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INTRODUCTION

The results of numerical modeling of sea and ocean
dynamics indicate that the best way to improve the
models is to enhance their spatial resolution [8, 10].
The enhancement of the spatial resolution of the mod-
els requires, as a rule, their physical content to be
enriched. For example, with the decrease in the hori-
zontal mesh size, when the horizontal mesh size
approaches the vertical mesh size, the condition that the
vertical scale is small with respect to the horizontal
scale will not be satisfied. This may cause us to give up
the hydrostatic approximation and to consider the com-
plete equation for the vertical velocity.

In addition, recently, marine processes have more
often been analyzed and predicted by performing series
of numerical calculations within a set of diminishing
embedded subdomains. This way to a more detailed
description of the processes studied makes the horizon-
tal and vertical scales approach each other. Embedding
of the calculation domains results in “embedding” cal-
culation models and stimulates the development of a
hierarchy of models, which allows us to use models of
different levels of physical complexity while remaining
under the auspices of a single algorithm.

Our study is devoted to the construction of such a
hierarchic nonhydrostatic model of marine dynamics.
The principal requirement is that the model should be
able to resolve the physical problems of different levels
of complexity. The hierarchic structure of the model is
based on the method of splitting with respect to physi-
cal processes [4, 14, 15]. The model is an improvement
of the model based on the equations of the general cir-
culation in the ocean (primitive equations) written in
the spherical 

 

σ

 

-coordinate system [15]. The model was
improved in two directions. First, account for the non-
hydrostatic effect, and, second, 

 

“

 

k 

 

– 

 

�

 

”

 

 parametrization
of the processes of turbulent exchange were applied.

Since the input model is based on the splitting method,
its program realization is modular. Individual splitting
stages are represented by individual program units. The
principal improvement of the model—the allowance
for the nonhydrostatic effect—was achieved by adding
a complementary splitting stage to the input model. The
program package was provided with a new unit for the
calculation of the nonhydrostatic dynamics, with the
base of the model kept unchangeable. We managed to
achieve this owing to the equivalent transformation of
the initial equations of motion. The transformation
needs a new function to be introduced, a function
describing pressure variations. This technique is similar
to the representation of pressure as a sum of the hydro-
static and nonhydrostatic components, which was used
in [12].

In this paper, we present the formulation of the non-
hydrostatic 

 

σ

 

-model and the method of its numerical
solution. The model is used for the calculations of the
thermohaline marine dynamics within an ideal rectan-
gular area, conventionally called an “academic basin,”
which simulates the conditions in the central Baltic
Sea. The main goal of the numerical experiments was
to approbate the nonhydrostatic model and to assess the
nonhydrostatic effect under such ideal conditions. In
addition, to illustrate the adequacy of the model, we
present the results of the calculations of the dynamics
of the Gulf of Finland.

MODEL EQUATIONS

The nonhydrostatic model of the thermohaline
dynamics is based on a system of nonlinear three-
dimensional equations. The model includes:

—complete nonlinear equations of motion for the
velocity vector with the components 

 

u

 

, 

 

v

 

,

 

 and 

 

w

 

 written
in the Boussinesq approximation;
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—a three-dimensional equation of transfer–diffu-
sion for the potential temperature 

 

T

 

;
—a three-dimensional equation of transfer–diffu-

sion for the salinity 

 

S

 

;
—three-dimensional equations of transfer–diffu-

sion–kinetics for the turbulent kinetic energy 

 

κ

 

 and its
dissipation rate 

 

ε

 

;
—a continuity equation for an incompressible fluid;
—an equation of state for seawater.
The equations written in the spherical 

 

σ

 

-coordinate
system (

 

σ

 

 = 

 

z

 

/

 

H

 

(

 

λ

 

, 

 

ϕ

 

)

 

) have the form [12, 15]

 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

 

Here
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(15)
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(17)

where λ is the longitude; θ = 90° + ψ; ψ is the latitude;
σ is the vertical coordinate pointed downward; ζ is the
sea level (its positive value denotes a depression and its
negative one denotes a rise); H(λ, θ) is the sea depth;
ν∗ = cμκ2ε–1 is the coefficient of the vertical turbulent
exchange; μ∗ is the coefficient of the horizontal turbu-

lent exchange;  = –2Ωcosθ,  = 2Ωsinθ, Ω is the
angular velocity of the earth’s rotation; m = 1/(Rsinθ),
n = 1/R are the metric coefficients; R is the earth’s
radius; q = n/m; p is the pressure; b = g(ρ – ρ0)/ρ0 is the
buoyancy; ρ is the density of seawater; ρ0 ≡ const is the
reference density; g is the acceleration due to gravity;
and σT = f(Ri), where Ri is the Richardson number; and
cμ, c1, c2, and c3 are constants. The process of the turbu-
lent exchange is parameterized with the κ–ε model [6].

The boundary conditions for (1)–(9) are formulated
as follows.

Over the vertical line, at the top boundary, for σ = 0
we have

(18)

where c and Qc are vector-functions represented as

(19)

At the bottom boundary, for σ =1

(20)

At the side surface Σ

(21)
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Here τ1 and τ2 are the components of the wind friction
tension, QT is the heat flux, QS is the salinity flux, Qκ is
the turbulent energy flux, Qε is the flux of the turbulent
energy dissipation rate, and  is the vector normal to Σ.

Equations (1)–(9) should be complemented by the
initial conditions for t = 0

(22)

Note 1. Besides the initial vertical velocity w, the
new vertical velocity w∗ is used in the new coordinate
system. It is equal to zero at the sea surface, σ = 0,
and at the bottom, σ = 1, since the kinematic condi-
tions for w

(23)

(24)

are satisfied.
The new vertical velocity w∗ is associated with the

form of the transport operator in the σ-coordinate sys-
tem, in which it has the form

(25)

(26)

Neglecting the spatial gradients ζ in comparison to the
gradients H we have

(27)

Note 2. The continuity equation can be rewritten in
terms of the old vertical velocity

(28)

SPLITTING METHOD

To solve Eqs. (1)–(9) with respect to time, let us use
the splitting method. The mathematical aspects of the
splitting method and its use for the solution of oceano-
logical problems are presented in [1, 2, 4, 14]. The
essence of the method is as follows. Let us assess a non-
stationary problem

(29)

n̂

U
u

v⎝ ⎠
⎛ ⎞ U0; c c0.= = =

w
∂ζ
∂t
------ at z 0,= =

w um
∂H
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∂H
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d
dt
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∂t
----- mu

∂
∂λ
------ nv

∂
∂θ
------+ +=

+ w mZλu nZθv Zt+ +( )–[ ] ∂
∂σ
------,

Z σ H ζ–( ) ζ.+=

Zλ σHλ, Zθ σHθ, Zt 1 σ–( )ζt.= = =

m
∂uH
∂λ

-----------
∂

∂θ
------ n

m
----vH⎝ ⎠

⎛ ⎞+

+ ∂w
∂σ
-------

∂
∂σ
------ σ mHλu nHθv+( )[ ]– 0.=

∂ϕ
∂t
------ Aϕ+ 0, ϕ u v w T S κ ε, , , , , ,( )',= =

where A is the nonnegative operator which can be pre-
sented as a superposition of simpler operators Ai

(30)

Then, for solving (29), we can use the implicit splitting
scheme

(31)

The scheme (31) is absolutely stable and approximates
(29) to the first-order accuracy in time.

The splitting method can be considered not only as
an efficient method for solving a complex problem in
time but as the basis for the construction of a hierarchic
model system. Within the frameworks of a single
approach, we can formulate a particular model of ocean
dynamics of different complexity from the point of
view of physical completeness, dimensionality, and
spatial resolution. The key point in the construction of
the split hierarchic model system and the method for its
solution is the splitting of the initial base problem into
simple subproblems with nonnegative operators. The
choice of such a splitting is frequently nontrivial and
nonunique [5, 9]. The splitting is reduced to the choice
of a series of simpler particular problems. For each par-
ticular problem, the conservation law should be satis-
fied.

In splitting, we can separate several levels. The mac-
rolevel of splitting is based on splitting into physical
processes. At the lower level, the simplest problems,
one-dimensional in space, may be distinguished.

After splitting of a problem at the macrolevel, it may
need to be transformed at a particular stage. This may
be filtration (simplification) of the equations and regu-
larization, i.e., adding complementary terms which
improve the properties and the solution algorithm of the
problem. After the regularization of the splitting stages,
a question arises about which method of solving should
be used at a particular stage. Choosing the spatial
approximation method, we should take into account the
properties of the particular problem. Different prob-
lems may require different methods for their approxi-
mation and solution. In our calculations, we used finite
difference approximations over a shifted “C” grid [5].

An intrinsic property of the split model is its modu-
lar concept: one problem–one module. Each prob-
lem/module may have its own conjugated analog. The
integrated model can be composed of different numbers
of modules. The computation characteristics of the

A Ai, Ai

i 1=

N

∑ 0.≥=

ϕ ϕ j τ f j,+=

E τA1+( )ϕ j 1/n+ ϕ,=

E τA2+( )ϕ j 2/n+ ϕ j 1/n+ ,=

…

E τAN+( )ϕ j 1+ ϕ j N 1–( )/N+ .=
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model can be improved through changing individual
computation modules.

To solve our problem, we use splitting with respect
to physical processes (the macrolevel of splitting) and
to spatial variables (the microlevel of splitting).

Transfer–diffusion of substances. At the first stage
of splitting with respect to physical processes, we solve
the problem of momentum transfer–diffusion taking
into account metric terms, the turbulent diffusion of
heat and salinity, as well as transfer–diffusion of the
turbulent kinetic energy and its dissipation rate. We
have

(32)

(33)

(34)

(35)

(36)

(37)

(38)

For efficient solving of the three-dimensional transfer–
diffusion equations at the microlevel, the problem is
split into coordinates λ, θ, σ

(39)

(40)

(41)

Adaptation of the velocity and potential density
fields. At the second stage of the splitting with respect
to the physical processes, the stage of the adaptation of
the velocity and potential density fields is specified. At
this stage, the equations have the form

(42)

(43)

du
dt
------ m

n
m
----⎝ ⎠

⎛ ⎞ 'uv nwu l̃w+ + + Λu,=

dv
dt
------- m

n
m
----⎝ ⎠

⎛ ⎞ 'uu– nwv+ Λv ,=

dw
dt
------- l̃u– n u2

v
2+( )– Λw,=

∂T
∂t
------ ΛT ,=

∂S
∂t
------ ΛS,=

dκ
dt
------ Λκ,=

dε
dt
----- Λε.=

∂
∂t
----- um

∂
∂λ
------ Λλ–+ ϕ 0,=

∂
∂t
----- vn

∂
∂θ
------ Λθ–+ ϕ 0,=

∂
∂t
----- w*

∂
∂σ
------ Λσ–+ ϕ 0.=

∂u
∂t
------ l̂v–

m
ρ0
----- ∂p

∂λ
------

σ
H
----∂H

∂λ
------- ∂p

∂σ
------–⎝ ⎠

⎛ ⎞+ 0=

10

∂v
∂t
------- l̂u

n
ρ0
----- ∂p

∂θ
------

σ
H
----∂H

∂θ
------- ∂p

∂σ
------–⎝ ⎠

⎛ ⎞+ + 0,=

20

(44)

(45)

(46)

Here, instead of the equations for the temperature and
salinity transport, an equation for the potential density
transport is written. This can be done assuming the
potential density to be a smooth function of the poten-
tial temperature and salinity. In our model, the
UNESCO-80 formula [7] is used as the equation of
state for the seawater, so that the assumption made is
valid.

Note 3. Let us assume that during the adaptation

stage the sea level ζ does not vary in time, so that  = 0.

Then, the scalar product of Eqs. (42)–(46) by the vector
(ρ0Hu, ρ0Hv, ρ0Hw, p, –σgH) helps to satisfy the con-
servation law for the total energy:

(47)

The pairwise energetically neutral terms in the equa-
tions (42)–(46) are denoted by the same numbers.
Specifying of such groups of the terms is convenient for
the subsequent splitting of the adaptation equation sys-
tem. The complementary stages of the splitting are
specified so that the conservation law is satisfied at
every stage, i.e., a combination of pairwise energeti-
cally neutral terms should be presented. Thus, we have
to split the equation for the vertical velocity w into two

parts, calculating the vertical pressure gradient  and

the term describing the buoyancy effect gHρ at differ-
ent stages of the splitting. As a rule, these terms balance
each other and there is no reason to calculate them at
different stages of the splitting. In order to overcome
this difficulty, another approach should be applied:
instead of p we introduce the new function .
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Let us rewrite the equations for the vertical velocity
in an equivalent form

(48)

where pg(0) is the hydrostatic pressure at the nondis-
turbed surface z = 0

(49)

and introduce a new function  which describes the
deviation of pressure from the hydrostatic value

(50)

Denoting

(51)

we obtain Egs. (42)–(46) in the form

(52)

(53)

(54)

(55)

(56)

This system also satisfies the conservation law of the
total energy. We can verify it by multiplying the system
by the vector (ρ0Hu, ρ0Hv, ρ0Hw, , –σgH) and taking
into account

(57)

∂w
∂t
-------

1
ρ0H
---------- ∂

∂σ
------ p pg 0( ) gHρ σd

0

σ

∫+
⎝ ⎠
⎜ ⎟
⎛ ⎞

–+ 0,=

pg 0( ) gρ0ζ,–=

p̃

p̃ p pg 0( ) gHρ σd

0

σ

∫+
⎝ ⎠
⎜ ⎟
⎛ ⎞

.–=

pg pg 0( ) gHρ σ,d

0

σ

∫+=

∂u
∂t
------ l̂v–

m
ρ0
-----

∂ pg

∂λ
-------- gρσ∂H

∂λ
-------–⎝ ⎠

⎛ ⎞+

+
m
ρ0
----- ∂ p̃

∂λ
------

1
H
---- ∂p

∂σ
------σ∂H

∂λ
-------–⎝ ⎠

⎛ ⎞ 0,=

∂v
∂t
------- l̂u

n
ρ0
-----

∂ pg

∂θ
-------- gρσ∂H

∂θ
-------–⎝ ⎠

⎛ ⎞+ +

+
n
ρ0
----- ∂ p̃

∂θ
------

1
H
---- ∂p

∂σ
------σ∂H

∂θ
-------–⎝ ⎠

⎛ ⎞ 0,=

∂w
∂t
-------

1
ρ0H
----------∂ p̃

∂σ
------+ 0,=

m
∂uH
∂λ

-----------
∂

∂θ
------ n

m
----vH⎝ ⎠

⎛ ⎞+
∂w
∂σ
-------+

–
∂

∂σ
------ σ mHλu nHθv+( )[ ] 0,=

H
∂ρ
∂t
------ ∂

∂λ
------ mHuρ( ) ∂

∂θ
------ nHvρ( )+ +

+
∂

∂σ
------ w σ mHλu nHθv+( )– 1 σ–( )ζt–[ ]ρ 0.=

p̃

∂ pg

∂σ
-------- gHρ.=

The procedure such as the introduction of a new func-
tion describing the pressure variation is similar to the
representation of the pressure as a sum of the hydro-
static and nonhydrostatic parts used in [11, 12].

Hydrostatic regime. Once the convenient form of
the equations has been chosen, the adaptation equations
may be further split into two stages, which describe the
hydrostatic and nonhydrostatic regimes. During the
hydrostatic stage, we have

(58)

(59)

(60)

(61)

(62)

(63)

A method for solution of equations (58)–(63) is pre-
sented in [1, 15]. According to this method, the hori-
zontal velocity components u and v are presented as a
sum of the values averaged over the vertical and of the
deviations from the average. For the calculations of the
vertically averaged motion, an implicit scheme is use.
At each time step, the problem is reduced to the itera-
tion solution of the elliptic equation for the sea surface
level with the oblique derivative as the boundary condi-
tion [3].

Nonhydrostatic regime. At the stage of solving the
equations of nonhydrostatic dynamics, we have
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From the point of view of the development of the model
of ocean and sea dynamics, this stage is an additional
one. Through including it into the model, nonhydro-
static effects are taken into account. It can be easily
seen that, if we omit this stage, the model is reduced to
its basic formulation—the hydrostatic σ-model of the
general circulation.

To approximation the equations at the stage of the
calculation of the nonhydrostatic dynamics, we used a
semi-explicit time scheme. At the implicit step, we
found the terms describing the vertical field structure.

The calculation included the solution of the vertically
one-dimensional equation of the second order with
respect to the pressure and the calculation of the veloc-
ity and potential density components from explicit for-
mulas.

Calculation of the turbulent kinetic energy. Dur-
ing this splitting stage, we solve the equations

(69)
∂κ
∂t
------ γ 1

κ2

ε
----- ε,–=
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Fig. 1. Distributions of (a) temperature (°ë) and (b) salinity (‰) in the vertical latitudinal section in the academic basin on May 9,
1995, at 12:00 AM.
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(70)

Using the substitution X = κ/ε, Eqs. (69)–(70) can be
reduced to the single equation

(71)

where a = c1γ2 – γ1, b = c2 – 1 > 0. For Eq. (71), we can
write an analytical solution [6], depending on the initial

∂ε
∂t
----- c1γ 2κ c2

ε2

κ
----.–=

dX
dt
------- bX2+ a,=

condition. We use this analytical solution at this stage
of splitting.

NUMERICAL EXPERIMENT. ACADEMIC BASIN

The nonhydrostatic model of sea dynamics pre-
sented above was approbated in a series of numerical
experiments. The first numerical experiment was
devoted to testing the model for different input condi-
tions: with and without allowance for the nonhydro-
static effect as well as for high and low spatial resolu-
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Fig. 2. Temperature (°C) at the surface and at the 8th calculation level in the academic basin on May 9, 1995, at 12:00 AM.
(a) Surface, hydrostatic approximation, low resolution; (b) surface, nonhydrostatic approximation, low resolution; (c) surface, non-
hydrostatic approximation, high resolution; (d) 8th calculation level, hydrostatic approximation, low resolution; (e) 8th calculation
level, nonhydrostatic approximation, low resolution; and (f) 8th calculation level, nonhydrostatic approximation, high resolution.
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tion. The numerical experiment was carried out in a
simple rectangular calculation domain (academic
basin)

The academic basin approximated the northern Bal-
tic Sea located at the latitudes of the Gulf of Finland
from the coast of Sweden to the Neva River estuary.
The southern and northern boundaries of the basin were
at 60° and 61° N, whereas western and eastern bound-
aries were at 19° and 30°40′ E, respectively. The west-
ern part of the southern boundary, approximately from
the coast of Sweden to the Estonian coast, was open.
This simulated the effect of the main part of the Baltic

Sea on the dynamics of the processes modeled. The
bottom relief was described by an analytical function,
which approximates the characteristic features of the
model area (Fig. 1). The maximum and minimum
depths of the basin were 180 and 1 m, respectively.

The calculations were performed for two different
(low and high) horizontal resolutions of the model. For
the low resolution, the grid steps were hλ = 5' with
respect to the latitude and hθ = 2.5' with respect to the
longitude. For the high resolution, they were 5 times
smaller and comprised hλ = 1' and hθ = 0.5'. In both cases,
the vertical resolution was the same. Thirteen σ-levels
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Fig. 3. Salinity (‰) at the surface and at the 8th calculation level in the academic basin on May 9, 1995, at 12:00 AM. (a) Surface,
hydrostatic approximation, low resolution; (b) surface, nonhydrostatic approximation, low resolution; (c) surface, nonhydrostatic
approximation, high resolution; (d) 8th calculation level, hydrostatic approximation, low resolution; (e) 8th calculation level, non-
hydrostatic approximation, low resolution; and (f) 8th calculation level, nonhydrostatic approximation, high resolution.
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were used, with their concentration toward the top
boundary. The minimum vertical step (in terms of the z-
system) varied from 1.8 m to 1 cm. The time step τ in
the calculations for the hydrostatic and nonhydrostatic
models was the same. Depending on the grid size, it
was 30 min for the low resolution and 6 min for the high
resolution.

The numerical experiment was carried out in the
prognostic regime. At the initial moment of time, water
motion is absent. The initial fields of temperature and
salinity were given by analytical functions, which
described the mean climatic spring distributions of the
fields with the mixed upper layer. The calculations were
performed for the time interval from April 30, 1995, to

December 31, 1995. During the calculation period, the
wind and heat conditions (the atmospheric wind and
temperature) at the surface were set to be close to the
actual ones, using the data of the calculations with the
HIRLAM meteorological model [13]. The salinity flux
at the surface throughout the calculation period was
assumed to be zero.

We performed four calculations for the following
conditions:

—hydrostatic model, low horizontal resolution;
—nonhydrostatic model, low horizontal resolution;
—nonhydrostatic model, high horizontal resolution;
—hydrostatic model, high horizontal resolution.
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Fig. 4. U-component of the velocity at the 1st and 8th calculation levels in the academic basin on May 9, 1995, at 12:00 AM.
(a) Surface, hydrostatic approximation, low resolution; (b) surface, nonhydrostatic approximation, low resolution; (c) surface, non-
hydrostatic approximation, high resolution; (d) 8th calculation level, hydrostatic approximation, low resolution; (e) 8th calculation
level, nonhydrostatic approximation, low resolution; and (f) 8th calculation level, nonhydrostatic approximation, high resolution.
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The numerical experiment showed the numerical
algorithm to be efficient for the calculation for all four
model versions. The results obtained can be briefly
described as follows.

—The model simulates the qualitative structure of
the temperature and salinity fields characteristic of the
summer conditions in the Gulf of Finland (Fig. 1).

—For the low horizontal resolution, the hydrostatic
and nonhydrostatic models yield qualitatively and, to
some extent, quantitatively close results.

—The differences in the solutions are mostly con-
fined to the upper layer (temperature, Fig. 2; salinity,
Fig. 3; and the u-component of the velocity, Fig. 3);
they are most pronounced in the temperature field.

—In deeper layers, the calculated fields for all three
versions differ insignificantly. The salinity in the lower
layers is approximately the same for all the calculation
versions, including the fourth variant.

—For the low spatial resolution, the solution of the
hydrostatic model yields larger horizontal gradients in
comparison to the solution of the nonhydrostatic
model. The reason is that, in the nonhydrostatic case,
we observe high vertical velocities and more intensive
localized circulation cells which erode the horizontal
gradients of the hydrological fields.

—The solution of the high-resolution nonhydro-
static model demonstrates an increase in the spatial gra-
dients in comparison to the low-resolution nonhydro-
static model solution. Pronounced differences are
inherent in the temperature field. The reason lies in the
more intensive vertical velocity field. It should be noted
that there are minimums in the field of the sea surface
temperature (Fig. 2c). They are about 1°C in magnitude
and concentrate near the northern boundary and in the
western part of the basin. The sea surface temperature
minimums are caused by upwelling processes. This
feature is important from the point of view of the mod-
eling of marine ecosystems. The numerical experiment
shows that, in order to describe the dynamics of the
upper layer in detail, it is necessary to use nonhydro-
static models with high resolution.

—The calculations with the hydrostatic model of
high spatial resolution provide inadequately high val-
ues of the temperature in the upper layer. At the north-
western boundary, the values of the sea surface temper-
ature reach 15°C in the first third of May.

NUMERICAL EXPERIMENT. GULF OF FINLAND

To approbate the model under actual conditions, we
performed calculations of the dynamics of the Gulf of
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Fig. 5. Surface temperature in the Gulf of Finland on June 8, 1995, at 12:00 AM. (a) Nonhydrostatic model and (b) hydrostatic
model.
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Finland. The numerical experiment was carried out in
the prognostic regime, completely similar to the previ-
ous case. The calculations were performed for the
period from April 30, 1995, to October 18, 1995. At the
surface of the basin, we set the actual wind friction
stress and heat flux calculated from the HIRLAM fore-
cast data [13]. As previously, the salinity flux was
assumed to be zero.

Figures 5a and 5b show the calculated sea surface
temperature fields for the nonhydrostatic and hydro-
static cases on June 8, 1995. A comparison of the cal-
culated fields with the observation data reveals two
essential points. First, over most of the area of the cal-
culation domain, the model fields are close to each
other and to the actual fields. Second, there are pro-
nounced discrepancies in the vicinity of the western
boundary, where, in the hydrostatic approximation, the
calculated temperature is inadequately low.

The western boundary of the model was open. At
this boundary, we set the distributions of the tempera-
ture and salinity characteristic for the summer season as
the initial conditions. As can be seen from Fig. 5a, the
nonhydrostatic model provides adequate results
throughout the calculation domain, up to the periphery
of the western contour. In the hydrostatic approxima-
tion, the temperature in the western subdomain is inad-
equately low, reaching values about 6°C, whereas the
temperature observed in this period is close to that cal-
culated with the nonhydrostatic model and equal to
about 10–11°C.

Two essential points should be noted from the
present numerical experiment: the nonhydrostatic
model of the sea dynamics is adequate and has an
advantage over the hydrostatic model in simulating the
actual processes, in particular, with the open boundary.
In the present study, we did not analyze in detail the
reasons for the characteristic features of the solutions
mentioned above, as this is beyond our objectives. It
should only be noted that a possible reason for the
reduced adequacy of the hydrostatic model in the
experiment presented may be its higher sensitivity to
the conditions at the liquid boundary. In the hydrostatic
approximation, the vertical motion is more intensive,
which decreases the area affected by the open boundary
(in the horizontal plane); this results in the improve-
ment of the model.
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