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Abstract. The paper is devoted to a distributed memory parallel imple-
mentation of a finite difference Eulerian global atmospheric model utiliz-
ing semi-implicit time stepping algorithm. The applied two-dimensional
checkerboard partitioning of data in horizontal plane necessitates bound-
ary exchanges between the neighboring processors all over the model code
and multiple transpositions in the Helmholtz equation solver. Neverthe-
less, quite reasonable performance has been attained on a set of cluster
multiprocessors.

1 Introduction

One of the most challenging prospects requiring advances of supercomputers
power is acknowledged to be the Earth climate system modeling, in particular,
those studies concerning the global warming issues and related climatic changes
from increasing concentration of greenhouse gases in the atmosphere. The main
predictive tools here are the general circulation models run for decadal and even
centennial simulation periods.

INM Atmospheric General Circulation model (AGCM) was designed at the
Institute for Numerical Mathematics of the Russian Academy of Sciences and
originates from earlier works of G.I. Marchuk et al. [1]. The model participated
in AMIP II intercomparison project as ’DNM AGCM” [2] and some other ex-
periments [3], [4]. Though most of simulations performed with the INM AGCM
are based on the Monte Carlo method, allowing different trajectories to be inte-
grated independently, the main interest of the present paper lays in the intrinsic
parallelism of the model.

Mostly, the model provides substantial degree of parallelism, except the im-
plicit part of the time-stepping scheme that solves Helmholtz equation on a
sphere and spatial filters damping the fast harmonics of prognostic fields at the
poles. In opposite to Barros and Kauranne [5], we parallelized a direct Helmholtz
equation solver [7] involving the longitudinal fast Fourier transforms (FFTs) and
latitudinal Gaussian elimination for tri-diagonal linear systems.



In the next section, we will outline the model structure. Then, in Sect. 3,
we will proceed with details of parallelization technique. Performance of the ob-
tained parallel version of the model is presented in Sect. 4. We have carried
out benchmarking on MBC1000M computing system, located at the Joint Su-
percomputer Center, and SCI-cluster, maintained by the Research Computing
Center of the Moscow State University.

2 Model structure

INM AGCM solves the system of partial differential equations of hydro-thermo-
dynamics of the atmosphere under hydrostatic approximation on the rotating
sphere [2]. The vertical coordinate is generally either pressure or a terrain-
following sigma (¢ = p/m, where 7 is the surface pressure) or a hybrid of the
two. The equations are discretized on a staggered Arakawa ”C” grid [6], mean-
ing all prognostic variables are co-located, except zonal and meridional wind
components that are staggered in the longitudinal and latitudinal directions, re-
spectively. The grid has 2° resolution in latitude, 2.5° in longitude, and K = 21
irregularly spaced vertical levels. The size of the computational domain is thus
145 x 73 x 21. All floating point data are kept in single precision (32-bit) repre-
sentation.

Let u and v represent zonal and meridional wind components, correspond-
ingly, T is the temperature, d is the horizontal divergence; P = ¢+ RT log 7, & is
the geopotential, R is the gas constant, Ty = 300K . Then the model governing
equations after discretization can be rewritten as
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where ¢ stands for time, A is longitude, ¢ is latitude, d;, 6 and d,, are the discrete
analogues of the corresponding differential operators of the form
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A, Ay, A7, and A, represent the explicit dynamical tendencies which comprise
both the model forcing and discretized spatial operator of the model governing
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Table 1. INM AGCM basic routines and percentage of their CPU time measured on
MBC1000M computing system and SCI-cluster in uniprocessor mode

Routine Purpose MBC SCI
Physics:

FASFL.  Convection processes 1% 1%
RADFL Radiative processes 33% 37%
DSP Gravity-wave drag 8% 8%
PBL Atmospheric boundary layer 4% 4%
Dynamics:

ADDTEN  Add physical tendencies to the solution 1% 1%
VDIFF  Vertical diffusion 13% 16%
RHSHLM Explicit dynamical tendencies generation  18% 10%
HHSOLV  Helmholtz equation solver 1% 4%
DYNADD Add dynamical tendencies to the solution 5% 4%
VISAN4M Horizontal diffusion 6% 10%
RENEW Spatial and temporal filtration 6% 4%
Other routines 0.1% 0.1%

equations, a is the mean radius of the earth, B is a matrix, v is a vector. We
emphasize matrices of size K x K and vectors of length K with bold letters.

The model parameterizes long and short wave radiations, deep and shallow
convection, vertical and horizontal diffusion, large scale condensation, planetary
boundary layer, and gravity wave drag.

The fraction of time spent in various routines of INM AGCM is shown in
Table 1. Physical components are computed hourly, except the radiative block
(RADFL) involved every 3 model hours; dynamical block, for the grid resolution
specified above, is calculated 9 times within a model hour.

3 Parallelization technique

We apply a 2-dimensional domain decomposition to the globe in both the lon-
gitude and latitude dimensions, or the so called checkerboard partitioning [8].
The resulting rectangular subdomains are assigned to the processors arranged
into a Pjon, X Pgy virtual grid. We will refer further this distribution of data as
the basic one.

3.1 Physics

The basic distribution is highly suitable for INM AGCM’s physical parameteri-
zations that are column oriented and thus can be done concurrently by columns.
Although communications are required to interpolate quantities between the
staggered and non-staggered grids and some load imbalance occurs in radiative
processes component (RADFL).
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Fig. 1. Data distributions used in the Helmholtz solver (Pion = 2, Piat = 3)

3.2 Helmholtz equation solver

The four equations of system (1) are reduced to a Helmholtz-like equation solved
by the routine HHSOLV

%(Sttd — (AL2GV? (%5@) — RHS, @)

where G is a matrix, V2 is the discrete analogue of the horizontal Laplace
operator in spherical coordinates, RHS is a right hand side. The periodical
boundary conditions in longitude are imposed on (2) as well as on system (1).
Diagonalization of matrix G allows to uncouple (2) and solve it independently on
the vertical levels by a direct method involving Fourier transforms in longitudinal
direction and Gaussian elimination in the meridional direction. Thus, HHSOLV has
the following structure:

1. Transformation of the right hand side of (2) to the basis of eigenvectors of
matrix G.

Forward Fourier transform.

Tri-diagonal matrix solver.

Backward Fourier transform.

Transformation of the solution to the original basis.

CUR LN

Steps 1 and 5 compute matrix vector product column-by-column that makes
them very suitable for the basic data distribution. Steps 2 and 4 require all
longitudes while step 3, on the contrary, all latitudes.

To carry out step 2, we transpose the data in the height-longitude plane
gathering longitudes but distributing levels over the processors (T, Fig. 1).
Upon completion of the FFTs each processor contains all wave-numbers but a
part of levels and latitudes. To proceed with the tri-diagonal matrix solver we
make use of the transposition again but in the longitude-latitude plane. Now
it collects all latitudes but distribute longitudes (T}, Fig. 1). Having obtained
the solution of tri-diagonal systems, we rearrange the data back into the basic
distribution performing the transpositions in the reverse order and calculating
the inverse FFT.
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Fig. 2. Dependence stencils for the Helmholtz equation right hand side generation

3.3 Explicit dynamical tendencies generation

The routine RHSHLM generates the right hand side of equation (2) using the
formula

RHS = At divA —d(t) + d(t — At) + AtV {P(t) — P(t — At) — AtAp}, (3)
where

1
VA = — {5, A, A, , 4
div acosp {0AAy + ,(Aycos)} 4)
Ap =TA7r + RTHA,, (5)

T is a matrix. Expressions of A,, A,, Ar and A, are rather bulky and can
be retrieved from [2]. They comprise values of known fields u, v, T, m, their
derivatives and vertical integrals.

Basically, the routine RHSHLM has no global dependencies in the horizontal
plane, with few exceptions occurred near the poles. In particular, to estimate
vorticity ¢ and surface pressure 7 at the North pole, u-velocity and surface
pressure 7 are averaged along the most northern p — 1/2 latitude circle
- 1 &
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where N is the number of points along the longitude dimension. Since both u
and 7 are distributed in longitude, we made use of MPI_Allreduce calls [9] to
evaluate the sums in (6). The South pole is processed in a similar way.

One can observe that RHS computation at a grid point not belonging to
the polar boundaries requires values of known variables at some neighboring
columns and, therefore, has to be preceded by a communication of subdomain
boundaries. To investigate the dependences inherent in (3) we processed formu-
las (3)-(5) and the explicit tendencies expressions with a symbolic computing
system, and obtained the dependence stencils depicted in Fig. 2. Boundaries
of corresponding widths are interchanged beforehand. Whenever a longitudinal
derivative is calculated, the very first and last processors in a processor row also
interchange data to maintain the periodic boundary condition.



3.4 Filtering

The routine RENEW applies spatial and time filtering to the obtained solution of
system (1). The spatial filter damping short zonal scales poleward 69° transforms
the fields into Fourier space and back. We apply a transposition in the longitude-
height plane to accomplish the transformation. Staying idle, the processors that
don’t contain any latitude poleward 69° give rise to load imbalance.

4 Performances

The benchmarking of the resulting parallel code of INM AGCM has been done
both on MBC1000M computing system and the MSU RCC’s SCI-cluster (Ap-
pendix A). For a given number of processors P we measured elapsed CPU times
of 6 hours’ integrations on all processor grids (Pon, Plat), such that P, Pos = P
(Tables 2 and 3), and calculated speed-up as the ratio of the single processor
time to the minimum time obtained on P processors (Tables 4 and 5). For in-
stance, on 8 processors of MBC1000M we tried (1,8), (2,4), (4,2), and (8,1)
grids and found (2,4) configuration to be the best.

Fig. 4 represents the elapsed CPU time of 6 hours’ modeling and speed-
up obtains on MBC1000M supercomputer and the SCI-cluster as a function of
number of processors. On both machines the parallel version of the model by far
outperforms its sequential counterpart yielding the speed-up of about 15 on 32
processors.

To detect potential bottlenecks of model we have carried out profiling of its
major components. From the chart plotted in Fig. 5, one can observe that the
filtering (RENEW) is becoming more and more bulky, as the number of processors
increasing, while the radiative component (RADFL) relative time is reducing.

The deviation of prognostic variables from their uniprpocessor values after
6 hours of modeling is shown in Fig. 3 to confirm correctness of the paralleliza-
tion.

5 Concluding remarks

INM AGCM was ported to a set of cluster multiprocessors indicating the advan-
tage of using parallel computing in climate studies. The obtained performances,
being still far from the ideal, are reasonable and improvable.

The work on optimization of communication as well as computational al-
gorithms are in progress. It comprises fitting of transposition algorithms to
particular machines, overlapping of communication and computations, also in-
tercomparison of semi-implicit and explicit time integration schemes could be
undertaken in the future.
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Table 2. Elapsed CPU times of INM AGCM 6 hours’ integrations in seconds obtained
on different P, X P+ processor grids of MBC1000M computing system

[Pon\Pat[1 |2 [4 [8 16 |
1 [[158.3]87.76]46.22|28.50]17.65
2 |92.37|49.1027.44/16.81(10.35
4 [58.75(30.75(16.80|10.63|6.61
8 |37.43|20.2312.24/7.68 |5.13
16 ||31.47]16.78]10.74|7.85 |5.09

Table 3. Elapsed CPU times of INM AGCM 6 hours’ integrations in seconds obtained
on different Pjo, X Piqt processor grids of SCI-cluster

Pon\Piaef1 2[4 8 [16 ]
1 |[598.05|337.36]191.56]115.19]67.83
2 [340.82(190.62(105.93(65.31 |42.38
4 ||206.26(112.82/67.38 |43.07
8 |[124.01|70.37 [43.75
16 ||84.10 [52.15

Table 4. Speed-up and efficiency of INM AGCM on MBC1000M computing system

# procs |1 2 4 8 16 |32 64 128 |256
Pions Pad)|(L,1) |(12)[ (L] (20| (4,4) [ (2,16) | (4,16)[(5,16)|(16,16)
Speed-up [1.00 |1.80 [3.42 (5.77 |9.42 |15.29 |32.96 {30.89 [31.13
Efficiency [100%|90% |86% (72% (59% [48% |37% (24% [12%

Table 5. Speed-up and efficiency of INM AGCM on SCI-cluster

# procs |1 2 4 8 16 (32 36
Pion, Pat)|(LD) [(1L2)]2.2)| 2] 2,8)[(2,16)| 2,15)
Speed-up [1.00 [1.77 (3.14 |5.65 |9.16 |14.11 (14.49
Efficiency [100%|89% |78% |71% |57% |44% |40%
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Fig. 3. Relative deviation of prognostic variables from their uniprocessor values esti-
mated upon 6 hours’ INM AGCM integrations on different number of processors of
MBC1000M computing system
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A Appendix

A.1 Technical characteristics of MBC1000M computing system

MBC1000M is a cluster of biprocessor SMPs connected via 2 Gbit/s Myrinet net-
work. Currently, it has 768 Alpha 21264A CPUs working at 667 MHz frequency.
Each node has 1 Gb of main memory. The peak performance of MBC1000M in-
stalled at the Joint Supercomputer Center, Moscow is declared to be 1 Teraflop.
The system is run under Linux OS. COMPAQ Fortran 90 compiler and a MPI
library are available for program development.

A.2 Technical characteristics of the MSU RCC Linux-cluster

The MSU RCC Linux-cluster located at the Research Computing Center of the
Moscow State University comprises 18 processing nodes equipped with doubled
Pentium IIT processors working at 500 or 550 MHz frequency, 512 Kb second
level cache, 1 Gb of main memory, Fast Ethernet card, and two SCI cards. The
total number of CPUs is 36. The system is run under Red Hat Linux 6.1.



