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ABSTRACT

The turbulence closure problem for convective boundary layers is considered with the chief aim to advance
the understanding and modeling of nonlocal transport due to large-scale semiorganized structures. The key role
here is played by third-order moments (fluxes of fluxes). The problem is treated by the example of the vertical
turbulent flux of potential temperature. An overview is given of various schemes ranging from comparatively
simple countergradient-transport formulations to sophisticated turbulence closures based on budget equations
for the second-order moments. As an alternative to conventional ‘‘turbulent diffusion parameterization’’ for the
flux of flux of potential temperature, a ‘‘turbulent advection plus diffusion parameterization’’ is developed and
diagnostically tested against data from a large eddy simulation. Employing this parameterization, the budget
equation for the potential temperature flux provides a nonlocal turbulence closure formulation for the flux in
question. The solution to this equation in terms of the Green function is nothing but an integral turbulence
closure. In particular cases it reduces to closure schemes proposed earlier, for example, the Deardorff counter-
gradient correction closure, the Wyngaard and Weil transport-asymmetry closure employing the second derivative
of transported scalar, and the Berkowicz and Prahm integral closure for passive scalars. Moreover, the proposed
Green-function solution provides a mathematically rigorous procedure for the Wyngaard decomposition of tur-
bulence statistics into the bottom-up and top-down components. The Green-function decomposition exhibits
nonlinear vertical profiles of the bottom-up and top-down components of the potential temperature flux in sharp
contrast to universally adopted linear profiles. For modeling applications, the proposed closure should be equipped
with recommendations as to how to specify the temperature and vertical velocity variances and the vertical
velocity skewness.

1. Introduction

We consider the turbulence closure problem for con-
vective boundary layers (CBLs). For the sake of defi-
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niteness and simplicity we restrict our consideration to
a horizontally homogeneous dry atmospheric CBL, so
as the buoyancy b is proportional to potential temper-
ature u; namely, b 5 bu, where b 5 g/T is the buoyancy
parameter, g is the acceleration due to gravity, and T is
a reference value of absolute temperature.

For our analysis an important feature of CBL is the
presence of three different types of motion, namely, (i)
mean flow that is totally organized and plane parallel
in the case in question, (ii) large-scale semiorganized
structures that embrace the entire CBL (buoyancy-driv-
en cells in shear-free flows or rolls in sheared flows),
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and (iii) chaotic three-dimensional turbulence generated
by local velocity shears and buoyancy forces. In the
context of the present discussion, the adjective ‘‘large
scale’’ implies that the structure’s spatial scale is com-
parable to the CBL depth. Then the presence of bound-
aries is inevitably felt, causing anisotropy of the struc-
tures and of their transport properties. It is chiefly due
to large-scale structures that the nature of vertical trans-
port of potential temperature (buoyancy), momentum,
and passive scalars across the CBL is essentially non-
local. What this means is that vertical fluxes of the above
quantities at a given height, z, cannot be fully deter-
mined by mean vertical gradients at the same height.
The present paper focuses on vertical flux of potential
temperature. The fluxes of momentum and passive sca-
lars can be considered in the same spirit.

We recall that conventional expression of the potential
temperature flux w9u9 , henceforth referred to as the
downgradient approximation, reads

]Q
w9u9 5 2K , (1)H ]z

where w9 and u9 are fluctuations of vertical velocity and
potential temperature (primes denote fluctuating quan-
tities, and overbars denote ensemble averaging), ]Q/]z
is vertical gradient of mean potential temperature Q,
and KH is a coefficient called eddy conductivity. The
subscript H stands for the word heat (w9u9 is the heat
flux divided by the air density and specific heat at con-
stant pressure). This formulation follows from the anal-
ogy between turbulent transport and molecular trans-
port. It is sometimes referred to as ‘‘the Boussinesq
approximation.’’ Notice that Boussinesq (1877) consid-
ered the velocity profile and introduced the concept of
turbulent viscosity. The term Boussinesq approximation
as applied to the scalar fluxes is somewhat loose. The
downgradient approximation, Eq. (1), usually assumes
one-to-one correspondence between turbulent fluxes at
a given height and other parameters of the flow at the
same height. It also assumes simple proportionality of
turbulent flux in question to mean gradient of trans-
ported property. Strictly speaking, the above analogy is
justified only when the turbulent mixing length is much
less than the length scale of heterogeneity of the mean
flow. This is often not the case. Nevertheless, Eq. (1)
was adopted without discussion in a large number of
turbulence closures (henceforth referred to as local
downgradient closures). Currently it has become clear
that such closures fail when applied to convective flows.
This has awakened fresh interest in nonlocal closures.

In the present study, we do not develop a turbulence
parameterization that may be immediately used for prac-
tical applications. Instead, we focus on understanding
the physical nature of nonlocal turbulent transport in
CBLs. As a first step, we restrict our consideration to
the vertical flux of potential temperature (the fluxes of
momentum and passive scalars should be considered

separately). We analyze the role of the third-order mo-
ment, the flux of the flux of potential temperature, in
the second-order potential temperature flux budget. It is
the third-order moment that is largely responsible for
the nonlocal nature of turbulent transport. We develop
(in section 3) a ‘‘turbulent advection plus diffusion pa-
rameterization’’ for the third-order moment in question.
As well as all conventional parameterizations, the pro-
posed parameterization applies to the situations where
mean and second-order turbulence quantities vary
strongly with height. In these situations, it represents
an extension of the turbulent diffusion formulation
based on the quasi-normal ‘‘Gaussian’’ approximation
for the fourth-order moments [the most advanced for-
mulation of this kind for the CBL was developed by
Canuto et al. (1994)]. As different from the purely dif-
fusion parameterizations, our parameterization contains
an ‘‘advective’’ term that is proportional to the vertical
velocity skewness. It is due to this term that our param-
eterization remains in force in case of ‘‘perfect’’ mixing
when all z derivatives of the mean and second-order
quantities vanish. Parameterizations based on the quasi-
normal approximation lead to the third-order moments
that are identically zero in this case. The proposed pa-
rameterization for the flux of potential temperature flux
is compared (in section 4) with data from a large eddy
simulation (LES) of CBLs. Employing the above pa-
rameterization for the third-order flux, and a conven-
tional parameterization for the pressure gradient–poten-
tial temperature covariance, the potential temperature
flux budget equation provides a nonlocal turbulence clo-
sure for the flux in question. In particular cases it reduces
to closure schemes proposed earlier, for example, the
countergradient-correction closure (Deardorff 1972),
the transport-asymmetry closure employing the second
derivative of transported scalar (Wyngaard and Weil
1991), and integral closure similar to that for passive
scalars (Berkowicz and Prahm 1979). The proposed clo-
sure is diagnostically tested against LES data. The
Green-function technique is used (section 5) to analyze
local and nonlocal contributions to the vertical flux of
potential temperature and to examine decomposition of
this flux into bottom-up and top-down components. The
Green-function decomposition results in nonlinear pro-
files of both components, in contrast to conventional
linear profiles.

2. Overview

The fact that the downgradient approximation as ap-
plied to geophysical turbulent boundary layers is not
always satisfactory was recognized nearly simulta-
neously by Budyko and Yudin (1946) in Russia and
Priestley and Swinbank (1947) in Australia. Budyko and
Yudin considered the issue in the context of the global
heat budget at the earth’s surface. They came to the
conclusion that calculations employing Eq. (1) together
with a reasonable parameterization for the eddy con-
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ductivity KH in the atmospheric surface layer lead to
unbalanced budget. To improve the heat budget calcu-
lations they amended Eq. (1), incorporating a correction
term, gH, on the rhs,

]Q
w9u9 5 2K 2 g , (2)H H1 2]z

and provided heuristic arguments in support of correc-
tion. They treated gH as an ‘‘equilibrium potential tem-
perature gradient’’ presumably inherent in any type of
vertical turbulent transport. Priestley and Swinbank pro-
posed the same formulation and also provided argu-
ments clarifying the incorporation of the ‘‘countergra-
dient’’ gH to correct the downgradient approximation.

Convincing experimental evidence and theoretical ex-
planation of failure of the downgradient approximation
as applied to convective turbulence was given by Dear-
dorff (1966, 1972). In his laboratory experiments on
turbulent penetrative convection developing against the
stable stratification aloft, positive values of the flux w9u9
were documented in the upper portion of the convective
zone where the mean gradient ]Q/]z was positive. This
obviously contradicted Eq. (1) and clearly demonstrated
that potential temperature in the CBL could be trans-
ported counter to the gradient, hence the term ‘‘coun-
tergradient flux.’’

To analyze the countergradient transport theoretically,
Deardorff (1972) considered the budget equation for
w9u9 :

] ] ]Q ]p9
2 2 2w9u9 5 2 w9 u9 2 w9 1 bu9 2 u9 . (3)

]t ]z ]z ]z

Here, t is time and p is kinematic pressure (i.e., pressure
divided by reference value of the air density). The terms
on the rhs of Eq. (3) describe (i) turbulent transport of
the flux in question, (ii) its production or destruction
due to the mean temperature gradient, (iii) its production
by the buoyancy forces, and (iv) the pressure gradient–
temperature covariance, respectively. Deardorff (1972)
neglected the nonstationary term and the turbulent trans-
port term, and parameterized the pressure gradient–tem-
perature covariance term in the spirit of the Rotta (1951)
hypothesis, namely,

]p9 w9u9
2u9 5 2 , (4)

]z tr

where t r is a pressure relaxation timescale analogous
to the Rotta return-to-isotropy timescale. By this means
Eq. (2) is derived with the eddy conductivity and the
countergradient given by

KH 5 t r , gH 5 / ,2 2 2s bs sw u w (5)

where and are variances of vertical velocity and2 2s sw u

potential temperature,

[ w92 , [ u92 .2 2s sw u (6)

Notice that the Deardorff countergradient-correction

closure is a local closure as both the eddy conductivity
KH and the countergradient gH are expressed in terms
of local parameters, t r, sw, and su. An essential feature
of this closure is that the transport term involving the
third-order moment, ]w92u9 /]z, in Eq. (3) is neglected.
It should be realized that the third moments involving
w9 are precisely the terms that describe vertical turbulent
transport (fluxes of fluxes) in budget equations for sec-
ond moments. These third moments are believed to be
responsible for nonlocal contributions to the second mo-
ments involving w9, that is, to vertical fluxes of potential
temperature, passive scalars, and momentum.

A practically sound semiempirical countergradient-
correction closure for the vertical flux of potential tem-
perature in the CBL, and also for fluxes of passive sca-
lars, was developed by Troen and Mahrt (1986). They
proposed an expression of the eddy conductivity KH

consistent with the incorporation of a countergradient,
gH, in Eq. (2), and employed a version of the Deardorff
formulation, assuming gH to be independent of height
in the CBL interior:

g } w*u* /w h 5 w9u9 /w h. (7)H s 0 s

Here, h is the CBL depth; w* and u* are the Deardorff
velocity and temperature scales,

1/3w* 5 |bw9u9 h| , u* 5 |w9u9 |/w*; (8)0 0

w9u9 0 is the potential temperature flux at the surface;
and ws 5 ( 1 0.28 )1/3 is a ‘‘mixed-layer velocity3 3u w* *
scale’’ involving both w* and the surface friction ve-
locity u*. A few years earlier Therry and Lacarrere
(1983) considered the same problem for the potential
temperature flux and employed an expression of gH that
follows from Eq. (7) with w* in place of ws. The same
depth-constant scaling estimate of gH was, in fact, con-
sidered already by Deardorff (1972).

More recently Holtslag and Moeng (1991) extended
the Deardorff formulation with due regard to the third-
order turbulent transport term 2]w92u9 /]z in Eq. (3),
employing results from the Moeng and Wyngaard
(1989) large eddy simulation of the CBL. Applying the
Deardorff scales, Eq. (8), to switch to dimensionless
coordinates, they found that the vertical profile of the
above term is similar in shape to the vertical profile of
the pressure gradient–temperature covariance term:

h ] ]p9
22 w9 u9 1 u9 ø a, (9)

2 1 2w u* ]z ]z*

where a is a dimensionless coefficient shown to be prac-
tically constant throughout the most of the shear-free
CBL (a ø 2). To parameterize the pressure gradient–
temperature covariance term, Holtslag and Moeng em-
ployed a generalized version of Eq. (4), namely,

]p9 w9u9
22u9 5 2 2 c bu9 . (10)7]z tp

Here, the pressure relaxation timescale, denoted as t p
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to distinguish it from the timescale t r in Eq. (4), is
usually taken proportional to the turbulence energy-dis-
sipation timescale t ,

2t 5 t /c , t [ q9 /2«, (11)p 6

where q92 5 u92 1 y92 1 w92 is twice the turbulence
kinetic energy (TKE), u92 and y92 are the horizontal
velocity variances, « is the TKE dissipation rate, and c6

is a dimensionless constant. For this and other dimen-
sionless constants we use the notation commonly ac-
cepted nowadays (e.g., Andre 1976; Moeng and Randall
1984; Kurbatskii 1988; Canuto et al. 1994). The second
term on the rhs of Eq. (11) reflects the effect of buoy-
ancy on the pressure fluctuations, whereas the first term
represents destruction of the flux in question due to
turbulent–turbulent interactions. For the constant c7

Holtslag and Moeng adopted the Moeng and Wyngaard
(1986) LES estimate, c7 ø 0.5. With this estimate the
buoyancy terms, grouped together into (1 2 2c7) ,2bs u

drop out from the flux budget equation, Eq. (3). Then
the eddy conductivity and the countergradient are

2 2K } t s , g } w*w9u9 /s h. (12)H p w H 0 w

By this means, the potential temperature flux w9u9 is
expressed through the CBL bulk parameters h and w9u9 0

and empirical functions sw(z) and KH(z).
In the Troen and Mahrt (1986) and the Holtslag and

Moeng (1991) countergradient-correction closures the
nonlocal transport term 2]w92u9 /]z in the flux budget
equation, Eq. (3), is either neglected or parameterized
through an algebraic combination of the second-order
moments. As a result the above differential equation
turns into an algebraic equation, which is why the clo-
sures in question can hardly be considered as truly non-
local. At the same time they involve nonlocal features
of the vertical transport through the CBL bulk param-
eters, h and w9u9 0. They can therefore be referred to as
pseudo nonlocal closures.

In a sense, Eq. (2) presents contribution from large
eddies to the potential temperature flux as a counter-
gradient term, KHgH. Frech and Mahrt (1995) called
attention to the fact that the large eddy flux is not im-
mediately related to the small-scale eddy conductivity
KH, and moreover not necessarily directed counter to
the gradient. For practical purposes Frech and Mahrt
decomposed the vertical flux of a quantity c into small-
scale (downgradient) and large-scale (generally nongra-
dient) contributions,

]C
w9c9 5 2K 1 w9c9 , (13)c L]z

and proposed a power-law parameterization for the latter
contribution.

Although the present paper focuses on the potential
temperature flux, some ideas concerning nonlocal trans-
port of passive scalars are of general importance and
merit consideration here. Thus, for the vertical flux of
a passive scalar, w, Berkowicz and Prahm (1979) and

Fiedler (1984) proposed turbulence closures that imply
an integral generalization of the downgradient transport
hypothesis,

` ]F
w9w9 5 2 W (z, z9) dz9, (14)E F ]z0

where WF is a weight function (a sort of turbulent trans-
port velocity), and ]F/]z is the mean gradient of the
scalar in question. Stull (1988) developed a similar type
of finite-difference closure that involves so-called ‘‘tran-
silient matrix’’ playing the same role as the weight func-
tion in Eq. (14). Here, the key problem is how to specify
the weight function or transilient matrix.

An important step toward better understanding of the
physical nature of nonlocal transport properties of con-
vective flows was made by Wyngaard (1983) and Wyn-
gaard and Brost (1984). They found that vertical dif-
fusion of a dynamically passive scalar through the CBL
is a superposition of two processes, namely, a ‘‘bottom-
up diffusion’’ due to the buoyancy-driven plumes (up-
drafts) and a ‘‘top-down diffusion’’ due to the compen-
sating subsidence motions (downdrafts). They also
called attention to essential asymmetry in large-scale
convective structures. As shown by LES, updraufts are
more narrow and energetic than downdrafts, which is
why kinetic energy is transported upward almost
throughout the entire CBL. Quantitatively, the above
asymmetry is characterized by dimensionless third mo-
ments called skewness, first of all by the vertical ve-
locity skewness, Sw 5 w93 / .

3/22w9
With these prerequisites, Wyngaard and Weil (1991)

developed a Lagrangian formulation for turbulent dif-
fusion, employing Sw to account for the above transport
asymmetry of the CBL. They derived an expression of
the vertical flux of a passive scalar, w, similar to Eq.
(2) with the eddy diffusivity KF and the nongradient
correction gF given by

2] F
2K 5 t s , g 5 S s t , (15)F L w F w w L 2]z

where t L is a Lagrangian integral timescale. Notice that
the term including the second derivative of the mean
concentration of scalar in question, ]2F/]z2, can be of
any sign. We therefore call this term nongradient rather
than countergradient.

It is clear from the above discussion that the key role
in the nature of large-scale nonlocal fluxes is played by
the fluxes of fluxes represented by third moments, such
as w92u9 . In higher-order closures (e.g., Zeman 1975;
Zeman and Lumley 1976; Andre 1976; Moeng and
Randall 1984; Kurbatskii 1988; Lykossov 1990; Canuto
et al. 1994) the third moments are determined using
appropriate budget equations, whereas the forth mo-
ments involved are usually expressed through quasi-
normal (Gaussian) approximation [see Eq. (A3) in ap-
pendix A]. This approximation was for the first time
applied to homogeneous isotropic turbulence by Mil-
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lionshchikov (1941), and hence it is often referred to as
the Millionshchikov hypothesis.

Canuto et al. (1994) provided the most systematic
derivation of this kind for the CBL, employing the
above quasi-normal approximation. They derived a
new set of diagnostic equations that show a universal
structure of the third-order moments. All of them turn
out to be linear combinations of the derivatives of all
second-order moments, w9 2 , w9u9 , u9 2 , and q9 2 , mul-
tiplied by appropriate turbulent exchange coefficients.
In particular, the Canuto et al. equation for w9 2 u9
reads

] ]
2 22btw9 u9 5 btA w9u9 1 A w91 2]z ]z

] ]
2 2 21 (bt) A u9 1 A q9 , (16)3 4]z ]z

where Ai (i 5 1, 2, 3, 4) are turbulent exchange coef-
ficients given by

2 2A 5 A tw9 1 A bt w9u9, (17)i i1 i2

and Ai1 and Ai2 are given dimensionless functions of the
dimensionless combination t 2b]Q/]z. Similar expres-
sions are derived for other third moments. The exchange
coefficients given by Eq. (17) consist of a standard part,
}tw92 [cf. Eqs. (5a) and (12a)], and an additional part,
}bt 2w9u9 , due to the buoyancy flux. The latter part was
already introduced by Zeman and Lumley (1976) and
Lumley (1978).

3. Turbulent advection plus diffusion hypothesis
for fluxes of fluxes

It is obvious that any parameterization or closure hy-
potheses, including those based on empirical evidence,
should be consistent with requirements of (i) dimension,
(ii) tensor invariance, (iii) symmetry, and (iv) realiza-
bility. In other words, the rhs of any expression claimed
to be physically grounded should have the same di-
mension, tensor–vector nature, and properties of sym-
metry as the lhs. Furthermore, empirical dimensionless
coefficients in any expression of a statistical moment of
turbulence through other moments should satisfy the
conditions of realizability. The above comments are es-
pecially important considering that turbulence closures
are very often developed and verified for simple flows
and then extended to more complex flows just with a
hope that general features of turbulent transport are
caught. Such a hope is unjustified as long as physical
requirements are violated.

The most advanced ‘‘turbulent diffusion parameter-
ization’’ for the third moments based on the quasi-nor-
mal approximation for the fourth-order moments, pro-
posed by Canuto et al. (1994), evidently satisfies the
above physical requirements (i), (ii), and (iii). One could
expect that it also satisfies the realizability requirement
(iv), although it is not explicitly stated in the paper cited.

As far as the underlying physical concept is con-
cerned, Eqs. (16) and (17) represent a gradient formu-
lation, as the flux of a given second-order quantity de-
pends on the gradients of second-order moments. The
Canuto et al. formulation fits LES data very well in the
near-boundary zones where pronounced gradients of the
second moments are observed, namely, close to the sur-
face and at the inversion base. At the same time the
Canuto et al. (1994) Fig. 10 shows that modeled values
of w92u9 diverge from LES values in the CBL interior.
In other words, the third moment w92u9 immediately
responsible for the nonlocal turbulent transport of po-
tential temperature is best parameterized in the regions
of strong gradients, that is, in the regions where it is of
minor importance (as the nonlocal contribution to ver-
tical transport of potential temperature is comparatively
small). In the CBL interior, however, where gradients
are small and nonlocal transport dominates, the turbu-
lent diffusion parameterization of w92u9 has not met
with success.

As an alternative we propose a turbulent advection
plus diffusion parameterization equally applicable to
both the near-boundary regions and the CBL interior.
To this end, we separately consider two limiting cases.
One is the case of perfect mixing where the vertical
gradients of the mean and second-order quantities van-
ish. The opposite case is where these gradients are
strong. Below we show that the two different models
describing these two cases cannot be reduced to each
other.

a. Symmetry arguments for turbulent advection
formulation

We first consider the CBL interior, where mean gra-
dients vanish and nonlocal transport dominates. To de-
scribe this region, we develop a ‘‘turbulent advection
parameterization’’ for the flux of the flux of potential
temperature. We assume that beyond the boundary
zones, the heat flux is primarily transported by large
eddies (rather than diffused by small-scale turbulence)
so that w92u9 can be expressed as the second-order flux
involved, multiplied by a turbulence velocity, wa, name-
ly,

2w9 u9 5 C w w9u9, (18)u a

where Cu is a dimensionless constant of order 1. The
tensor nature of the lhs of Eq. (18) suggests that the
rhs must be a component of the second-order tensor.
This tensor is formed as a tensor product of the two
vector quantities, the temperature flux, and the tur-
bulence velocity. The vertical components of these
vectors are w9u9 and wa , respectively. Then such a
seemingly natural candidate for the role of wa as the
scalar rms vertical velocity, sw , is inapt. The simplest
expression of wa consistent with the tensor-invariance
requirement reads
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FIG. 1. Schematic illustration of the bimodal bottom-up–top-down
turbulence model. For visual demonstration the probabilities P↓ and
P↑ are identified with squares occupied by updrafts and downdrafts.

3 2w 5 w9 /w9 [ S s , (19)a w w

where Sw is the vertical velocity skewness.1 We can
therefore refer to wa as to ‘‘large-eddy skewed-turbu-
lence advection velocity’’ (LEST advection velocity).

b. Bimodal bottom-up–top-down model of turbulent
advection

Apart from the above phenomenological derivation,
the turbulent advection formulation, Eqs. (18) and (19),
is derived from a bimodal bottom-up–top-down turbu-
lence model that accounts for the transport asymmetry
of the CBL [for other purposes the same model was
already employed by Wyngaard (1987)]. As shown in
Fig. 1, we adopt (i) that positive and negative vertical
velocity fluctuations, w↑ and w↓ take place with the prob-
abilities P↑ and P↓ respectively; and (ii) that the potential
temperature fluctuations, u↑ and u↓, are characterized by
the same probabilities, P↑ and P↓, so that the joint prob-
ability density Pwu is

Pwu 5 P↑d(w9 2 w↑)d(u9 2 u↑)

1 P↓d(w9 2 w↓)d(u9 2 u↓), (20)

where d(x) is the Dirac delta function. The model ob-
viously yields the equations

1 Compare arguments by Wyngaard (1983) and Wyngaard and
Brost (1984) in favor of the transport asymmetry of the CBL, and
incorporation of Sw in the Wyngaard and Weil (1991) turbulence
closure to account for the asymmetry.

P 1 P 5 1, (21)↑ ↓

2 2 2w P 1 w P 5 0, w P 1 w P 5 s ,↑ ↑ ↓ ↓ ↑ ↓ w↑ ↓

3 3 3w P 1 w P 5 S s , (22)↑ ↓ w w↑ ↓

2 2 2u P 1 u P 5 0, u P 1 u P 5 s , (23)↑ ↑ ↓ ↓ ↑ ↓ u↑ ↓

which specify the parameters P↑, P↓, w↑, w↓, u↑, and
u↓. Then, our parameterization for w92u9 , Eqs. (18) and
(19), written as (w92)(w92u9) 5 Cu(w93 ) ( ), is im-w9u9
mediately proved for Cu 5 1 by substituting the ex-
pressions of the rhs and the lhs that follow from Eqs.
(21)–(23) and by performing identical transformations.

The above derivation of the turbulence advection for-
mulation for w92u9 , Eqs. (18) and (19) with Cu 5 1,
was given by Zilitinkevich et al. (1997) and indepen-
dently by Abdella and McFarlane (1997). The latter
authors derived the expression of w92u9 [Eq. (19) in
Abdella and McFarlane (1997)] employing a ‘‘convec-
tive mass-flux model,’’ which differs from our bimodal
bottom-up–top-down turbulence model, Eqs. (21)–(23),
only in that it employs fractional areas occupied by
updrafts and downdrafts [a and (1 2 a) in Abdella and
Mcfarlane (1997)] rather than probabilities P↑ and P↓

(cf. Fig. 1 in which fractional areas are identified with
probabilities).

Remember now that in nonskewed turbulence, our
turbulent advection model predicts no vertical transport
of the potential temperature flux and it should be re-
placed by one or the other turbulence diffusion for-
mulation. Clearly, a turbulence closure that claims to
be realistic and practically sound should embrace both
the turbulent advection and the turbulent diffusion for-
mulations.

c. Interpolation between advection and diffusion
limits

To guess a reasonable functional form for an advec-
tion plus diffusion turbulence closure we consider the
opposite limiting case, where vertical gradients of both
mean quantities and second-order moments are strong.
Then, an expression of the flux of flux, w92u9 , is derived
from the third-order-moment budget equations employ-
ing the quasi-normal approximation for the fourth-order
moments (the Millionshchikov hypothesis). Keeping
w93 in its explicit form, after some algebra and simpli-
fication (see appendix B) the resulting expression reads

31 w9 1 ]Q ]w9u9
2 3w9 u9 5 w9u9 2 tw9 2 K , (24)wu23 w9 2 ]z ]z

where Kwu } tw92 is an appropriate turbulent diffusivity.
Remember that Eq. (24) is nothing but a gradient dif-
fusion formulation. The use of the quasi-normal ap-
proximation leads to the expression of the triple moment

in terms of combination of z derivatives of the sec-3w9
ond moments involved (see, e.g., Canuto et al. 1994).
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In order to derive a formulation suitable throughout the
entire convective zone, we interpolate between the ad-
vection transport formulation, Eqs. (18) and (19), and
the diffusion transport formulation, Eq. (24). The result
is

]Q ]w9u9
2w9 u9 5 w C w9u9 2 C K 2 K , (25)a u k wu wu1 2]z ]z

where Cu and Ck are dimensionless constants.
The following points concerning Eq. (25) and the way

it is arrived at should be discussed in some detail. One
might wonder whether there is any advantage to keep
the third-order moment w93 in its explicit form on the
rhs of Eq. (25).

Consider first the case where mean and second-order
quantities vary strongly with height. In such a case, one
or the other gradient model should hold. It should be
possible to express w93 (and, therefore, also the LEST
velocity wa) in terms of combination of z derivatives of
the second moments (see Canuto et al. 1994). Then, Eq.
(24) is nothing but a gradient approximation written in
a different form. Consider then the opposite case of
perfect mixing where all z derivatives of the mean and
second-order quantities are zero. In this case, Eqs. (B1)–
(B4) (appendix B) based on the quasi-normal approx-
imation lead to the third-order moments that are iden-
tically zero. This is not the case for the bimodal bottom-
up–top-down model, Eqs. (20)–(23), which remains in
force and suggests that w93 should explicitly appear in
the parameterization for w92u9 . Certainly, the problem
of parameterization of w93 remains. The authors should
admit that they have no definitive answer at the moment.
An important observation, however, is that the bimodal
bottom-up–top-down turbulence model and the gradient
model based on the quasi-normal approximation are
suitable for the two ‘‘irreconcilable’’ limiting cases.
These models cannot be reduced to each other.

Free convection in the atmospheric PBL represents
an intermediate case where turbulence is strongly non-
Gaussian but the vertical variations of the second-order
quantities remain. In the light of the above discussion,
the derivations based on the quasi-normal approxima-
tion and the bimodal bottom-up–top-down model should
be considered as the leading arguments that suggest the
form of the terms to be included into parameterization
for the triple moment in question. Equation (25) should
then be considered as a reasonable interpolation formula
that should obey firm physical constraints and, impor-
tantly, should fit empirical and numerical data.

4. Comparison with LES data

In this section we compare the turbulent advection
plus diffusion parameterization, Eq. (25), with data from
an LES of the CBL. The LES model used in the present
study was developed by Moeng (1984) and modified by

Moeng and Wyngaard (1988). Detailed description of
the model can be found in the papers cited.

The model solves filtered Navier–Stokes equations
using a mixed finite-difference pseudospectral method.
Periodic boundary conditions are used in both horizontal
directions. At the underlying surface, the potential tem-
perature flux is prescribed and velocities are set to zero.
Horizontally averaged flux-profile relationships between
the surface and the first grid level above the surface
match the Monin–Obukhov similarity theory. The local,
fluctuating fluxes of heat and momentum are related to
the fluctuating velocity and temperature at the first grid
level through a ‘‘local similarity rule’’ (see Moeng 1984,
for details). The subgrid-scale parameterization is based
on a prognostic equation for the subgrid-scale turbu-
lence kinetic energy. Derivatives in the x and y hori-
zontal directions are evaluated pseudospectrally. The
upper ⅓ of wavenumbers are truncated in Fourier space
for dealiasing. Centered finite differences on a uniform
vertical grid are used with the vertical velocity and sub-
grid-scale turbulence energy staggered with respect to
other variables (horizontal velocity components, poten-
tial temperature, and pressure). The Adams–Bashforth
scheme is used for time stepping and the Poisson equa-
tion for pressure is solved through a mixed fast Fourier
and finite-difference technique.

Two archetypes of the surface-heating-driven con-
vective boundary layer were generated, hereafter re-
ferred to as cases ‘‘I’’ and ‘‘II.’’ In case I, the domain
size is 5000 3 5000 3 2000 m in the x, y, and z di-
rections, respectively, and 96 grid points are used in
each direction. The CBL is capped by a strong tem-
perature inversion above which the temperature increas-
es linearly with height. At the upper boundary of the
numerical domain, the subgrid-scale turbulence energy
is set to zero, the temperature lapse rate is prescribed,
free slip for the horizontal velocity components is used,
and the radiation upper boundary conditions are applied,
which allow internal gravity waves to leave the system.
The initial temperature profile in case I consists of a
mixed layer of depth 1000 m and temperature 300 K
capped by strong temperature inversion where temper-
ature increases linearly by 8 K over six grid intervals,
with the lapse rate 3 3 1023 K m21 above the inversion.

In case II, the domain size is 4000 3 4000 3 900 m
and the number of grid points is 80 3 80 3 60. The
CBL is capped by a thermally insulated no-slip rigid
lid. The temperature of 300 K over the entire domain
is used as the initial condition. The simulations start
with the mixed layer at rest. To facilitate the growth of
convective turbulence, small random disturbances are
added to the initial temperature and velocity fields in
the lower part of the mixed layer, and the subgrid-scale
turbulence energy is set to a small value. The model is
then run for several large eddy turnover times, defined
as t* 5 , at which point the sampling of three-21hw*
dimensional fields is started. The spinup time is 6t* in
case I and 4t* in case II.
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FIG. 2. LEST advection velocity wa, Eq. (19), calculated from LES
runs I and II.

FIG. 3. Vertical profile of the flux of flux of potential temperature.
Dotted lines are data from LES runs I and II; solid lines are computed
from Eq. (25) with Cu 5 1 and Ck 5 0.1; and dashed lines from the
quasi-normal approximation, Eq. (24).

Turbulent statistics discussed below are built by
means of averaging over horizontal planes and over a
number of recorded time steps (40 and 60 equidistant
samples in cases I and II, respectively) as an approxi-
mation to the ensemble average. The sampling period
covers about 12 large eddy turnover times. Only re-
solved-scale fields are used to compute the third-order
moments since the subgrid-scale contribution is not
available from our LES data. All curves in figures are
normalized with the convective length h, velocity w*,
and temperature u* scales.

The LEST advection velocity wa is shown in Fig. 2.
It increases away from the surface, having a maximum
above the CBL midplane. The spurious negative values
of wa in the near vicinity of the underlying surface are
caused by inability of the LES model to appropriately
handle the surface layer. The major concern in the pres-
ent study, however, is the bulk of the CBL. Here, results
from LES are hardly deteriorated by the above defi-
ciency (see Schmidt and Schumann 1989).

Figure 3 compares the LES flux of flux of potential
temperature, w92u9 , with its approximation through Eq.
(25) taking Cu 5 1 and Ck 5 0.1. The turbulent dif-
fusivity Kwu is computed as 0.2t , where the com-2s w

monly accepted value of the dimensionless coefficient
(0.2) is taken. The estimate of Cu 5 1 follows from the
bimodal bottom-up–top-down turbulence model dis-
cussed above, Eqs. (20)–(23). The same value of Cu 5
1 is the maximum allowable value that obeys the real-
izability conditions for the other limiting case, when the
quasi-normal approximation is used (see appendix A).

The estimate of Ck 5 0.1 is obtained by fitting the LES
data by eye. In doing so, only one significant digit is
kept, which is consistent with the accuracy of the other
empirical constants. As seen from Fig. 3, in both cases
the proposed parameterization for the third-order mo-
ment fits LES data well over most of the CBL. The flux
of flux of potential temperature calculated from the qua-
si-normal approximation, Eq. (24), is also shown for
comparison. Here, in both cases, w92u9 is underesti-
mated in mid-CBL. In case I with strong capping in-
version, quasi-normal approximation strongly overes-
timates w92u9 near the CBL top where the temperature
gradient is strong.

The above analysis suggests empirical (LES) esti-
mates
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FIG. 4. Dimensionless Green functions G(z, z9), Eqs. (29)–(33),
normalized with the CBL depth. The minimum and maximum values
are 20.1 and 5.8 in case I, and 21.8 and 9.8 in case II. Contour
lines (30 in each case) are equally spaced.

c6 5 3, c7 5 0.4, Ck 5 0.1, Cu 5 1. (26)

These values of dimensionless constants are used in
further calculations shown in Figs. 4–7.

5. Flux transfer equation for potential
temperature

a. Nonlocal integral closure

Employing our turbulent advection plus diffusion pa-
rameterization for the flux of flux of potential temper-
ature, Eq. (25), together with conventional parameter-
ization for the pressure gradient–temperature covari-
ance, Eq. (10), the steady-state version of the potential
temperature flux budget equation, Eq. (3), reads

] ] ] ]w 1aK w9u9 2 C w w9u9 2 C 1 w9u9wu u a u1 2]z ]z ]z ]z tp

]Q ] ]Q
2 25 2(1 2 c )bs 1 s 2 C w K .7 u w k a wu1 2]z ]z ]z

(27)

The first and the second terms on the lhs of Eq. (27)
represent vertical transport of w9u9 due to the down-
gradient flux diffusion and due to the flux advection,
respectively. The third term on the lhs may be referred
to as the flux decay term as its main part, w9u9 /t p,
originates from the pressure gradient–potential temper-
ature covariance, the sink term in the flux budget equa-
tion. A correction to the relaxation timescale occurs due
to vertical changes of the LEST velocity. The rhs of Eq.
(27) includes, from left to right, the production of the
potential temperature flux by the buoyancy forces par-
tially offset by buoyancy contribution to the pressure
gradient–potential temperature covariance, the flux pro-
duction/destruction due to the vertical gradient of mean
potential temperature, and a correction term that orig-
inates from our parameterization of the third-order tur-
bulent transport. The expression on the rhs of Eq. (27)
could be loosely referred to as the source function.

It is worth mentioning that Eq. (10) for the pressure
gradient–potential temperature covariance, although ap-
plies well to the CBL interior, may not be accurate near
the boundaries. As pointed out by Moeng and Wyngaard
(1986), the coefficient c7 depends on the stability and
structure of the inversion layer at the CBL top. As the
major concern of the present study is nonlocal transport
and consequently the third moment describing the flux
of flux of potential temperature, we accept this defi-
ciency and employ Eq. (10) with c6 5 3 and c7 5 0.4
throughout the CBL. The errors resulting from poor
parameterization of the pressure term will manifest
themselves in the expression of the source function on
the rhs of Eq. (27).

We assume that all parameters involved are known
functions of vertical coordinate z. In other words, we
perform a diagnostic test of the proposed closure model.
Using LES data to specify the dependence on z of both
the rhs of Eq. (27) and the coefficients on the lhs of
Eq. (27), we examine the ability of the model to repro-
duce a well-known linear profile of the potential tem-
perature flux in the CBL.

As seen from Eq. (27), our turbulent advection plus
diffusion parameterization introduces a correction to the
relaxation timescale t p due to vertical changes of the
LEST advection velocity wa. This explains the fact that
the combination that appears in the flux budget equation
as an effective relaxation timescale, namely,

tp
t 5 , (28)r 1 1 C t ]w /]zu p a

can be essentially different from the turbulence energy
dissipation timescale t , Eq. (11).
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FIG. 5. Vertical profile of the potential temperature flux, w9u9 , in
cases I and II. Dotted lines show LES data. Solid lines show our
nonlocal closure model, Eq. (31) [or Eqs. (27)–(30)], with Cu 5 1
and Ck 5 0.1. Dashed and dot–dashed lines show the Gaussian model,
Eq. (31) with Cu 5 ⅓ and Ck 5 ½, and the diffusion model, Eq. (31)
with Cu 5 Ck 5 0.

The boundary conditions for Eq. (27) are

w9u9 5 w9u9 at z 5 0, (29)0

w9u9 5 w9u9 at z 5 h, (30)h

where the heat flux due to entrainment, w9u9 h, should
be specified at the CBL top. Using this upper boundary
condition we limit our closure model to the CBL interior.
The heat transport in the inversion capping of the CBL
is a separate problem beyond the scope of the present
study.

Since Eq. (27) is a linear differential equation for
w9u9 , the solution to the equation subject to boundary
conditions (29) and (30) is given in terms of the Green
function, namely,

h ]Q
2 2w9u9 5 2 t s 2 (1 2 c )bsE r w 7 u[ ]z90

] ]Q
2 C w K G(z, z9) dz9. (31)k a wu1 2]]z9 ]z9

The Green function G(z, z9) is the solution to the equa-
tion

LG(z, z9) 5 d(z 2 z9), (32)

holding the boundary conditions, Eqs. (29) and (30),
where the linear operator L is

] ] ]
L 5 t K 2 C w 2 1. (33)r wu u a1 2]z ]z ]z

The Green function computed from the LES runs I and
II (see section 4) is shown in Fig. 4.

In Fig. 5 LES data are employed to test the proposed
parameterization for the potential temperature flux w9u9 ,
Eq. (31). Good correspondence between the model pre-
dictions and LES data is achieved taking Cu 5 1 and
Ck 5 0.1. This indicates the non-Gaussian nature of
convective turbulence. The Gaussian version of Eq. (31)
(taking Cu 5 ⅓ and Ck 5 ½) and the purely diffusion
version (taking Cu 5 Ck 5 0) show worse results.

b. Decomposition into local and nonlocal components

Equation (31) is nothing but an integral generally
nonlocal turbulence closure. Here, the values of the
Green function G(z, z9) at the diagonal z 5 z9 charac-
terize the local transport and the values at z ± z9 the
nonlocal transport. Equation (31) presents a convenient
tool for analyzing various contributions to the vertical
flux of potential temperature.

Thus, assuming decomposition

G(z, z9) 5 d(z 2 z9) 1 G0(z, z9), (34)

a number of earlier closure schemes are derived from
Eq. (31). To classify local schemes, we set G0(z, z9) [
0, which immediately results in Eq. (2) with the eddy

diffusivity KH and the nongradient correction gH given
by

2t sp w
K 5 ,H 1 1 C t ]w /]zu p a

2(1 2 c )bs C ] ]Q7 u kg 5 1 w K . (35)H a wu2 2 1 2s s ]z ]zw w

This generalized local parameterization includes

1) downgradient approximation, Eq. (1), taking Cu 5
0, Ck 5 0, and c7 5 1;

2) a format similar to the Deardorff (1972) and the
Troen and Mahrt (1986) countergradient correction,
Eq. (5), taking Cu 5 0, Ck 5 0 and 0 # c7 , 1 (the
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FIG. 6. Vertical profiles of the potential temperature flux in cases
I and II computed diagnostically from different local closures
using LES profiles of mean temperature and turbulence parameters
involved. Dot–dashed lines show the downgradient approxima-
tion, Eq. (1); short dashed lines the Deardorff countergradient
correction closure, Eq. (5); long dashed lines the Wyngaard and
Weil (1991) nongradient closure, Eq. (15); and solid lines the
generalized local closure, Eqs. (2) and (35) with Cu 5 1 and Ck

5 0.1. Dotted lines show the reference profiles calculated im-
mediately from LES.

Troen and Mahrt formulation further assumes that
/ is z independent); and2 2bs su w

3) nongradient transport asymmetry formulation prin-
cipally similar to the Wyngaard and Weil (1991) Eq.
(15), taking Cu 5 0, Ck ± 0, and c7 5 1.

Figure 6 shows results from diagnostic evaluation of
the above local turbulence closures against data from
our LES runs I and II. To attain these ends, mean po-
tential temperature Q and turbulence parameters that
appear in the parameterizations involved, , , Kwu,2 2s bsw u

and wa, are taken immediately from LES. As the basic
earlier local closures are particular cases of Eqs. (2) and
(35), the curves in Fig. 6 present different versions of
the above equations. The reference ‘‘empirical’’ flux
profiles are taken from LES.

As seen from the figure, the downgradient approxi-
mation overestimates w9u9 in the surface layer and un-
derestimates it in the CBL interior. Since the Deardorff
correction is positive, it improves the approximation in
the upper two-thirds of CBL but makes it worse in the
lower portion of the layer. The generalized local ‘‘ad-
vection plus diffusion’’ formulation is close to the Dear-
dorff closure in the CBL interior. In the lower portion
of the CBL it performs better, except for the near vicinity
of the surface where it overestimates w9u9 . By and large
this parameterization, Eqs. (2) and (35) with Cu 5 1
and Ck 5 0.1, seems to perform slightly better than other
local closures although, generally speaking, all of them
leave much to be desired.

Needless to say, Eq. (34) allows one to decompose
the flux w9u9 into the local-transport and nonlocal-
transport contributions given by w9u9 [Eqs.(2),(35)] and
w9u9 [Eq.(31)] 2 w9u9 [Eqs.(2),(35)] , respectively. To put it dif-
ferently, it provides a mathematically rigorous proce-
dure for the Frech and Mahrt (1995) decomposition,
Eq. (13).

c. Decomposition into bottom-up and top-down
components

We employ the following representation of the Green
function:

G(z, z9) 5 Gb(z, z9) 1 Gt(z, z9), (36)

where Gb(z, z9) is the contribution to G(z, z9) from below
the diagonal z 5 z9 (including the diagonal itself ) that
accounts for the lower boundary condition (29), and
Gt(z, z9) is the contribution to G(z, z9) from above the
diagonal z 5 z9 that accounts for the upper boundary
condition (30). Then the potential temperature flux im-
mediately decomposes into two parts,

w9u9 5 w9u9 1 w9u9 , (37)b t

calculated from Eq. (31) with G(z, z9) replaced by
Gb(z, z9) and Gt(z, z9), respectively. Equations (36) and
(37) equip the Wyngaard concept of the bottom-up and
top-down diffusion with a mathematically rigorous al-
gorithm for the decomposition.

Figure 7 shows the modeled potential temperature
flux (w9u9 ; solid lines) together with its bottom-up (b)
and top-down (t) components (w9u9 b and w9u9 t; dashed
and dotted lines, respectively) specified using the Green-
function formulation, Eqs. (36) and (37). Here, the b
component dominates since the driving force for con-
vection is the bottom heating.

An important point is that vertical profiles of both b-
and t-components are essentially nonlinear even though
the total flux decreases nearly linearly with height. By
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FIG. 7. Decomposition of the potential temperature flux w9u9 em-
ploying integral closure, Eq. (31), with decomposed Green function,
Eq. (36), in cases I and II. Total flux is shown by solid lines, the
bottom-up component w9u9 b by dashed lines, and the top-down com-
ponent w9u9 t by dotted lines.

this means our Green-function decomposition differs
from conventional heuristic bottom-up–top-down de-
composition, which adopts linear b- and t-flux profiles
as a sort of axiom. In particular, our formulation sug-
gests essentially nonzero top-down flux w9u9 t in non-
penetrative convection (our run II with no entrainment
at the CBL top, w9u9 h 5 0). We remember that con-
ventional formulation scales w9u9 t with w9u9 h and there-
fore suggests w9u9 t 5 0 in the regime in question. This
implies no contribution to total transport from down-
drafts, which seems unrealistic.

6. Conclusions

An advanced nonlocal turbulence closure scheme is
developed for the potential temperature flux in convec-
tive boundary layers. It provides better understanding
and improved parameterization of the third-order trans-
port in the budget equation for the potential temperature
flux.

As an alternative to traditional turbulence diffusion
parameterization, a new turbulence advection plus dif-
fusion parameterization for the flux of flux of potential
temperature, w92u9 , is developed. In the CBL interior
(away from the underlying surface and the inversion
layer) the flux in question, w92u9 , is shown to be pro-
portional to the second-order flux involved, w9u9 , mul-
tiplied by a large eddy skewed-turbulence advection ve-
locity (LEST advection velocity), wa, Eq. (19). To em-
brace the entire convective zone, an interpolation be-
tween this turbulence advection formulation and a
version of turbulence diffusion formulation is derived.
Comparison of the resulting parameterization, Eq. (25),
with LES data shows good agreement throughout the
CBL.

Using the proposed parameterization for the third-
order flux w9 2u9 together with traditional formulation
for the pressure gradient–temperature covariance re-
sults in a nonlocal closure, Eq. (27), for the second-
order flux w9u9 . The solution to Eq. (27) in terms of
the Green function, Eq. (31), provides a convenient
tool to distinguish between local and nonlocal contri-
butions to w9u9 and to classify a number of earlier
turbulence closure schemes. These include the simplest
downgradient approximation, some known counter-
gradient and nongradient correction formulations and
a nonlocal integral closure.

The proposed nonlocal turbulence closure is diag-
nostically tested against LES data. The model fairly
accurately reproduces practically linear vertical profiles
of the potential temperature flux in the CBL. It can be
adjusted to practical applications in numerical models,
provided that the turbulence parameters involved, sw,
su, t , and Sw, are known. The latter can be either cal-
culated from the appropriate budget equations or taken
as given empirical functions, for example, those spec-
ified with the aid of revised versions of the shear-free-
convection scaling (Sorbjan 1988, 1989; Hartmann

1990) and generalized scaling for convective sheared
flows (Zilitinkevich 1994).

The proposed Green-function formulation for the po-
tential temperature flux provides mathematically rig-
orous decomposition of the flux in question into the
bottom-up and top-down components. These compo-
nents are shown to be essentially nonlinear functions of
height within the well-mixed layer, in striking contrast
to conventional assumption of linearity. Moreover, the
proposed decomposition exhibits essentially nonzero
top-down flux in the nonpenetrative convection regime,
once again contrary to traditional routes. It puts us on
the right track for development of a rigorous bottom-
up–top-down decomposition for other statistics and for
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revision of scaling formulations for both shear-free and
sheared convection.

Physical ideas underlying our approach diverge from
classic turbulence closure philosophy, according to
which a flux in question is expressed as a function of
turbulence moments of the same or the lower order.
Our parameterization for the potential temperature flux
w9u9 (the second-order moment) involves not only the
first-order moment (potential temperature gradient ]Q/
]z) and the second-order moments (rms vertical ve-
locity and temperature, sw and su), but also the third-
order moment, namely, the vertical velocity triple cor-
relation w93 , or alternatively the vertical velocity skew-
ness [cf. the earlier Wyngaard and Weil (1991)
formulation for the passive scalar transport that in-
cludes the skewness in the expression of the second-
order turbulent flux].

The proposed advection plus diffusion turbulence clo-
sure is likely to be applicable also to the passive scalar
transport in near-neutral skewed turbulence. In that case,
taking b 5 0, that is, considering the quantity u in Eqs.
(27), (29), and (30) as a passive scalar, our derivation
basically remains in force. Moreover, an attempt could
be made to apply a similar approach, employing an ad-
vection plus diffusion closure, to the momentum trans-
port [for earlier nonlocal momentum-transport models
see Lykossov (1992)].
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APPENDIX A

Realizability Conditions

We consider the realizability conditions (see Andre
1976; Schumann 1977) for the turbulence advection pa-
rameterization for the flux of flux of potential temper-

ature, Eqs. (18) and (19). The Schwartz inequality ap-
plied to the third-order moment, w92u9 , and the second-
order moment, w9u9 , reads

2 2 2 2 4 2(w9 u9) # min[(w9u9) w9 , w9 u9 ], (A1)

|w9u9| # s s . (A2)w u

Applying the quasi-normal Gaussian approximation,

a9b9g9d9 5 a9b9 g9d9 1 a9g9 b9d9 1 a9d9 b9g9, (A3)

to the fourth-order covariances on the rhs of Eq. (A1)
yields

2 2 2 2 2|w9 u | # min[s Ïs s 1 2(w9u9) , Ï3s s ]. (A4)w w u w u

Then substituting w9u9 from Eq. (A2) yields
2 2˜ ˜|w9 u9| # C s |w9u9|, C 5 Ï2 1 1/c , (A5)u w u

where c 5 w9u9 /(swsu) # 1 is the correlation coeffi-
cient. The same procedure for w92u9 parameterized
through Eq. (18) yields

2|w9 u9| # Ï3C s |w9u9|. (A6)u w

Taking c 5 1, the minimum of the rhs of the first formula
in Eq. (A5) is 3sw |w92u9 |. Then the strongest con-Ï
straint, namely, that the lhs of Eq. (A6) does not exceed
the above minimum, yields Cu # 1.

APPENDIX B

Heuristic Arguments in Support of the Advection
Plus Diffusion Turbulence Closure, Suggested by

the Third-Order-Moment Budget Equations

We express the fourth-order moments in the budget
equations for the third-order moments w9 2 u9 , w9u9 2 ,
w9 3 , and u9 3 through the second-order moments using
quasi-normal approximation and apply a return-to-
isotropy approximation similar to Eq. (10) for the
pressure terms. In the steady state, the resulting equa-
tions read (e.g., Moeng and Randall 1984; Canuto et
al. 1994)

22 ]w9
21 2 2c t w9 u9 2 2 1 2 c bw9u9 1 w9u98 111 23 ]z

]Q ]w9u9
3 25 2 w9 1 2w9 , (B1)1 2]z ]z

]Q
2 21 2 32w9 u9 1 c t w9u9 2 (1 2 c )bu98 11]z

2]w9u9 ]u9
25 2 2w9u9 1 w9 , (B2)1 2]z ]z

2]Q ]u9
2 21 33w9u9 1 c t u9 5 23w9u9 , (B3)10]z ]z

2]w9
2 2 21 33(1 2 c )bw9 u9 2 3w9 5 c t w9 , (B4)11 8]z
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where c8, c10, and c11 are positive dimensionless con-
stants (c11 , 1). In the conventional derivation of dif-
fusion-type closure models, Eqs. (B1)–(B4) are solved
for the four third-order moments that are thus expressed
in terms of the second-order moments and mean profiles.
By contrast, we keep the third moment w93 as a basic
governing parameter and solve Eqs. (B1)–(B4) for the
three third-order moments, w92u9 , w9u92 , and u93 , and
the gradient of the second-order moment, ]w92 /]z. This
yields the expression of the flux of flux of potential
temperature,

2]w9u9 ]u9
2w9 u9 5 2a K 2 a btK1 wu 2 wu]z ]z

31 w9 1 ]Q
31 h w9u9 2 h tw9 , (B5)1 123 w9 2 ]z

with the eddy diffusivity given byKwu

5 2t /c8,2K swu w (B6)

where a1 , a 2 , and h1 are functions of two dimension-
less combinations, R1 5 t 2 b]Q/]z and R 2 5 tbw9u9 /

,2s w

2
a 5 h 1 1 h R , (B7)1 1 2 2[ ]c8

h h 3(1 2 c )1 2 11a 5 1 1 R , (B8)2 2[ ]c c8 10

2122 1 2 c11h 5 1 1 h R 1 R , (B9)1 2 1 21 2[ ]c c8 8

and h2 is one more function
21

2 3(1 2 c )11h 5 1 2 c 1 1 R . (B10)2 11 11 2[ ]3 c c8 10

Here, R1 is the ratio of the dissipation timescale t toÏ
the buoyancy timescale N21 (N 2 5 b]Q/]z being the
squared buoyancy frequency), and R2 is the ratio of the
buoyant diffusivity t 2bw9u9 to the mechanical diffu-
sivity .2ts w

In the CBL interior, the mean potential temperature
gradient ]Q/]z is small. Hence, R1 ø 0, and the above
functions depend only on R 2 . As long as R 2 is also
small, Eqs. (B7)–(B10) reduce to a1 ø 1, a 2 ø 0.1,
h1 ø 1, and h 2 ø 0.9 (adopting conventional values
of c 8 5 8 and c11 5 0.2; see Moeng and Randall 1984).
Provided that vertical gradient of the potential tem-
perature variance ]u9 2 /]z is small, Eq. (B5) reduces to
Eq. (24).
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