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Mathematical model of sea dynamics
in a σσσ -coordinate system

V. B. ZALESNY�

Abstract — The aim of this paper is to formulate a mathematical σ -model of thermohaline sea dy-
namics and its numerical solution. The novelty of the work is taking account of the nonhydrostatic
effect, establishing the law of conservation for a complete nonlinear problem, and the generalization
(for the nonhydrostatic case) of the numerical algorithm for solving the problem. The algorithm is
based on the method of splitting with respect to physical processes. We describe nonhydrostatic ef-
fects at a separate splitting stage and introduce a new function describing the deviation of pressure
from the hydrostatic one, which is calculated at an additional splitting stage. The elimination of this
stage from the chain of split systems automatically leads to a special model case describing hydro-
static dynamics. Further, main attention is given to the barotropic dynamics problem. We formulate
two finite difference algorithms of its solution: the first one by solving a linear hyperbolic system in
terms of �u�v�ζ �, the second algorithm by reducing it to the equation ζ .

The results of numerical modelling of sea and ocean dynamics suggest that the
most important condition for increasing the adequacy of the models is improving
their spatial resolution [3, 10]. An increase in the spatial resolution of the models
requires enriching their physical content. Thus, for example, when the horizontal
mesh sizes decrease, the condition of smallness of the vertical scale in described
processes with respect to the horizontal one is no longer satisfied. In view of this,
one has to abandon the hydrostatic approximation and consider a complete equation
for the vertical velocity. Besides, lately the sea processes are often predicted by the
series of numerical calculations in decreasing subdomains embedded in one another.
This way of describing the processes in more detail brings the horizontal and vertical
scales closer to each other. It requires the development of a hierarchical structure of
models, which in the framework of a single algorithm allows one to use models of
various levels of physical complexity.

The paper deals with the construction of a hierarchical sea dynamics model
of this kind. The hierarchical structure of the model is based on the method of its
numerical solution, viz. splitting it by physical processes [5, 6, 10]. It is the develop-
ment of a model based on the general ocean circulation equations (primitive equa-
tions) written in the spherical σ -system of coordinates [9]. Since the base model is
based on the splitting method, the module principle is inherent in its program re-
alization. A separate splitting stage is represented as an separate program module.
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The main improvement of the model, viz. taking into account the nonhydrostatic
effect was made possible by adding an additional splitting stage to the base model.
This was achieved by the equivalent transformation of the original equations. The
transformation is connected with the introduction of a new function describing the
pressure change. This approach is analogous to the expansion of pressure into the
sum of hydrostatic and nonhydrostatic components in [4, 8].

In the paper, we formulate the nonhydrostatic sigma model and the procedure for
its numerical solution. The model is applied to simulate the baroclinic sea dynamics
of the Sea of Okhotsk.

1. MODEL EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

In the spherical coordinate system �λ �φ �z� the sea baroclinic dynamics equations
have the form [8, 10]
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λ is the longitude, φ is the latitude, z is the vertical downward coordinate, u, v, w
are the components of the velocity vector u, p is the pressure, ρ is the potential
density, ρ0 is the given average density, ν� is the vertical turbulent exchange coeffi-
cient, µ� is the horizontal turbulent exchange coefficient,�l � 2Ωsin φ , �l � 2Ωcosφ ,
Ω is the angular rotational velocity of the Earth, m � 1��Rcos φ�, n � 1�R, R is the
Earth radius, g is the gravitational acceleration. Note that, for simplicity of presen-
tation, instead of the temperature and salinity equations, we use a single equation
for potential density.
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Boundary conditions. The boundary conditions for (1.1)–(1.5) can be given as
follows. Along the vertical for z � ζ �λ �φ � t�, we have
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at the lateral surface Σ

µρ
∂ρ
∂�n � 0� u � v � 0� (1.8)

Here ζ is the deviation of the sea level from the undisturbed surface, Qρ is the
density flux, �n is the normal to Σ. Equations (1.1)–(1.5) are complemented by the
initial conditions for t � 0

u � u0� ρ � ρ0� (1.9)

System (1.1)–(1.9) is considered in the time interval �0� t� in the three-dimensio-
nal domain D.

2. POSING THE PROBLEM IN THE σσσ -COORDINATE SYSTEM

We rewrite equations (1.1)–(1.5) in the new coordinate system that differs from the
spherical system by its vertical coordinate. We introduce the new vertical coordi-
nate σ

σ �
z�ζ �λ �φ � t�

H�λ �φ��ζ �λ �φ � t�
�

A peculiarity of the coordinate σ -system is that it varies with time following
the variations of the sea level and the bottom relief. Its upper and lower bounds
are described by the simple equations σ � 0, σ � 1. If we assume that �H�λ �φ��
ζ �λ �φ � t�� � const � 0� the new coordinate system is nondegenerate. It allows one
to carry out calculations for sea basins comprising deep and shallow water areas by
using the simple numerical representation of the model arrays along the vertical.

We rewrite (1.1)–(1.5) in the new system �t1�λ1�φ1�σ�: t � t1� λ � λ1� φ � φ1�
σ � �z�ζ ���H�ζ �, taking into account that the relations hold
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where Z � σh�ζ � h � H�ζ .
Equations (1.1)–(1.5) are rewritten as
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The turbulent exchange operator Λ1 is written as
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The boundary conditions for the new vertical velocity ω on the sea surface and at
the bottom have the simple form

ω � 0 for σ � 0� σ � 1� (2.13)
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3. TOTAL ENERGY CONSERVATION LAW

Suppose in equations (2.5)–(2.9) there are no terms describing the turbulent ex-
change: Λ1 � 0. In this case, we can use only one kinematic boundary condition for
the velocity vector

�u� n̂� � 0� (3.1)
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If we now take the inner product of (3.2)–(3.6) by the vector �ρ0u�ρ0v�ρ0w� p��gZ�,
with account taken of boundary conditions (3.1), we can show that the integral rela-
tion holds
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If the atmospheric pressure does not vary with time, this relation expresses the total
energy conservation law.

4. SPLITTING METHOD WITH RESPECT TO PHYSICAL PROCESSES.
SEPARATION OF THE STAGES OF MOMENTUM TRANSFER
AND NONHYDROSTATIC DYNAMICS

Equations (2.5)–(2.9) are nonlinear and have a complex structure. They describe the
dynamics of several processes that greatly differ from one another by the extent of
their time scale variability. The available algorithms of numerical solving of nonhy-
drostatic sea dynamics problems are complex and require high computational costs
[4, 8]. As a rule, they use explicit schemes with very small time steps of the order
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of seconds and fractions of a second [4]. To increase the numerical efficiency, all
nonhydrostatic models to a certain extent separate fast and slow processes. In the
treatment of slow processes, one is trying to use the largest possible time steps. The
typical drawback of many studies is that there is no distinct procedure for the sep-
aration of processes in time and matching solutions obtained at various calculation
stages. Some isolated problems such as the problem of calculating the sea level and
the nonhydrostatic pressure component are solved under artificial boundary condi-
tions on a coastal boundary, which are not consistent with the original kinematic
conditions.

In the present study, the methodological basis for the construction (and the nu-
merical realization) of the sea dynamics model is the splitting method [5, 6]. The
processes of different physical characters with different space-time scales are split
into separate calculation stages. The system of equations solved at a separate split-
ting stage is simpler than the initial system (2.5)–(2.9). The boundary conditions
for each separate problem result from the initial setting. The solution calculated at
a particular stage is further used for solving the next stage.

The solution algorithm of system (2.5)–(2.9) is as follows: let us identity two
main splitting stages: the transfer-diffusion of momentum, with account taken of
the metric terms, and the adjustment of velocity and density fields. At the first stage
we have
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To solve three-dimensional equations (4.1)–(4.3) we can use additional splitting
based on individual space coordinates λ , φ , and σ .

At the stage of the adjustment of velocity and density fields we have
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Let us consider the method for solving equations (4.4)–(4.8). This system is simpler
than the initial one but still remains rather complex. To solve it we can use the sec-
ondary splitting by isolating three problems that describe three physical processes.
These are barotropic motion or sea level dynamics; the adjustment of velocity and
density fields, and nonhydrostatic dynamics.

In order to separate the above problems we represent the pressure as

p � �p�g�H�ζ �ρ0σ �
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We introduce the new function �p and two additional components. The first com-
ponent describes pressure with a constant density ρ0 and the second one the hydro-
static component of the pressure with residual density �ρ �ρ0�.

The new function �p is the deviation of normal pressure from its two main com-
ponents mentioned above or, in other words, the nonhydrostatic part of the pressure.
Taking into account (4.9), three first equations in system (4.4)–(4.8) are rewritten as
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Let us split the transformed system of equations (4.10)–(4.12), (4.7), (4.8). Accord-
ing to pressure expansion (4.9), taking (4.10)–(4.12), (4.7), and (4.8), we separate
out three problems to be solved at separate stages. The first problem is the sea level
dynamics problem
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the second one is the problem of the adjustment of velocity and density fields
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Finally, the third problem is the nonhydrostatic dynamics problem
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Thus, the full sea dynamics model consists of four split subsystems: (4.1)–(4.3),
(4.13)–(4.15), (4.17)–(4.20), (4.21)–(4.24).



Mathematical model of sea dynamics 105

In many cases we can use simplified models rather than the above full sea dy-
namics model. The conventional approximations in oceanology are: (a) hydrostatic
approximation resulting from the fact that the horizontal motion scale is much larger
than vertical motion (L�H) and (b) long-wave approximation H � ζ . Large-scale
sea and ocean circulation models are generally formulated in the framework of these
approximations [1–3, 6, 7, 9]. They are described by the so-called primitive equa-
tion system which results from (2.5)–(2.9). In (2.5)–(2.9), we take Z � σH . The
terms dependent on w are eliminated from the first two equations, the third equation
reduces to the hydrostatic relation ∂ p�∂σ � gHρ . Algorithmically, this case can be
adjusted to our approach rather simply. The first three stages of splitting with re-
spect to physical processes do not change, the only difference concerns the equation
for w. At the final stage, we take �p � 0 and it reduces to the calculation of the new
vertical velocity ω from the equation
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One of the most important practical problems of sea and ocean dynamics is a prob-
lem of calculating the sea level. It is the prediction of tidal waves in adjacent seas
and in the World ocean, the calculation of wind flows and storm surges and so on.
Particular interest in the problem has been shown in the past few years because of
the possibility to measure the sea level by satellites. It became possible to use satel-
lite altimetry for the verification of the numerical models, to pose and solve data
assimilation problems. Let us consider the finite difference method for solving the
sea level problem.

5. FORMULATION OF THE SEA LEVEL PROBLEM

The equations describing the evolution of the vertical-average components of the
velocity U , V and the sea level ζ have the form
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These equations follow from (4.13)–(4.15), with account taken of the approximation
H � ζ , and with additional terms RU� RV describing the bottom friction. Here R
is the bottom friction coefficient. It is either a given positive value or a quadratic
function of U , V .
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The boundary conditions, in addition to equations (5.1)–(5.3) include

�U��n� � 0� ∂D1 �U��n� � f� ∂D2 (5.4)

where U� �U�V �� ∂D1 is the coastal boundary and ∂D2 is the liquid contour. Equa-
tions (5.1)–(5.3) are approximated implicitly on the time interval tj � t � t j�1. Fur-
ther, to solve the problem obtained we can use two methods. The first method is
to solve the derived system of algebraic equations in terms of �U�V�ζ �. The sec-
ond method is to eliminate the velocity components and reduce the problem to the
equation for the sea level ζ , with boundary conditions resulting from (5.4). Let us
consider both methods in more detail.
Method 1. Solution of the problem in terms ofU�V�ζU�V�ζU�V�ζ . Suppose the domain of the
solution to the problem consists of rectangles, the grid steps are nonuniform such
that hx � hx�λ �� hy � hy�φ�. We approximate the equations of motion implicitly
with respect to time, multiply them by mn, taking into account that the element
of the domain is dD � 1

mndλdφ , and integrate the equations with respect to the
corresponding cells. We have

�
Di�1�2� j

mn

�
�δ �R�U� lV �mg

∂ζ
∂λ

�δU0
�

dDi�1�2� j � 0 (5.5)

�
Di� j�1�2

mn

�
�δ �R�V � lU�ng

∂ζ
∂φ

�δV 0
�

dDi� j�1�2 � 0� δ �
1
τ
� (5.6)

Suppose that the function U is piecewise constant and defined at the point �i�
1�2� j�: Ui�1�2� j and V at the point �i� j�1�2�: Vi� j�1�2. The function l is piecewise
constant given on a finer grid at the points �i� 1�4� j � 1�4�. The coefficient n is
given at the points of the definition of U , and m at the points V . Then (5.5), (5.6)
yield

hxi�1�2
hyj�1�2 �hyj�1�2

2
��δ �R�U�i�1�2� j

�li�3�4� j�1�4
hxi�1�2hyj�1�2

4
�LcvV �i�1� j�1�2

�li�1�4� j�1�4
hxi�1�2hyj�1�2

4
�LcvV �i� j�1�2

�li�1�4� j�1�4
hxi�1�2hyj�1�2

4
�LcvV �i� j�1�2

�li�3�4� j�1�4
hxi�1�2hyj�1�2

4
�LcvV �i�1� j�1�2

�
hyj�1�2 �hyj�1�2

2
hxi�1�2

�
mi�1�2� j g

ζi�1� j �ζi� j

hxi�1�2
�δU0

i�1�2� j

�
(5.7)
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hyj�1�2
hxi�1�2 �hxi�1�2

2
��δ �R�V�i� j�1�2

�li�1�4� j�1�4
hxi�1�2hyj�1�2

4
�LcuU�i�1�2� j

�li�1�4� j�3�4
hxi�1�2hyj�1�2

4
�LcuU�i�1�2� j�1
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4
�LcuU�i�1�2� j�1

�li�1�4� j�1�4
hxi�1�2hyj�1�2

4
�LcuU�i�1�2� j

�
hxi�1�2 �hxi�1�2

2
hyj�1�2

�
ni� j�1�2g

ζi� j�1�ζi� j

hy j�1�2
�δV 0

i� j�1�2

�
� (5.8)

The approximation of the continuity equation has the form� 1
mn

�
i� j

δ �ζi� j �ζ 0
i� j��

��
HU
n

Lcu

�
i�1�2� j

�

�
HU
n

Lcu

�
i�1�2� j

�
2

hxi�1�2 �hxi�1�2

�

��
HV
m

Lcv

�
i� j�1�2

�

�
HV
m

Lcv

�
i� j�1�2

�
2

hyj�1�2 �hyj�1�2
� 0� (5.9)

Here Lcui�1�2� j, Lcvi� j�1�2 are mask arrays equal to unity at the points of the cal-
culated domain and equal to zero beyond its bounds. The problem reduces to the
solution of the system of algebraic equations (5.7)–(5.9).
Method 2. Reducing the problem to the equation for the sea level. As before,
equations (5.1)–(5.3) are approximated implicitly on the time interval tj � t � t j�1.
However, the problem further reduces to the equation for the sea level ζ , with
boundary conditions following from (5.4). The solution algorithm of the problem
is to calculate the velocity components U , V and solve the elliptic (at each time
step) equation for the sea level. From (5.1)–(5.3) we have

�δ �R�U� lV �Lcv � mg
∂ζ
∂λ

�δU0 (5.10)

�δ �R�V � lU �Lcu � ng
∂ζ
∂φ

�δV 0 (5.11)

1
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δ �ζ �ζ 0��

�
∂

∂λ

�
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n

�Lcu

�
�

∂
∂φ

�
HV
m

�Lcv

��
� 0� (5.12)

We rewrite these equations in the form resolved with respect to U , V :

∆U � �δ �R�

�
mg

∂ζ
∂λ

�δU0
�
� l

�
ng

∂ζ
∂φ

�δV 0
�
�Lcv (5.13)
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∆V � �δ �R�

�
ng

∂ζ
∂φ

�δV 0
�
� l

�
mg

∂ζ
∂φ

�δU0
�
�Lcu (5.14)

∆ � �δ �R�2� l2 �Lcu �Lcv�

Hence,

U �
�δ �R�

∆

�
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∂ζ
∂λ

�δU0
�
�

l
∆

�
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∂ζ
∂φ

�δV 0
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�Lcv (5.15)

V �
�δ �R�

∆

�
ng

∂ζ
∂φ

�δV 0
�
�

l
∆

�
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∂ζ
∂λ

�δU0
�
�Lcu� (5.16)

To calculate the sea level, we write the expressions for the functions HU�n�HV�m

HU
n

�
m
n

H�R� ∂ζ
∂λ

�H�l�∂ζ
∂φ

�Lcv�
δ
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�
H�R�U0�H�l�V 0 �Lcv

�
(5.17)
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m

�
n
m
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∂φ

�H�l� ∂ζ
∂λ

�Lcu�
δ
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�
H�R�V 0�H�l�U0 �Lcu

�
(5.18)

where

H�R� �
gH�δ �R�

∆
� H�l� �

gHl
∆

� (5.19)

We approximate (5.17), (5.18) on a nonuniform grid with steps hxi�1�2� hyj�1�2 to
obtain
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The approximation of the continuity equation is
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Substituting (5.20), (5.21) in (5.22), we obtain the nine-point equation for the sea
level

r1 �ζi� j�1 � r0 �ζi� j � r2 �ζi� j�1 � r3 �ζi�1� j � r4 �ζi�1� j

�r5 �ζi�1� j�1 � r6 �ζi�1� j�1� r7 �ζi�1� j�1� r8 �ζi�1� j�1 � Fi� j (5.23)

with the corresponding expressions for the coefficients and the right-hand side fol-
lowing from (5.20)–(5.22).

At each time step, scheme (5.23) approximates the equation for the sea level
function
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The boundary condition for equation (5.24) follows from (5.4) and is natural in the
variational sense. Its form follows from expressions (5.15), (5.16) for U , V .

6. NUMERICAL MODELLING OF THE CIRCULATION
IN THE SEA OF OKHOTSK

The Sea of Okhotsk is a semi-enclosed sea basin located in mid- latitudes in the
north-west part of the Pacific Ocean. It joins the Sea of Japan in the south-west,
it is bounded in the south by the Kuril Islands and in the east by the Kamchatka
Peninsula. The Sakhalin Island bounds the sea basin in the west. The north boundary
of the sea is the continental coast. The circulation in the Sea of Okhotsk is formed
under the effect of the monsoon wind, the tidal wave incoming through the straits
of the Kuril Islands, and the thermohaline factors.

The main geographical features of the Sea of Okhotsk are:

	 Large depth gradients (the basin comprises shallow bays and deep areas, the
sea depth varies from several meters to 2–3 km).

	 The presence of a wide north-west shelf about 220 m in depth.

	 Strong changeable winds.

	 A large number of straits and strong currents.

	 High tides (the wave height in the Penzhinskaya Bay reaches 13 m).
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Figure 1. Time series of the barotropic kinetic energy, averaged over the whole domain. November:
— thermohaline circulation, � � � wind circulation, - - - wind and thermohaline circulation.

Figure 2. Wind currents at 6-m depth (November).

All the above factors cause significant difficulties in the modelling and prediction
of currents in the Sea of Okhotsk. We should emphasize that, besides scientific
interest, the simulation of the processes in the Sea of Okhotsk is of interest for such
applied sectors as fishery, prospecting, oil production, navigation, and use of marine
structures.

One of the most interesting problems of examining the dynamics of the Sea of
Okhotsk is estimating the contribution of various factors to the formation of the
dynamics of surface flows and the sea level. The numerical experiment using the
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Figure 3. Thermohaline currents at 6-m depth (November).

above numerical model is designed exactly for this problem. The calculations were
carried out with account taken of the conventional approximations of hydrostatics
and long waves (L� H , H � ζ ).

The climatic monthly average wind fields were used as atmospheric forcing.
The effects of the tide and the thermohaline factors were taken into account in the
model. The lunar diurnal wave K1 that is most pronounced in the aquatorium was
considered as a tidal wave. The wave was generated on the open south-east boundary
(in the Kuril straits). The wave amplitude was taken to be 50 cm. In the general case,
we calculated all the hydrologic fields of velocity, density (temperature and salinity)
and the sea level. Several numerical experiments for different months of the year
were carried out. The calculations differed by taking account of different factors.

The first series of calculations was carried out under the winter monsoon condi-
tions (mid-November). Only the wind effect was taken into account in the first run.
The density was taken to be constant, the tide was absent. Only the thermohaline
factors (the wind and the tide were absent) were taken into account in the second
run and only the tidal wave K1 in the third run. The joint effect of the wind and the
thermohaline factors was estimated in the fourth run. The same series of calculations
was carried out for the summer monsoon conditions (mid-June). The computational
results suggest the following.

(1) The experiments show that the tidal flows for the diurinal wave K1 have
the highest energy. The average barotropic kinetic energy for the wave K1 is about
55 (cm/s)2. These values for the wind and thermohaline circulation are, respectively,
20 and 2 (cm/s)2 in November (Fig. 1), 1 and 3.4 (cm/s)2 in June. Instantaneous tidal
flows reach 390 cm/s in the Penzhinskaya Bay. The maximum amplitude of the tidal
wave is attained there too and is about 4.5 m.

(2) The residual (averaged over the tidal period) tidal flows are not large. Their
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mean value is about 7 cm/s near the southern coast of Sakhalin, 3 cm/s in the open
sea, and the maximum value (in the Penzhinskaya Bay) reaches 33 cm/s.

(3) The residual flows are primarily formed by the wind. The maximum velocity
of the wind flows in the upper sea layer is observed near the coast of Sakhalin. In
November the velocity is higher than 120 cm/s at a depth of 6 m (Fig. 2) and about
20 cm/s at a depth of 100 m. The amplitude of the sea level fluctuations is up to
70 cm in November and about 8 cm in June.

(4) The contribution of the thermohaline factor to the flow formation in the
upper sea layer is not large. In the absence of the wind and the tide the velocities
of thermohaline flows at a depth of 6 m are about 13 cm/s in November (Fig. 3)
and 12 cm/s in June and about 10–12 cm/s at a depth of 100 m. The characteristic
amplitude of the sea level fluctuations is not large, i.e., about 7 cm.
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