2331 and 2232 the
divisor D(p) contains two (of the four) fixed points of a rotation of M of order 3
(see Fig. 11).

Remark 3. In the case 2430 the surface M is a torus and the projective structure
in it is — up to a linear fractional transformation — the exponential function of
an Abelian integral of the first kind. In this case the solutions can be expressed by
explicit formulae, which was accomplished in [8] by other means.

5.4. Solution on a cone.

Theorem 5. For λ /∈ {0, 1, 3} the eigenvalue-eigenvector pairs (λ, u(t)) of the PS3
integral equation with non-trivial invariant J0 are in one-to-one correspondence
with pairs consisting of a projective structure p(m̃) and a non-trivial holomorphic
differential ω(m) on M(R3) possessing the symmetries

p([r] · m̃) = χ ◦T([r])p(m̃), m̃ ∈ M̃, [r] ∈ π1(Y), (57)

ω([r] ·m) = sign([r])ω(m), m ∈M, [r] ∈ π1(Y)/pr∗π1(M◦), (58)

and with divisors related by the inequality

D(p) � (ω). (59)

Proof. (1) The correspondence (λ, u)→ (p, ω). Let (λ, u(t)) be an ‘eigenpair’ of the
PS3 equation such that the holomorphic vector-valued function WM corresponding
to it by Lemma 3 has the invariant J0 equal to zero. The solution WM transplants
the function p and the holomorphic differential ωJ from the cone {J(W ) = 0}
to M. Since WM is not identically equal to zero, formulae (42) and (52) define the
meromorphic function p(m̃) and the holomorphic differential ω(m) also at the zeros
of the vector field. The form ω on the surface inherits the transformation law (50)
of the form ωJ on the cone; the transformation law for p(m̃) can be found from the
symmetries (34) of WM.

Finally we claim that the branching divisor of p(m̃) is not greater than the
zero divisor of ω. It is clear from (51) that the functions ω/dp and ω/d(1/p)
are holomorphic because they are linear combinations of the components W1, W2,
and W3 of the solution. Hence the local branching number of p is not greater than
the order of the zero of the differential ω.

(2) The correspondence (p, ω) → (λ, u). Conversely, let p(m̃) be a projective
structure with symmetries (57) and let ω(m) be a non-trivial symmetric holo-
morphic differential on M. We set by definition

WM(m̃) := (detK)−1
ω(m̃)

dp(m̃)
K


 1

p(m̃)
p2(m̃)


 . (60)
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This is a holomorphic vector-valued function of m̃ in view of relation (59) between
the branching divisor of p and the zero divisor of ω. The vector-valued function WM
satisfies the required transformation law:

WM([r] · m̃) =
(
χ̇(T ([r]), p(m̃))

)−1
sign([r])(detK)−1

× ω(m̃)

dp(m̃)
K


 1

χ ◦T([r])p(m̃)
(χ ◦T([r])p(m̃))2




(45)
= (detK)−1

ω(m̃)

dp(m̃)
T([r])K


 1

p(m̃)
p2(m̃)


 := T([r])WM(m̃).

By Theorem 3 the pair (p, ω) generates an ‘eigenpair’ (λ, u) of the PS3 equation.
Applying to the vector WM(m̃) so constructed the procedure from part (1) of

the proof we return to the original projective structure p and the holomorphic
differential ω; this is a consequence of (51). Hence the correspondences in parts (1)
and (2) are reciprocal.

Remark. Symmetric holomorphic forms on the surface are described by Lemma 11.
It follows from it, in particular, that PS3 equations of types 2430, 2331, and 2232
do not have solutions with invariant J0 equal to zero.

§ 6. Applications
In this section we present applications of the complex geometric theory of the

PS3 integral equation developed above. For instance, combining the results of
Theorems 4 and 5 we obtain a test for eigenvalues of generic equations.

Theorem 6. A complex number λ /∈ {0, 1, 3} is an eigenvalue of a PS3 equation
of type 2630 if and only if there exists on the Riemann surface M(R3) a projective
structure without branching or of total branching number 2 that has monodromy
χ ◦ TM, which depends on λ as a parameter. Structures without branching corre-
spond to eigenvalues of multiplicity 2.

Proof. (1) If (λ, u) is an ‘eigenpair’ of a typical PS3 equation, then there exist
by Theorems 4 and 5 a projective structure p(m̃) on M(R3) with the required
monodromy and of branching number at most 2. Let degD(p) = 1. Then, in
view of the symmetry (57) in the case of an odd loop [r], the point D(p) is a
fixed point of the hyperelliptic involution of M. We choose in a neighbourhood
of D(p) a local coordinate function w changing sign under the involution. Taking
an appropriate linear fractional transformation of p, in the neighbourhood of a
branch point the symmetry (57) for odd loops can be expressed as p(−w) = −p(w),
therefore degD(p) is an even integer. Another reason for this evenness of the
branching number is the fact that the monodromyTM is trivial for half the cycles in
the canonical basis of π1(M), and therefore χ◦TM can be lifted to a representation
π1(M)→ SL2. See [11] for greater detail.

(2) Conversely, let p be a projective structure on M with monodromy χ ◦ TM.
By Lemma 10, for a typical equation this means that equality (53) holds for all even



PS3 integral equations and projective structures on Riemann surfaces 509

paths [r]. Let the branching number of the structure be 2. If the symmetry (53)
fails for odd loops, then λ is an eigenvalue by Theorem 4. On the other hand if such
symmetry holds, then the branching divisor of p is invariant under the hyperelliptic
involution and therefore it is equal to the zero divisor of some holomorphic form ω
(which, of course, changes sign under the involution). In that case λ is an eigenvalue
by Theorem 5.

Now let p be a non-branched structure and let [r] be an arbitrary odd loop. Then
the two projective structures p(m̃) and p1(m̃) := χ◦T([r]−1)p([r]·m̃) have the same
monodromy and are not branched. By Poincaré’s theorem these structures are the
same, that is, the symmetry (57) holds also for odd loops [r]. We can take for ω
an arbitrary holomorphic differential on M, therefore a non-branched projective
structure generates a 2-dimensional eigenspace of the PS3 equation. There exist
no other eigenvectors in this case because by Poincaré’s theorem [12], [13] two
projective structures with the same monodromy and of total branching number
smaller than 4g(M) − 4 must be the same.

We now explain how the spectrum of a typical PS3 equation can be geometri-
cally described. The space P2(M) of projective structures onM(R3) with a pair of
branch points (see [11]–[13] for the definitions) is a 5-dimensional complex variety.
The map assigning to a projective structure its monodromy embeds P2(M) in the
6-dimensional complex space of monodromies Hom(π1(M), PSL2)/PSL2. In this
space the representation χ◦TM defines a complex curve parametrized by the spec-
tral parameter λ. The intersection points of the curve and the 5-dimensional image
of P2(M) correspond to the eigenvalues of the PS3 equation. The space Ps2(M)
of structures with additional symmetry corresponding to the hyperelliptic involu-
tionM has complex dimension 4. One would conjecture that the image of Ps2(M) in
the space of monodromies intersects the curve defined by the representation χ◦TM
only for surfaces M lying in some variety of codimension 1 in the Teichmüller space
T(2). The pointsM in the Teichmüller space that carry the required non-branched
structures are even rarer.

6.1. Localization of the spectrum. The operator approach to the analysis of
PS equations [2], [4] gives one upper and lower bounds for the eigenvalues λ of an
equation. These bounds depend on metric properties of the transformation R(t).
The following result establishes uniform bounds for the spectrum of a PS equation
for all rational functions of degree 3.

Theorem 7. The spectrum of an arbitrary PS integral equation with rational
transformation R3 of degree 3 lies in the interval [0, 3].

Proof. We use one fact from the operator analysis of the PS equation [2], [4]: the
spectrum lies on the real axis. (It is useful to interpret this fact in geometric
language.) For real λ /∈ [0, 3], as seen from Lemma 12 (see (46)), the monodromy
χ ◦ TM is unitary. In view of Theorems 4 and 5 we can complete the proof using
the following result.

Lemma 14. If the branching number of a projective structure p on a Riemann
surface M of genus g is at most 2g − 2, then the monodromy p is not unitary.

Proof. Poincaré has proved this result for non-branched structures. The same idea
can be applied in the case when the branching number of p is not greater than the
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absolute value of the Euler characteristic of M. Assume that the monodromy of p
is unitary. Then the expression

ds2 = (1 + pp)−2 dp dp

defines a conformal metric on M that is degenerate at the points in the branching
divisor. The Gaussian curvature form of this metric,

Θ = −(2πi)−1d′′d′ ln(1 + pp)−2|dp/dx|2,

where x is the local variable, is positive in M \ |D(p)|. On the other hand, by the
Gauss–Bonnet formula we obtain

0 <

∫
M

Θ
(∗)
= 2− 2g + degD(p) � 0.

For reasons of space we have left out the intermediate calculations (∗) (see [14]).

6.2. Representation of solutions of a PS3PS3PS3 equation. One geometric way to
define projecting structures, used already by Klein, is as follows. We cut the surface
M with linearly polymorphic function p on it so that in the resulting (not necessarily
simply connected) domain we could find a single-valued branch of p; the p-image
of the cut surface is a surface F which lies (possibly in a non-schlicht manner,
forming several sheets) over the Riemann sphere. The boundary components of F
are organized into pairs (∂F)+s , (∂F)−s , s = 1, 2, . . . , each associated with some
linear fractional map (∂F)+s → (∂F)−s from the monodromy group of p that reverses
the natural orientation of the boundary. Such surfaces F are called membranes. As
an example we construct below a membrane for a projective structure giving rise
to an ‘eigenpair’ of a PS3 equation.

6.2.1. Membrane. Let λ be a real number in the interval (1, 2). The fixed
points of the second-order rotation χ(D) depending on the parameter λ are complex
conjugate and lie on the arc {p ∈ C : |p| = 1, | arg p| < π/3} of the unit circle. We
consider the circle C passing through the fixed points of χ(D) and orthogonal to

the unit circle. In the complex p-plane the circle C and the rotated real axis εR̂
bound an annulus-type domain F1; another domain of this kind F2 is bounded by

the real axis R̂ and the circle εC. The two-sheeted membrane F consists of the
annuli F1 and F2 glued crosswise along a cut Γ symmetric relative to the unit circle
(see Fig. 12).

Figure 12. Membrane F in the complex p-plane
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6.2.2. Real algebraic curve. Identifying parts of the boundary of the ‘4-connec-
ted’ domain F by means of the orientation-reversing linear fractional maps

χ(D2D3) : R̂→ εR̂,

χ(D3D) : C → εC,
(61)

we make from F a compact Riemann surface M∗ =M∗(λ, ∂Γ). It depends on three
real parameters and is hyperelliptic because it has genus g = 2. One can explic-
itly describe an anticonformal involution H of this surface such that the algebraic
curve M∗ is a real curve with respect to it. Namely, the reflection H acts on each
sheet F1 and F2 as the inversion p → 1/p relative to the unit circle. The action
of H is well defined on Γ and preserves the identifications (61) of the boundary
components.

There exists on M∗ a (unique, up to a real linear fractional transformation)
second-order element y(m) ∈ C(M∗) such that its reflection is equal to its complex
conjugation:

y(Hm) = y(m), m ∈M∗. (62)

If the cut Γ is transversal to the unit circle, then the fixed points of H form three
ovals α, β, and γ, as in Fig. 12. The images y(α), y(β), and y(γ) of these ovals are
three disjoint intervals of the real axis with end-points that are branch points of
the hyperelliptic surface M∗ (Fig. 13(a)). Besides α, β, and γ there exists another

triple of ovals on M∗, α̃, β̃, and γ̃, on which the function y(m) takes real values.
Each oval in one group intersects precisely two ovals in the other group (Fig. 13(b)).

Figure 13. (a) Two-sheeted representation of the surface M∗(λ, ∂Γ); (b) six ovals

6.2.3. Projective structure. Associating each point m ∈ M∗ with the point
p(m) in the membrane F we obtain a single-valued branch of the projective struc-
ture p on the surface M∗ cut along two cycles. This structure has two simple
branch points, and to calculate its monodromy one can equip the three cycles

C ⊂ F1, R̂ ⊂ F2, and Γ on the surface with the linear fractional transformations
χ(D), χ(D2), and χ(D3), respectively. It will be clear from the next subsection

that these three cycles can be moved by an isotopy to the three ovals α̃, β̃, and γ̃,
respectively, on which the function y(m) takes real values. Thus, the monodromy
of the structure p is induced by the monodromy on the Riemann sphere with six

punctures that is defined by the three cuts y(α̃), y(β̃), and y(γ̃) along the real
axis and the matrices D, D2, and D3 corresponding to them. It is now easy to
find a rational function R3 of degree 3 such that M(R3) = M∗(λ, ∂Γ), and the
monodromy of p is χ ◦ TM (see the last line of the table in Theorem 2.1.1). Up
to transformations (24) the function R3 can be recovered from its critical values,



512 A. B. Bogatyrev

which are the end-points of the intervals y(β̃) and y(γ̃), and its monodromyT∗. By
Theorem 6, λ is an eigenvalue of the PS3 equation with this rational parameter R3.
We have thus proved the following result.

Proposition. Each λ ∈ (1, 2) is an eigenvalue of some (depending on λ) PS3
integral equation.

It is easy to understand what must be modified to obtain representations for
other eigenvalue-eigenvector pairs of this PS3 equation. The construction of the
membrane F must be changed. For instance, using the ‘grafting’ procedure [11],
[12], [15], when one stitches an annulus onto the membrane, one can modify the
projective structure keeping its monodromy, but changing the underlying complex
structure ofM. To return to the original complex structure onM one must change
three parameters of the complex structure on the surface M∗ defined by the mem-
brane. One of them is the spectral parameter λ. It could be useful to list all
projective structures (constructions of membranes) yielding ‘eigenpairs’ of the PS3
equation, in the spirit of [15].

6.2.4. Membrane with additional symmetry. The solution of the Riemann
monodromy problem recovered from the projective structure in the previous sub-
section ranges in general on a non-degenerate quadric. Condition (53) for odd
loops [r] means that the ramification points of F are taken into one another by
the second-order rotation χ(D3). In this subsection we consider a two-parameter
family of such membranes.

Let Γ be a cut that is not merely symmetric relative to the unit circle, but also

lies on the straight line ε2R̂. In this case we can explicitly describe the hyperelliptic
involution H of the surface M∗. Namely, the point p in one of the sheets F1, F2
is taken to the point χ(D3)p in the other sheet. The consistency of this definition

can easily be verified by considering the cycles C ⊂ F1, R̂ ⊂ F2, and Γ. The
involution H has 6 fixed points a, b, c, d, e, f , which are plotted on the sheet F2
on the left-hand side of Fig. 14.

Figure 14. Representation of function y(p) for symmetric membrane F

We now point out an explicit representation for the function y(m) in (62) and
for the branch points of the two-sheeted surface M∗. The second-order element y
is invariant under the hyperelliptic involution, therefore it takes real values on the

cycles C = α̃, R̂ = β̃, and Γ = γ̃ in the surface. Thus, the function y(m) performs
a conformal map of each of the four domains resulting from cutting the sheets F1
and F2 along the unit circle and Γ onto the upper or the lower half-plane, in
accordance with the symmetry principle. It is easy to see for the family of surfaces
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M∗(λ, ∂Γ) under consideration that the corresponding projective structures p have
the symmetry (57) for odd loops, so that the solutionW of the Riemann monodromy
problem ranges on a cone.

§7. Conclusion
One comes across various interpretations of the concept of solution for equations

of mathematical physics. We can distinguish three traditional lines of approach
to this question. Those taking the first line believe that a problem is solved once
the existence of a solution in some function class is established, which means that
the singularities of the solution are specified and its smoothness and integrability
properties are determined. A physicist will not be satisfied because each problem
that is properly posed is a reflection of some physical reality whose existence he has
never put in question.

Another tradition is that of the numerical solution of problems: for instance,
in engineering. The importance of this approach lies in its connections with appli-
cations of the mathematical science to practice. Still, a numerical solution does
not seem to be satisfactory to the intellect because it is difficult to take a discrete
collection of numbers for a solution of a problem involving the continuum. It can
be said with hindsight that the numerical approach is not adequate to the nature
of the solution.

The third line of tradition consists in finding explicit representations for solu-
tions: for instance, formulae. Such a solution must be considered the most valuable
one because from a formula one can see the existence of a solution, understand its
global and local properties, and can use it for numerical computations. Of course,
there can also be disappointing results on the non-existence of some or other rep-
resentation. For instance, the general polynomial equation cannot be solved in
radicals, general ordinary differential equations are not soluble in quadratures, and
so on. In connection with such problems Poincaré wrote: “Après de longs et vains
efforts pour les ramener à des problèmes plus simples, les géomètres se sont enfin
résignés à les étudier pour eux-mêmes, et ils ont été récompensés par le succès”.
In other words, one must seek new forms of constructive representation of solu-
tions. According to Poincaré, associated with each equation is some family of
transcendental functions the analysis of whose properties (including methods of
their calculation) enables one to understand the underlying physical phenomenon.
This was the guiding idea of our work.
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[3] E. È. Ovchinnikov, “Adjoint equations, perturbation algorithms, and optimal control”,

Collection of research papers of the Institute of Numerical Mathematics deposited at VINITI
25.03.93, no. 453B93, pp. 64–100.

[4] A. B. Bogatyrev, “The discrete spectrum of a problem for a pair of Poincaré–Steklov
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