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Abstract—The aim of this paper is twofold : To present an efficient numerical technique for the

simulation of the ocean general circulation (OGC) and to apply it to the simulation of the Indian Ocean

dynamics with high spatial resolution. To solve model equations we use the splitting method by physical

processes and space coordinates. We select the main parts of the model operator and then perform their

numerical treatment independently of one another. We describe the general methodology and some special

aspects of this approach. Numerical treatment of the monsoon circulation is performed on the basis of the

sigma-coordinate primitive equation model, which was developed at the Institute of Numerical

Mathematics (Moscow, Russia). We present and briefly analyze the results of the numerical experiment

with high spatial resolution 1/8� along latitude, 1/12� along longitude, and with 21 vertical sigma levels.

Key words: Ocean dynamics, monsoon circulation, numerical methods, sigma coordinate, splitting

technique.

1. Introduction

The monsoon atmosphere circulation is a key process of the natural environment

in the Indo-Asian region (SINGH et al., 1990; SHUKLA and PAOLINO, 1983). The

peculiarities of the monsoon circulation affect all aspects of life in the countries

situated on the coast of the Indian Ocean. The monsoon precipitation regime above

India, the time at which the rainy season begins, rainfall intensity, and the duration

of precipitation are the main indicators of the forecast which are necessary for

agriculture and industry of India (RAJEEVAN, 2003).

A great amount of heat and moisture, which enters the atmosphere from the

surface of the Indian Ocean, defines the peculiarities of the summer southwest

monsoon (SINGH et al., 1983). The circulation of the Indian Ocean redistributes heat

in the upper ocean layer and consumes the wind energy of the atmosphere and
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therefore it is of vital importance in the formation and maintenance of the monsoon

regime.

To know the structure and the variability of such characteristics of the ocean as

sea-surface temperature, heat storage in the upper mixed layer, and currents is

necessary for predicting the monsoon circulation. The adequate simulation of the

interaction of the atmosphere and the Indian Ocean calls for the development of the

system of oceanic observational data assimilation (BARNIER et al., 1994; WENZEL

et al., 2001), in the on-line operation as well. When solving the above problem it is

impossible to do without modern hydrodynamical models of the circulation of the

Indian Ocean.

The aim of the present work is to develop efficient numerical methods of

predicting the ocean dynamics. These methods are used for calculating the monsoon

circulation in the Indian Ocean, which is characterized by the unique seasonable

cycle and complex spatial and temporal variability (SHANKAR et al., 2002). A

dramatic peculiarity of the north Indian Ocean is that its currents are radically

changed under the action of variable winds of summer and winter monsoons. The

observational data show that most currents in the north Indian Ocean reverse their

direction from winter to summer (SHANKAR et al., 2002). For the adequate

simulation of the complex dynamics of the Indian Ocean and the peculiarities of its

eddy structure it is necessary to use models with high spatial resolution, which are

physically complete and numerically efficient. We dwell on two aspects of numerical

simulation of the ocean dynamics. These are the development of an efficient

numerical technique and its application to the simulation of the complex dynamics of

the Indian Ocean with high spatial resolution.

OGC models are extremely complex, developing systems. They are based on

nonlinear differential equations describing the evolution of three-dimensional

velocity, temperature, salinity fields as well as pressure and density. Two main

parts can be singled out in the operator of the system of ocean dynamics

equations. The first one is the classical established basis, viz. a subsystem

describing the dynamics of rotating fluid in the framework of approximations

traditional in oceanology (BRYAN, 1969; GILL, 1982; MARCHUK and SARKISYAN,

1988). The second one includes physical parameterizations of various kinds, which

change as we gain a better understanding of natural phenomena (GRIFFIES et al.,

2000). On this basis we use the decomposition of the problem operator i.e., the

splitting method by physical processes as a building block to construct the model

and develop efficient numerical methods for solving it. On physical grounds we

select the main parts of the operator and then perform their numerical treatment

independently of one another. Here we present this line of investigation. We give

considerable attention to the description of general methodology of the model

construction and the methods of solving the classical part of the OGC equations,

we do not dwell on subgrid parameterization. The approach proposed is applied

to the solution of the problem of the dynamics of the Indian Ocean. We present
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and briefly analyze the results of the numerical simulation of the seasonal cycle of

the Indian Ocean circulation with high spatial resolution 1/8� along latitude, 1/12�
along longitude, and with 21 vertical levels.

Numerical treatment of the monsoon circulation is performed on the basis of one

version of the model of ocean dynamics, which was developed at the Institute of

Numerical Mathematics (ZALESNY, 1996; DIANSKY et al., 2002). The model is based

on primitive equations in the Boussinesq, hydrostatics, and ‘‘rigid lid’’ approxima-

tions, which are written at the bottom following the r-coordinate system. In the

model the horizontal components of the velocity vector, potential temperature, and

salinity are prognostic variables, while the vertical velocity and pressure are

diagnostic ones.

The main peculiarity of the model, which distinguishes it from the other ocean

models (see the review by GRIFFIES et al., 2000), is that the numerical technique is

based on the splitting method by physical processes and space coordinates

(MARCHUK, 1980, 1988). To this end, ocean model equations are written in special

symmetrized form. The form of the equations is chosen so that it is convenient to

represent the operator of the differential problem as a sum of simpler operators, each

being nonnegative in the norm defined by the law of conservation of total energy.

This enables one to split the operator of the complete problem into a set of simpler

operators and construct spatial approximations of the corresponding groups of terms

(in different equations) so that the ‘‘energy’’ relation (the conservation law) which

holds for the original differential problem should hold for all the splitted discrete

problems.

Splitting of model equations is performed at several levels. The macro-level of

splitting is splitting of three-dimensional equations by physical processes. At higher

levels the process of splitting selects the simplest locally one-dimensional (with

respect to the space) equations. For example, the transport-diffusion equation for the

tracer is solved along separate coordinates.

The outline of this paper is as follows. In Section 2 we discuss the key features of

our approach to the construction and implementation of the OGC model, which is

based on the splitting method. The essence of the method is illustrated by simple

examples. In Section 3 we formulate the OGC equations, describe the architecture of

the splitted model, transformations of the equations at separate splitting stages: their

symmetrization and regularization. Particular emphasis is placed upon the choice of

the special symmetrized form of ocean dynamics equations in the r-coordinate
system. We provide the form of equations, which allows one to diminish the error of

approximation of horizontal pressure gradients on the given profile of vertical

density stratification. In Section 4 we discuss the performance and results of the

numerical experiment on simulation of the monsoon circulation in the north Indian

Ocean with high spatial resolution 1/8��1/12��21 (steps along latitude, longitude,

and the number of r-levels along the vertical, respectively). In Section 5 we formulate

the main conclusions.
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2. The Splitting Method as a Methodological Basis for the Construction of a Numerical

Model of a Complicated Physical Process

The key points of the approach proposed are as follows.

• The methodological basis for the construction of numerical models of different

complexity levels is the splitting method.

• The splitting method can be considered not only as a cost-effective method of

integrating the complex OGC problem with respect to the time but as the basis for

the construction of the hierarchical model system as well.

• In the framework of the unified approach there can be constructed a particular

model of ocean dynamics of a different complexity: from the point of view of its

physical completeness, dimension, and spatial resolution.

• The splitting method is defined for solving systems of equations with nonnegative

operators. This property is established a priori for the differential problem

considered. We find an integral invariant or a conservation law which holds in the

model in the absence of external sources and internal energy sinks.

• When using the splitting method the form of a differential problem is of great

importance. The most convenient form of equations is their symmetrized form. By

the symmetrized form we mean the form of equations, which satisfies the

conditions:

— the symmetrized form gives the form of the adjoint operator, which is close to

the original one,

— this form leads to the finite difference approximation retaining the main

properties typical of original differential operators (symmetry, skew-symmetry,

nonnegativeness),

— from the form naturally follows the splitting of the problem operator into the

sum of simple nonnegative operators.

• The key point of the construction of a splitted hierarchical model system and the

method of its solution is the decomposition of the original problem into the set of

simple subproblems with nonnegative operators.

The choice of this splitting is frequently nontrivial and not unique (MARCHUK et al.,

1987). The splitting process reduces to the choice of a set of separate problems of

simpler structure. The established conservation law holds for every selected problem.

Several levels of different depth can be selected in splitting. The splitting macro-level

is based on splitting by physical processes. The simplest one-dimensional (with

respect to space) problems can be selected at higher levels.

• On splitting the problem at a macro-level the transformation of the problem at

some stage can be required. This can be, for example, filtration (simplification) of

equations and regularization i.e., the inclusion of additional terms which can

improve the numerical algorithm.

1410 G.I. Marchuk et al. Pure appl. geophys.,



� Software and algorithms for solving splitted problems.

On regularizing the splitting stages the question of the choice of a method for

solving the problem at the selected stage arises. When choosing a space-

approximation technique the property of the selected problem should be taken

into account. Different problems (at some stages) can call for different approx-

imation techniques and solvers. In general, the joint model can combine finite-

difference schemes and finite-element ones; some problems can be approximated

with a higher order of accuracy and so on.

• Module principle and the model software.

The natural property of the splitted model is its module principle: a separate problem

— a separate module. The joint model can be ‘‘composed’’ of the different number of

modules. The computational characteristics of the model can be improved by

changing separate computational modules. Mathematical aspects of the splitting

method and its application to the solution of a wide class of physical problems are

presented in SAMARSKII (1962), YANENKO (1967), and MARCHUK, (1980, 1988).

The essence of the method is the following. Suppose there is the nonstationary

problem

@u
@t
þ Au ¼ f ; t 2 ð0; T �;

u ¼ u0 t ¼ 0
ð2:1Þ

where A is a nonnegative operator which can be represented as superposition of

simpler operators Ai i ¼ 1; 2; 3; :::; Ið Þ:

A ¼
XI

i¼1
Ai Ai � 0; 8i:

To solve (2.1) we use the following method. We reduce the solution of the original

problem with the complex operator A to the solution of a set of problems with

simpler operators Ai. For example, if A ¼ A1 þ A2, we can use the following two-cycle

splitting scheme (MARCHUK, 1988; MARCHUK and SARKISYAN, 1988) to solve the

problem (2.1):

E þ s
2

A1

� �
uj�1=2 ¼ E � s

2
A1

� �
uj�1;

E þ s
2

A2

� �
uj ¼ E � s

2
A2

� �
uj�1=2; ð2:2Þ

�u ¼ uj þ 2sf j;

E þ s
2

A2

� �
ujþ1=2 ¼ E � s

2
A2

� �
�u;

E þ s
2

A1

� �
ujþ1 ¼ E � s

2
A1

� �
ujþ1=2; j ¼ 1; 2; :::; J � 1; u0 ¼ uðt ¼ 0Þ; s ¼ T =J :
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The scheme (2.2) is absolutely stable and approximates (2.1) with the second order of

accuracy with respect to time, provided s
2 Aik k < 1.

To solve (2.1) we can also use the simple implicit splitting scheme:

�u ¼ uj þ sf j;

E þ sA1ð Þujþ1=2 ¼ �u; ð2:3Þ
E þ sA2ð Þujþ1 ¼ ujþ1=2:

The scheme (2.3) is absolutely stable and approximates (2.1) with the first order of

accuracy with respect to time. It is more cost-effective than (2.2) but less accurate

with respect to time.

The splitting method can be used more widely; on its basis we can develop a

numerical model of a complicated process. We can improve the original model by

including additional splitting stages into (2.2) or (2.3). We can change the original

model. For example, on splitting the problem into a chain of subproblems we can

change (simplify and/or regularize) the problem at some stage.

We present a simple example. Assume that when solving some problem we use the

procedure of filtering out high-frequency harmonics along the x-coordinate from

the solution. To this end, at each time step j we recalculate the vector solution uj by

the formula

�ui ¼ uj
iþ1 þ 2uj

i þ uj
i�1

� �
=4:

Writing this formula as

ð�ui � uj
i Þ=s ¼

h2

4s
uj

iþ1 � 2uj
i þ uj

i�1
� �

=h2;

we see that the filtering procedure can be considered as the inclusion of an additional

splitting stage. At the additional stage we solve the diffusion equation by the explicit

scheme:

@u
@t
¼ lsuxx;

where ls is the coefficient of computational viscosity:

ls ¼ h2

4s
:

It is not difficult to show that if there is viscosity with the coefficient no less than ls at

one of the splitting stages implemented implicitly, then the numerical scheme is

absolutely stable.
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3. Mathematical Model of Ocean Dynamics

We present the mathematical formulation of the ocean dynamics problem. In the

spherical coordinates k; h; zð Þ we have (BRYAN, 1969; ZALESNY, 1996)

du
dt
� l� m � cos h � uð Þv ¼ � m

q0

@p
@k
þ @

@z
mu
@u
@z
þ Fu;

dv
dt
þ l� m � cos h � uð Þu ¼ � n

q0

@p
@h
þ @

@z
mv
@v
@z
þ Fv;

@p
@z
¼ gqw; ð3:1Þ

m
@u
@k
þ @

@h
n
m

v
� �� �

þ @w
@z
¼ 0;

dT
dt
¼ @

@z
mT
@T
@z
þ F T ;

dS
dt
¼ @

@z
ms
@S
@z
þ F S ;

qw ¼ qw T ; S; pð Þ; in D k; h; zð Þ

where

d
dt
¼ @

@t
þ mu

@

@k
þ nv

@

@h
þ w

@

@z
;

F � ¼ m2 @

@k
l�
@�

@k
þ mn

@

@h
l�

n
m
@�

@h
:

The system of equations (3.1) is considered on the time interval (0,t] in the three-

dimensional domain D. The domain D is bounded by the boundary @ D which

consists of the undisturbed sea surface z= 0, the lateral (coastal) surface
P

, and the

bottom relief H(k; h).
The corresponding boundary and initial conditions are added to the above system

of equations. In particular, along the vertical coordinate we have for z ¼ 0:

mu
@u
@z
¼ � s1

q0

; mv
@v
@z
¼ � s2

q0

; w ¼ 0; ð3:2Þ

mT
@T
@z
¼ DT ðTS � T Þ þ QT ; mS

@S
@z
¼ DSðS0 � SÞ þ QS ;

for z = H(k; h):

w ¼ m
@H
@k

uþ n
@H
@h

v: ð3:3Þ

On the lateral surface
P

we give the no-slip condition and the conditions of no heat

and salt fluxes at the bottom and on
P

.
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We give initial conditions for t = 0:

u ¼ u0; v ¼ v0; T ¼ T 0; S ¼ S0: ð3:4Þ

Here k is the longitude, h ¼ 90þ w, where w is the latitude, z is the vertical

downward coordinate, (u,v,w) is the velocity field, T is potential temperature, S is

salinity, p is pressure, qw is seawater density which is the known function of potential

temperature, salinity, and pressure ; the terms F u; . . . ; F S describe the horizontal

turbulent transport; mu, mv, mT , mS are the coefficients of vertical turbulent diffusivity;

lu, lv, lT , lS are the corresponding coefficients of horizontal diffusivity, l is the

Coriolis parameter: l ¼ �2X cos h; m ¼ 1
r sin h ; n ¼ 1

r ; r is the radius of the earth.

The procedure of constructing the numerical model and the algorithm for its

numerical treatment includes several successive steps (ZALESNY, 1996). We outline

the procedure.

3.1 The Ocean Dynamics Equation in the r-coordinate System

The first step of the transformations consists in introducing the r-coordinate
system. The r-transformation introduced into atmospheric models by Phillips more

than 40 years ago (PHILLIPS, 1957) has found wide application in solving the

problems of meteorology and oceanology (WASHINGTON and PARKINSON, 1986;

SINGH et al., 1995; HAIDVOGEL and BECKMANN, 1999). Using this approach, we

rewrite (3.1)–(3.3) in the new system k1; h1; rð Þ : k1 ¼ k; h1 ¼ h; r ¼ z=Hðk; hÞ.
In this case we have

@

@k
¼ @

@k1
� 1

H
@H
@k1

@

@r
;

@

@h
¼ @

@h1
� 1

H
@H
@h1

@

@r
;

@

@z
¼ 1

H
@

@r
:

The operators of turbulent transport and boundary conditions are written accord-

ingly.

In the r-system the continuity equation takes the form

m
@Hu
@k1
þ @

@h1

n
m

Hv
� �� �

þ @w1

@r
¼ 0 ; ð3:5Þ

where w1 is the new vertical velocity

w1 ¼ w� mr
@H
@k1

uþ n
m
@H
@h1

v
� �

: ð3:6Þ

The boundary condition for the new vertical velocity at the bottom, for r = 1, is the

same as at the surface:

w1 ¼ 0: ð3:7Þ
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3.2 The Total Energy Conservation Law and Macro-splitting of the Problem

We write the hydrostatic equation as

@p
@z
¼ g qþ dqð Þ ; ð3:8Þ

dq ¼ qw � q ;

where q is potential density. Unlike the densityqw, it does not depend on pressure. If

all the terms describing turbulent transport processes are neglected as well as the last

term dq in (3.8), the total energy conservation law holds:

@

@t

Z

D

Hq0

u2 þ v2

2
� rgH2q

� �
dD ¼ 0: ð3:9Þ

The second step of the transformations consists in splitting the system of equations

(3.1)–(3.3) by physical processes. Allowing for the conservation law (3.9), we single

out three energy-independent splitting stages.

As the first subsystem we select equations describing the transport diffusion of

momentum, taking into account metric terms. Dropping the subscripts on the

variables k1,h1, we have

du
dt
þ m � cos h � u � v ¼ 1

H 2

@

@r
mu
@u
@r
þ Fu

1 ; ð3:10Þ

dv
dt
� m � cos h � u � u ¼ 1

H 2

@

@r
mv
@v
@r
þ Fv

1 :

As the second subsystem we select the equation of turbulent heat and salt exchange.

We have

@T
@t
¼ 1

H 2

@

@r
mT
@T
@r
þ F T

1 ; ð3:11Þ

@S
@t
¼ 1

H2

@

@r
ms
@S
@r
þ F S

1 :

In (3.10), (3.11) F1
* are the terms describing the turbulent exchange in the r-

coordinate system. At the third stage we have equations of adjustment of velocity

and density fields. We consider this stage in greater detail below.

3.3 Symmetrization of Systems of Equations

The next step of the transformations consists in symmetrizing the obtained

systems of equations.

We present a simple example of symmetrization of the transport equation for the

tracer u in the nondivergent flow field. Three forms of the transport equation are

known: conventional, divergent, and semidivergent. Using the semidivergent form,

we have
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H
m
@u
@t
þ 1

2
Hu

@u
@k
þ @

@k
Huuð Þ þ n

m
Hv

@u
@h
þ @

@h
n
m

Hvu
� �

þ w1

m
@u
@r
þ @

@r
w1

m
u

� �� �
¼ 0:

ð3:12Þ

From a computational standpoint, the semidivergent form (3.12) has the following

useful properties:

• this form admits simple finite-difference approximation retaining the skew-

symmetry property (MARCHUK, 1980),

• using this form, it is easy to obtain the decomposition of the operator of the

problem into the sum of three simple nonnegative transport operators along the

coordinates k; h; r,
• the operator of the adjoint equation coincides with the original one.

This raises up the question: In what form is it convenient to write the equations at the

stage of adjustment of velocity and potential density fields? With the above example

in mind, we discuss this question in more detail.

3.4 Symmetrization of Equations of Adjustment of Velocity and Density Fields

Neglecting dq in the hydrostatic equation for simplicity, at the adjustment stage we

have

@u
@t
� lvþ m

q0

@p
@k
� g

@Hr
@k

q
|fflfflfflffl{zfflfflfflffl}

1

2
664

3
775 ¼ 0;

@v
@t
þ luþ n

q0

@p
@h
� g

@Hr
@h

q
|fflfflfflffl{zfflfflfflffl}

2

2

664

3

775 ¼ 0;

1

q0

@p
@r
� g

@Hr
@r

q
|fflfflfflffl{zfflfflfflffl}

3

2
664

3
775 ¼ 0; ð3:13Þ

m
@Hu
@k
þ @

@h
n
m

Hv
� �� �

þ @w1

@r
¼ 0;

H
m
@q
@t
þ @

@k
Huqð Þ

|fflfflfflfflffl{zfflfflfflfflffl}
1

þ @

@h
n
m

Hvq
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2

þ @

@r
w1

m
q

� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
3

¼ 0

The adjustment equations (3.13) are written in terms of potential density. This can be

done if we assume that potential density is a sufficiently smooth function of potential

temperature and salinity.
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To the system of equations (3.13) are added the corresponding no-normal flow

conditions on the lateral boundary dD as well as the kinematical condition along the

vertical:

w1 ¼ 0 for r ¼ 0; r ¼ 1: ð3:14Þ

If we take the inner product of the system (3.13) and the vector

q0Hu; q0Hv; q0w1; p; �gHrð Þ;

then with allowance for the boundary conditions the law of conservation of total

energy (3.9) holds. It should be noted that the form of the terms depending on

density in the first three equations of (3.13) is consistent with the divergent form of

the equation for potential density. The terms marked by identical numbers are in

pairs energetically neutral.

There exist several different forms of adjustment equations (3.13), which are due

to different representations of the terms depending on potential density.

Now we write the equations in more general form. Assume f ¼ f ðrHÞ is some

known smooth function of the vertical coordinate z � rH and f 0 � df
dðrHÞ 6¼ 0 is its

derivative. We write the adjustment equations as

@u
@t
� lvþ m

q0

@~p
@k
¼ mg

2q0

q
f 0
@f
@k
� f

@

@k
q
f 0

� 	� �
;

@v
@t
� luþ n

q0

@~p
@h
¼ ng

2q0

q
f 0
@f
@h
� f

@

@h
q
f 0

� 	� �
;

1

q0

@~p
@r
¼ g

2q0

q
f 0
@f
@r
� f

@

@r
q
f 0

� 	� �
; ð3:15Þ
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@h
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� 	
þ w1
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@r
f
f 0
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� 	�

where

~p ¼ p � g
2

q
f 0

f :

Choosing the form of the function f, we can obtain different forms of model

equations.

One of the difficulties in using r-models of ocean dynamics is associated

with the presence of the truncation error of horizontal pressure gradients
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(WASHINGTON and PARKINSON, 1986; GRIFFIES et al., 2000). In our case, these are

the right-hand sides of the first three equations (3.15) (the terms depending on

potential density).

In the geopotential z-system, if density does not depend on the horizontal

coordinates k and h, motion does not occur. In the r-system, due to the

approximation error of pressure gradients along the surface r = const nonzero

velocities occur. With pronounced density stratification along the vertical and with

large gradients of the bottom relief, these fictitious velocities can be significant.

Choosing the function f in the special way, we can reduce this effect.

As an illustration we give the following examples. Let potential density depend

only on the vertical coordinate z � rH and satisfy

q ¼ rH :

It is easily seen that if we choose f also as

f ¼ rH ;

the right-hand side of the first three equations (3.15) vanishes. It means that the

horizontal pressure gradients do not generate in r-coordinate system artificial

velocities.

Assume now that potential density satisfies the condition

q ¼ q0e
arH :

In this case, we can eliminate errors in the pressure gradients choosing f as

f 2 ¼ q0earH :

Finally, presume that potential density is an arbitrary function ~qðrHÞ or it can be

approximated by this function with high accuracy. Then choosing the function f as

f 2 ¼ 2

Z
~qðrHÞdðrHÞ;

we can see that forq ¼ ~qðrHÞ the terms in the right-hand sides of (3.15) vanish. Note

that with usual finite-difference approximation of the equation of motion this

property is satisfied using the staggered grid C in the spatial variables k; h; r.

3.5 Splitting of Adjustment Equations

The adjustment stage is the most tedious stage of calculations. To increase the

computational efficiency at this stage we can use further splitting of equations. We

demonstrate the splitting procedure at the adjustment stage using, as an example, the

symmetrized forms of equations which are consistent with the semidivergent form of

the equations for density, i.e., we put f ¼ rH in (3.15).
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In this case, at the first internal splitting stage we have

@u
@t
¼ � mg

2q0

rH
@q
@k
� @Hr

@k
q

� �
;

@v
@t
¼ 0; ð3:16Þ

H
m
@q
@t
þ 1

2

@

@k
Huqð Þ þ Hu

@

@k
q

� �
¼ 0:

At the second internal splitting stage

@u
@t
¼ 0;

@v
@t
¼ � ng

2q0

rH
@q
@h
� @Hr

@h
q

� �
; ð3:17Þ
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@

@h
nHvqð Þ
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þ n

m
Hv

@

@h
q

� �
¼ 0

Finally, at the third stage

@u
@t
� lvþ m

q0

@p1
@k
¼ 0;

@v
@t
þ lvþ n

q0

@p1
@h
¼ 0;

@p1
@r
¼ � g

2
rH

@q
@r
� @Hr

@r
q

� �
; ð3:18Þ

m
@Hu
@k
þ @

@h
n
m

Hv
� �� �

þ @w1

@r
¼ 0;

H
m
@q
@t
þ 1

2

@

@r
w1

m
q

� �
þ w1

m
@q
@r

� �
¼ 0;

p1 ¼ p � g
2
rHq:

Thus, at the first and second splitting stages we arrive at the solution of locally one-

dimensional problems along the coordinates k and h, while at the third stage - at the

more complex three-dimensional problem.

To equations (3.18) are added the boundary no-normal flow conditions. A

peculiarity of the formulation of the initial boundary value problem for (3.18), which

is typical of hydrodynamic equations, is that there are no boundary conditions for

pressure. This leads to additional difficulties when solving numerically the problem,

in particular, when calculating pressure along the vertical. In this case, we can use

once again additional splitting involving the selection of the vertical-averaged motion

component. To this end we write equations (3.18) in the equivalent form from which

the solution algorithm naturally follows. We have
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@u
@t
� lðv� �vþ �vÞ þ m

q0

@p01
@k
þ R�u ¼ � m

q0

@�p1
@k
þ R�u;

@v
@t
þ lðu� �uþ �uÞ þ n

q0

@p01
@h
þ R�v ¼ � n

q0

@�p1
@h
þ R�v;

@H�u
@k
þ @

@h
n
m

H�v
� �

¼ 0; ð3:19Þ

m
@Hðu� �uÞ

@k
þ @

@h
n
m

Hðv� �vÞ
� �� �

þ @w1

@r
¼ 0;

H
m
@q
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þ 1

2

@

@r
w1

m
q

� �
þ w1

m
@q
@r

� �
¼ 0;

where

�a ¼
Z1

0

a dr; ða ¼ u; vÞ; �p1 ¼ p1ð0Þ �
g
2

Z1

0

dr
Zr

0

rH
@q
@r
� @rH

@r
q

� 	
dr; p01 ¼ p1 � �p1;

R is some nonnegative function, for example R = const � e, 0	 e<< 1.

Using the above representation, we develop the solution algorithm. It consists in

solving the following three subsystems. The first subsystem is

@u
@t
¼ R�u;

@v
@t
¼ R�v; ð3:20Þ

@q
@t
¼ 0:

The second subsystem is

@u
@t
� l�vþ m

q0

@�p1
@k
þ R�u ¼ 0;

@v
@t
þ l�uþ n

q0

@�p1
@h
þ R�v ¼ 0; ð3:21Þ

@H�u
@k
þ @

@h
n
m

H�v
� �

¼ 0;

@q
@t
¼ 0:

The third subsystem is

@u
@t
� lðv� �vÞ þ m

q0

@p01
@k
¼ 0;

@v
@t
þ lðu� �uÞ þ n

q0

@p01
@h
¼ 0; ð3:22Þ
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H
m
@q
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þ 1

2

@

@r
w1

m
q

� �
þ w1

m
@q
@r

� �
¼ 0;

where

w1

m
¼
Z0

r

@Hðu� �uÞ
@k

þ @

@h
nHðv� �vÞ

m

� 	� �
dr:

Note that by selecting depth-averaged motion we obtain the following result. In

numerical calculations two boundary conditions along the vertical for the velocity w1

are exactly satisfied, and correct calculations of the vertical structure of the pressure

field are performed.

3.6 Regularization of Problems at Some Splitting Stages

The procedure of e-regularization is frequently used to increase the stability of the

numerical solution. The method of e-regularization involves the addition of certain

terms with small coefficients e<< 1 to the original equation. The method of artificial

compressibility, which is proposed by YANENKO (1967) for solving equations of

viscous incompressible fluid, can serve as an example of the e-regularization
procedure. The idea of the artificial compressibility method is to replace the

continuity equation by a nonstationary equation of the form

e
@p
@t
þ @u
@x
þ @v
@y
¼ 0; 0 < e < 1:

We apply the above approach to regularization of the problem (3.19). We drop

the ‘‘rigid lid’’ condition at the undisturbed ocean surface and instead of it we use

w ¼ � 1

gq0

@p0
@t

; ð3:23Þ

where

p0 ¼ �gq01;

1 – is the ocean surface height.

From a mathematical standpoint, the transition from the model with the ‘‘rigid

lid’’ approximation to the ‘milder’ dynamical condition can be considered as

regularization of the two-dimensional incompressible fluid dynamics problem. In this

case, the efficiency of calculations of the depth-averaged velocities increases.

Physically, the transition to the boundary condition (3.23) implies the introduc-

tion of the dynamics of external gravity waves into the model (GILL, 1982; MARCHUK

et al., 1987). In this case, in the chain of splitted subsystems, only the stage describing
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evolution of the vertical-averaged fields changes. In the terms �u,�v,�p the equations

have the form

@�u
@t
� l � �vþ m

q0

@�p1
@k
þ R�u ¼ 0;

@�v
@t
þ l � �uþ n

q0

@�p1
@h
þ R�v ¼ 0; ð3:24Þ

1
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n
m
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@q
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�p1 ¼ p0 �
g
2

Z1

0

dr
Zr

0

rH
@q
@r
� @rH

@r
q

� 	
dr:

To the system (3.24) on the closed coastal boundary
P

are added the no-normal flow

conditions.

Note

When writing the third subsystem of equations of adjustment of velocity and

potential density fields (3.19) we added and subtracted the terms Ru, Rv, R << 1.

On the one hand, this is an equivalent transformation of the differential system. On

the other hand, using the splitting algorithm (3.20)–(3.22) to solve the problem, we

can increase the efficiency of calculations of vertical-averaged motion. It is not

difficult to show that the splitting scheme is absolutely stable and has the first order

of accuracy with respect to time if we use an explicit scheme to solve (3.20) and an

implicit one to solve (3.21). If the stage (3.20) is dropped in the hierarchical model

system, this can also be considered as e-regularization of the original problem. In this

case, regularization involves the introduction of friction with the coefficient R, which

acts on the depth-averaged flow component.

4. The Numerical Experiment on Simulation of Monsoon Circulation in the Indian

Ocean

The method presented was used as the basis for constructing the numerical model

of monsoon circulation in the Indian Ocean with high spatial resolution.

The computational domain covered the north Indian Ocean (10�S–30�N, 38�E–
103�E). The spatial resolution was 1/8� � 1/12� � 21. The bottom topography was

interpolated to the computational grid from the five-minute data array ETOPO5.

The minimum bottom depth in the domain was 7 m, the maximal one was about

6000 m.
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When treating vertical-averaged flows the stage (3.20) was dropped. To solve the

equations describing the adjustment of velocity and density fields we put f ¼ rH in

(3.15). Horizontal eddy diffusivity was 1.0�102 m2/s, eddy viscosity was 1.0�103
m2/s, and the friction coefficients R was 1.0�10-6 s)1. Vertical mixing was

parameterized using the scheme of PAKANOWSKI and PHILANDER (1981).

The aim of the experiment was to calculate the dynamically consistent

seasonable cycle of velocity, temperature, and salinity fields of the Indian Ocean.

The model was driven at the sea surface by wind-stress (NCEP reanalysis) and by

prescribed temperature and salinity (LEVITUS et al., 1998). The model was spun up

for seven years from a state of rest and January temperature and salinity (LEVITUS

et al., 1998).

Figures 1–3 present the model instantaneous velocity fields at depths of 60 m,

400 m, and 1000 m. The calculated flows differ widely during the winter and summer

monsoons, as the observational data show (TOMCZAK and GODFREY, 2003; SHANKAR

et al., 2002).

We shall dwell briefly on the structure and seasonal variability of the main

currents in the Indian Ocean and compare them with the observational data.

Equatorial currents. The numerical experiment shows that the North Equa-

torial Current is observed from January to March when the winter monsoon is

fully established. The horizontal velocities are about 0.5–1.0 m/s near the coasts

of Sri Lanka, in the sector between the equator and 6�N as well as between 60�E
and 75�E. In the equatorial zone the westward Equatorial Counter Current with

the velocities of order 0.5–0.8 m/s is observed. The current is located to the south

of 2�S, and its intensity is diminished westward. According to the calculations this

current does not extend farther than 70�E and merges with the westward

countercurrent which is approximately equal in intensity. This pattern is in good

agreement with the observational study (TOMCZAK and GODFREY 2003), except

that the countercurrent is much weaker according to the data. During the months

of the monsoon change the Indian Equatorial Jet with velocities 0.7 m/s and

higher is pronounced. In the period of the summer monsoon the model also

reproduces the Southwest Monsoon Current (TOMCZAK and GODFREY 2003)

which reaches the velocities 0.5–0.8 m/s south and southeast of Sri Lanka.

Currents in the Arabian Sea and the Bay of Bengal. The model describes

adequately the structure of the Somali Current as well as the appearance of the Great

Whirl towards the end of the summer monsoon. In September the velocities reach

2 m/s at a depth of 30 m. In March and in January the current reverses its direction.

In summer the northeastward and southeastward Summer Monsoon Current

(SHANKAR et al., 2002) flows across the Arabian Sea basin (Fig. 1). It divides into

two branches off Oman at approximately 15N�. In one branch, which is situated

close to the Oman coast, water moves clockwise and forms the West India

Coastal Current (WICC) off India (SHANKAR et al., 2002). The second branch

deviates from the coastal current into the open ocean and forms the Summer
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Monsoon Current (SMC) (Shankar et al., 2002). It should be noted that the

complete pattern of currents is rather complex. There are several cyclones and

anticyclones inside the Arabian Sea, between two main currents. In the period of

Figure 1

Model instantaneous velocity fields at depth 60 m.
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the winter monsoon the structure of the velocity field is also rather complex

(Fig. 1). In January the Somali Current reverses its direction. Along the entire

western coastline of India there appears the coastal northwestward current in the

Figure 2

Model instantaneous velocity fields at depth 400 m.
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opposite direction as compared to the summer period. Along most of the

coastline of the Arabian Sea the currents also reverse their direction as compared

to the summer season. There are many local eddies and countercurrents.

Figure 3

Model instantaneous velocity fields at depth 1000 m
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The anticyclonic circulation prevails in the Bay of Bengal during most of the year.

In March-April the local, rather stable anticyclonic vorticity develops northeast of

Sri Lanka. Its horizontal size is about 500 km, its thickness is of order 200 m, the

velocities reach 0.8 m/s. By September the eddy intensity is diminished; at the end of

October-November the circulation reverses its direction and becomes cyclonic.

Several eddies are formed; their total large-scale structure may be interpreted as the

East Indian Winter Jet (TOMCZAK and GODFREY 2003). The Jet velocities are of

order 0.4–0.7 m/s. The structure of currents is close to the scheme constructed by the

observational data (TOMCZAK and GODFREY 2003) though the pattern differs from

the scheme by certain details. At 75�–77�E, south of Sri Lanka, the East Indian

Winter Jet meets with the countercurrent entering into the Bay of Bengal. This

countercurrent is formed farther west in the open ocean by the eastward current

because of its division into two branches. The first branch turns southward and

merges with the Equatorial Jet (TOMCZAK and GODFREY 2003). The second one first

flows northeastward along the eastern periphery of the above cyclone, flows around

it and turns southward forming the countercurrent off Sri Lanka. Water returns into

the Arabian Sea, following two paths. First, as the narrow jet about 40 m in depth

through the shallow strait between India and Sri Lanka. Second, along the western

periphery of the cyclone off the east coast of Sri Lanka as in TOMCZAK and GODFREY

(2003).

The vertical structure of currents in the north Indian Ocean is rather complex

(Figs. 2 and 3). However, there is one common property: The currents are of distinct

zonal character in deeper layers below 300 m. Currents are less intensive and better

regulated. The experiment shows that even in the deep ocean the variability of

currents with time is appreciable. However, it should be noted that variability is

typical of open-ocean eddies rather than the large-scale currents themselves.

5. Conclusion

• In the paper we set forth a common approach to the construction of a numerical

model of ocean dynamics which is based on splitting by physical processes and

geometric coordinates. Model equations are split on several levels. The splitting

macro-level is splitting of three-dimensional equations by physical processes. On

higher levels the splitting process is to select the simplest equations which are

locally one-dimensional with respect to space. The application of the above

approach to the solution of the problem of the Indian Ocean circulation with high

spatial resolution demonstrated that this numerical technique performs well.

• The peculiarity of the numerical model of the Indian Ocean dynamics is that the

adjustment equations of potential density and velocity fields are written in the

sigma-coordinate system in the generalized symmetrized form. This transforma-
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tion allows one to decrease truncation errors occurring in horizontal pressure

gradient terms in the sigma model and construct a stable computational procedure.

� A comparison of the results of the Indian Ocean simulation with the schemes of

currents constructed on the basis of observational data (SHANKAR et al., 2002;

TOMCZAK and GODFREY 2003) shows that the model reproduces the monsoon

circulation reasonably well. The high resolution enables us to reproduce not only

the large-scale structure of monsoon currents, but to describe local peculiarities of

its space-time variability as well. The calculations show the high eddy activity of

the Indian Ocean. Numerous cyclones and anticyclones are observed in the open

ocean, coastal areas, and the deep ocean. Ocean eddies can modify the structure of

basin scale currents. With high spatial resolution which is accompanied by the high

eddy activity, requirements for the observational data are greater. For the detailed

assessment of model calculations and forecasts it is essential to have comprehen-

sive spatial observations. Satellite observations can supply the information

regarding the ocean surface; however, to have such information about deep ocean

layer is an unresolved problem. The development of observing systems such as the

profiling floats ARGO can in part fill the gap. However, in this case, to solve an

extremely complex problem of observational data processing and assimilation in

the moving coordinate system (of the type of Lagrangian coordinates) is required.
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