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1. INTRODUCTION

In the present study, we discuss the problems of cou-
pling the theoretical models describing the principal
dynamical effects in the vicinity of the sea–air inter-
face: wind, waves, and sea currents. The present-day
models of the atmospheric boundary layer and the
upper sea layer (see [11, 12, 16, 17, 20, 23, 26]) are
rather general: they use the equation of the balance of
turbulent energy [14] for closing the Reynolds equa-
tions and, hence, need the momentum and energy
fluxes through the sea–air interface to be given. The
equations for the fluxes are formulated on the basis of
certain physical concepts and include a set of parame-
ters. Important parameters are the current velocity 

 

U

 

∗

 

and the roughness of the water surface 

 

z

 

0

 

, which in turn
depend on the wind waves. In this connection, the fol-
lowing should be noted. First, all the relationships
between 

 

z

 

0

 

 and the parameters of the wind waves used
are rather hypothetical, which makes the estimates of
the wind stress 

 

τ

 

a

 

 unreliable in the boundary condition
for the momentum flux at the sea surface. When one
describes sea currents, the effect of wind waves is either
ignored (the total momentum flux 

 

τ

 

a

 

 from the atmo-
sphere is assumed to be transformed into a drift current,
although, actually, a part of it should be transformed
into wind waves) or taken into account empirically with
no reliable theoretical base. Second, when one imposes
the boundary conditions at the sea surface for the flux

of the turbulent energy, the effect of wind waves is also
assessed rather arbitrarily [16].

In the present study, we propose a general method
for coupling the units for modeling the atmospheric cir-
culation and dynamics of the ocean at the sea–air inter-
face with the use of an additional wave unit. The model
units describing the atmospheric and sea dynamics are
calculated independently and can have different levels
of complexity. The interaction between the units is
implemented with the use of a special wave unit. The
unit of wave dynamics is based on the transport equa-
tion for the spectrum of wind waves in a narrow direc-
tional approximation and a special procedure for select-
ing the wave perturbations in the boundary layers in the
air and sea. In addition to the determination of the spec-
trum of the wind waves, it is used for coupling the mod-
els of turbulent boundary layers in the air and sea and
for calculating the characteristics of the fluxes that are
necessary for imposing the boundary conditions at the
interface. This results in a closed self-adjusted descrip-
tion of wind, waves, and sea currents, which takes into
account the adjustment of all these processes.

In recent years, more and more attention is being
paid to the construction of models that take into account
the interaction between waves and sea currents. The
effect of surface wave breaking on the turbulent dynam-
ics of the upper layer [16, 20] is being studied, and cou-
pled models for waves and currents have begun to be
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developed [23]. The present study is devoted to the
development of this line of research. Two new results
should be highlighted. First, we obtained a theoretical
estimation of the contribution of wind waves to the flux
of the turbulent kinetic energy at the sea surface. Sec-
ond, we obtained a model estimation of the effect of
wind waves on the dynamics of the sea. The estimation
is made on the basis of a numerical experiment with the
use of a three-dimensional nonhydrostatic numerical
model of the thermohaline dynamics of the sea. The
calculations show a pronounced contribution of wind
waves to the dynamics of the upper sea layer.

2. ATMOSPHERIC UNIT

For the atmospheric unit, we can use an updated
model for the atmospheric dynamics or a simpler ver-
sion. As an example, let us consider the model of the
surface atmospheric layer (SAL) proposed in [5].
According to this model, the current velocity 

 

U

 

∗

 

 

 

and
the roughness parameter 

 

z

 

0

 

 are represented in terms of
the wind velocity 

 

U

 

g

 

 and the spatial spectrum of wind
waves 

 

N

 

(

 

k

 

)

 

, where 

 

k

 

 = (

 

k

 

1

 

 = 

 

k

 

x

 

, 

 

k

 

2

 

 = 

 

k

 

y

 

)

 

 is the two-
dimensional vector. In the dynamical sublayer of the
stratified friction layer (or throughout the SAL for a
neutral stratification), the mean wind velocity 

 

U

 

(

 

z

 

)

 

 is
described by the logarithmic law

 

(2.1)

 

where 

 

κ

 

 

 

≈

 

 0.4

 

 is the Karman constant. In the model of
the logarithmic boundary layer, the parameters 

 

U

 

∗

 

 

 

and 

 

z

 

0

 

are independent. In the actual geophysical situation, the
surface atmospheric layer is the bottom part of the plan-
etary atmospheric boundary layer (PABL) with a given
wind velocity 

 

U

 

g

 

 at its top boundary. Therefore, within
the frameworks of the PABL model, the parameters 

 

U

 

∗

 

and 

 

z

 

0

 

 in Eq. (2.1) are related to 

 

U

 

g

 

 and to the solution
of the set of equations for the PABL. This relationship
follows the Kazanskii–Monin geostrophic drag law for
the PABL [9, 10]

 

(2.2)

 

where 

 

f

 

 is the Coriolis parameter and the values of the
constants 

 

A

 

 and 

 

B

 

 depend on the stratification in the
PABL and are determined from the numerical solution
of the equations for the PABL.

To determine the relation between 

 

U

 

∗

 

 

 

and 

 

z

 

0

 

 with 

 

U

 

g

 

and 

 

N

 

(

 

k

 

)

 

 from Eq. (2.2), the total momentum flux 

 

τ

 

a

 

 in
the friction layer is assumed as in [5] to be

 

(2.3)

 

Here,

 

(2.4)

U z( ) U*
κ

------- z
z0
----,ln=

U* κUg
U*
f z0
--------ln B–⎝ ⎠

⎛ ⎞ 2

A2+
1/2–

,=

τa ρaU*
2– τt τw.+= =

τt ρaU*t
2–=

 

is the momentum flux in the absence of waves (i.e., over
a smooth underlying surface 

 

z

 

 = 0) and

 

(2.5)

 

is the momentum flux to the waves from the atmo-
sphere represented in terms of the corresponding spec-
trum of the momentum flux to the waves 

 

T

 

+

 

(

 

k

 

, 

 

U

 

*t

 

, 

 

N

 

)

 

.
In the case of a smooth flow, the roughness parame-

ter is determined from the known dimensionality con-
siderations of the theory of wall turbulence [11]

 

(2.6)

(2.7)

 

(

 

ν

 

 

 

≅

 

 0.15

 

 cm

 

2

 

/s is the kinematic viscosity of the air).
Therefore, the flux component in the SAL in Eq. (2.3),

 

τ

 

t

 

 = –

 

ρ

 

a

 

, which is unperturbed by the waves, can be
directly determined from the corresponding detailing of
the geostrophic drag law (2.2) for a smooth underlying
surface and takes the form

 

(2.8)

 

By the substitution of (2.5) and (2.8) into (2.3), we

obtain for 

 

(2.9)

 

Together with the geostrophic drag law (2.2), Eq. (2.9)
represents a closed set of equations for determining the
parameters of the surface atmospheric layer 

 

U

 

∗

 

 

 

and
z0 as functions of Ug, f, and N (for a given T+(k, U∗t, N))
in the form of (2.5)

(2.10)

To determine the spectrum of the momentum flux from
the atmosphere to the waves using Eq. (2.5), we apply
the general phenomenological transport equation for
the spectrum of wind waves, which forms the wave unit
of the coupled wind–wave model under consideration.
This equation can be written for the spatial spectrum of
wave forcing N(k); then, the energy spectrum of waves
F(k) and the spectrum of wave momentum M(k) may
be expressed in terms of N(k)

(2.11)

Here,

(2.12)

is the dispersion relation for the surface gravity waves
at the surface of the water column with a depth of h. For
the normalization adopted, the energetic wave spec-
trum is normalized with respect to the dispersion 〈ξ2〉 of
the perturbations of the interface ξ(x, t)

τw U*t N,( ) ρwg T+ k U*t N, ,( ) kd∫–=

z0ν ανν/U*t,=

αν 0.1≈

U*t
2

τt ρaU*t
2 Ug f ν A B, , , ,( ).–=

U*
2

U*
2 U*t

2 Ug f ν A B, , , ,( ) τw U*t N,( )/ρa.+=

U* U* Ug f ν N A B, , , , ,( ),=

z0 z0 Ug f ν N A B, , , , ,( ).=

F k( ) σ k( )N k( ), M k( ) kN k( ).= =

σ k( ) gk kh( )tanh[ ]1/2=
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(2.13)

For the same normalization, with an accuracy of the
factor ρwg, the spectrum of the wave momentum is nor-
malized with respect to the integral momentum

(2.14)

In the case unsteady and nonuniform over the horizon-
tal x = (x1 = x, x2 = y), the evolution of the wave spec-
trum N(k, x, t) is described by the general transport
equation

(2.15)

where

(2.16)

is the convective term, and

(2.17)

is the source function that takes into account the nonlin-
ear four-wave interactions in the spectrum of the grav-
ity waves (P0), their interaction with the atmosphere
(P+), and their small-scale dissipation (P–). If the term
P0 is expressed in terms of N, and P+ and P– are rep-
resented in terms of N and U∗t, Eq. (2.15) can be
used for the determination of the wave spectrum N in
terms of U∗t

. (2.18)

To determine the term responsible for the interaction
of waves with wind P+, we use the Miles’ model linear
in N [22]

(2.19)

and the empirical parameterization of the dimension-
less coefficient of interaction of waves with wind
according to the data obtained by Snyder et al. [25]

(2.20)

The form of the equation for P+ allows us to write the
corresponding details of the general Eq. (2.5) for the
momentum flux from the atmosphere to the waves T+,

F k( ) kd∫ e ξ2〈 〉 .= =

M k( ) kd∫ m
ρwg
---------.=

dN
dt
------- ∂N

∂t
------- C N σ,( )+ P,=≡

C N σ,( ) ∂σ
∂kx

--------∂N
∂x
------- ∂σ

∂kx

--------∂N
∂y
------- ∂σ

∂x
------ ∂N

∂kx

--------–
∂σ
∂y
------ ∂N

∂ky

--------–+=

P P0 P+ P––+=

N N k x t U*t, , ,( )=

P+ β
kxU*t

σ k( )
--------------⎝ ⎠

⎛ ⎞ σ k( )N k( )=

β kxU*t/σ k( )( )

=  

0, at …( ) 0,<

ce

ρa

ρw

------ cd

kxU*t

σ k( )
-------------- 1–⎝ ⎠

⎛ ⎞ , at …( ) 0≥
⎩
⎪
⎨
⎪
⎧

ce 0.25, cd 28==( ).

which should be substituted in the right-hand side of
Eq. (2.9)

(2.21)

The empirical parameterization (2.20) of the coeffi-
cient of the wind–wave interaction β was obtained for
the large-scale components of the wind waves with the

dimensionless wavenumbers  = k /g ≤  ≈ 10–2. In
the numerical modeling of the energy-containing com-
ponents of the wind waves for the field conditions from
the transport equation (2.15), the small-scale compo-
nents usually fall in the subgrid domain. Therefore,
when we solve Eq. (2.15) for the wave spectrum, there
is no need for the small-scale extrapolation of
Eq. (2.20). Meanwhile, the contribution of the small-
scale components to the total momentum flux from the
atmosphere to the waves can be pronounced. Therefore,
it should be taken into account in the atmospheric unit
of the model in the calculations of τw from (2.5) and
(2.21). For this purpose, we use an empirical parame-
terization of β(kxU∗t/σ(k)) that is equivalent to that
obtained by Plant [24] in the range of the dimensionless

wavenumbers 10–2 <  < 10

(2.22)

In the subgrid domain, the spectrum N(k) in (2.22)
is parameterized by the exponential “blocking” spec-

T+ k U*t σ k( ) N, , ,( ) = kxU*t/σ k( )( )σ k( )kxN k( ).

k̃ U*
2 k̃e

k̃

β
kxU*t

σ k( )
--------------⎝ ⎠

⎛ ⎞ as

ρa

ρw

------
kxU*t

2

σ k( )
--------------, as 30.≈=

1E–21E–3 1E–1 1E+0 1E+1
U*/Cp

1E+1

1E+0

1E–1

1E–2

1E–3

gz0/U*
2

10

20

30

40

Fig. 1. Dimensionless roughness parameter as a function of
the inverse wave age (U*/Cp, where Cp is the wave phase
velocity). The crosses mark the measurement data, the
curves represent the results of the calculations with the
model, and the numerals near the curves represent the
velocities of the geostrophic wind.
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trums (3.17) and (3.18). The substitution of them into
(2.21) in view of Eq. (2.22) for β results in the short-
wave divergence of the integral equation (2.5) for τw. To
eliminate this divergence, we restrict the domain of the
integral (2.5) to the wavenumber

(2.23)

This restriction filters the small-scale components of
the wind waves in the viscous sublayer (hν ≅ 5ν/U∗t in
thickness), which make no contribution to the aerody-
namical drag of the wavy surface.

Figure 1 shows the plots of the dimensionless
roughness parameter against the inverse wave age
obtained from the data of field observations [18] and
calculated from the model described above. As can be
seen, the plots are pronouncedly dependent on an exter-
nal parameter; in the present experiment, it was the geo-
strophic wind velocity.

3. WAVE UNIT

If we use Eq. (2.19) for P+, it is necessary to deter-
mine P0 and P– in the transport equations (2.15)–(2.17)
for N(k). The term describing the nonlinear four-wave
interactions P0 was obtained by Hasselmann [19] from
the initial dynamical equations for free gravity waves
for a horizontal homogeneous layer as

(3.1)

where k, k1, k2, and k3 are the vectors.

Because Eq. (3.1) for P0 is cumbersome, it is reason-
able to use its simplified version obtained from the
expansion of P0 in series over the small parameter ∆ [8]

(3.2)

where

(3.3)

is the square of the effective cross section of the wave
spectrum N(k), and

(3.4)

is the initial two-dimension wave spectrum N(k) inte-
grated over the transverse coordinate ky. As was shown
in [4], the parameter (3.2) can be expressed in terms of

k0 α0U*t/ν, α0 10 2– .≅=

P0 k( ) 4π k1 k2 k3T2 k k1 k2 k3, , ,( )d∫d∫d∫=

× N k1( )N k2( )N k3( ) 1
N k( )
------------ 1

N k1( )
---------------

1
N k2( )
---------------–+

–
1

N k3( )
---------------δ σ k( ) σ k1( ) σ k2( )– σ k3( )–+( )

× δ k k1 k2– k3–+( ),

∆ ∆ kx( ) κ2 kx( )/kx
2
 � 1,= =

κ2 kx( ) ky
2N k( ) ky/N kx( )d∫=

N kx( ) N k( ) kyd∫=

the general cosine parameterization of the function of
the angular energy distribution

– ϕ(ω, θ) = A(n)cosn(ω)(θ), for

–π/2 < θ < π/2 and (3.5)

ϕ(ω, θ) = 0, for the remainder θ values,

where A(n) = Γ(n + 1)/2nΓ2((n + 1)/2) and Γ is the
gamma function. It can be shown that ∆(kx) and A(n) are
correlated

(3.6)

According to all the data of field observations [1, 4,
13], the power n in Eq. (3.5) ranges from 2 to 12, which
corresponds to the range of variation of the parameter ∆
from 0.04 to 0.3, so that the parameter ∆ for wind waves
can be really considered as a small one.

For the narrow directional approximation, instead of
the initial two-dimensional wave spectrum N(k), we
seek its two integral parameters: N(kx) and ∆(kx). Inte-
grating the initial kinetic equation (2.15) for N(k) over
ky, we eventually obtain its analog for N(kx) (see [3] for
details)

(3.7)

Here,

(3.8)

In Eq. (3.8) ϕ1(kxh) is a universal function that allows
for the finiteness of the depth h (its explicit form is pre-
sented in [7]). Correct to the terms of the order of ∆, the

forcing term (kx) in view of Eqs. (2.19) and (2.20)
has the form

(3.9)

The dissipation term

(3.10)

remains undetermined.
An additional equation for ∆ can be obtained from

Eq. (2.15) after its multiplying by  and subsequent
integrating over ky

(3.11)

A n kx( )( ) 2 3∆ kx( )( )arctan 1/2[ ] 1–
.=

dN
dt
------- P

0
kx( ) P

+
kx( ) P

–
kx( ).–+=

P
0

kx( ) P0 k( ) kyd∫ 64πc∆
∂

∂kx

--------= =

× 1
∆ kx( )
-------------⎝ ⎠

⎛ ⎞ ∂
∂kx

-------- ∆ kx( )kx
19/2ϕ1 kxh( )N

3
kx( )[ ]ln

⎩ ⎭
⎨ ⎬
⎧ ⎫

,

c∆ 10 2– .≈

P
+

P
+

kx( ) P+ k( ) kyd∫ β
kxU*t

σ kx( )
--------------⎝ ⎠

⎛ ⎞ σ kx( )N kx( ).= =

P
–

kx( ) P– k( ) kyd∫=

ky
2

d
dt
----- ∆N( ) R

0
kx( ) R

+
kx( ) R

–
kx( ).–+=
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Here,

(3.12)

(3.13)

(3.14)

In Eqs. (3.9) and (3.13), β is also determined from
Eq. (2.20), and ϕ2(kxh) in Eq. (3.12) is a universal func-
tion (its explicit form is also presented in [7]).

In order to provide the final details of the equation
set (3.7)–(3.14) for  and ∆, we should determine the

dissipative terms  and  in the right-hand sides of
Eqs. (3.7)–(3.11). For this purpose, in our model for the
calculation of wind waves, we use a representation of
the blocking small-scale interval in the wind wave
spectrum proposed in [6], which is a generalization of
the known hypothesis on the saturation interval in the
wind wave spectrum advanced by Phillips [15]. With
the use of this representation, there is no need to a priori
determine the approximation formulas for P– (which is
typical of all the present models for the prediction of
wind waves). This term and the form of the wave spec-
trum in this scale range can be determined from P+.

Using the Phillips’ hypothesis on the saturation

interval in the wind wave spectra in terms of , ,

and  in Eq. (3.7) for , let us assume that, in this
interval, the interaction of the waves with the wind is
blocked so that the total energy flux from the wind to
the waves is balanced by its dissipation due to the
small-scale breaking of wave crests, and the wind wave
spectrum in this scale range kx > kb becomes stationary.
In terms of the kinetic equation (3.7), the first of these
assumptions allows us to determine the dissipative term
from the forcing term

(3.15)

The second of these assumptions in the interval kx > kb

reduces Eq. (3.7), in view of Eq. (3.15), to the equation

(3.16)

R
0

kx( ) ky
2P0 k( ) kyd∫=

=  64πc∆
1

∆ kx( )
------------- ∆ kx( )kx

15/2N
3

kx( )ϕ2 kxh( ),ln

R
+

kx( ) ky
2P+ k( ) kyd∫=

=  β
kxU*t

σ kx( )
--------------⎝ ⎠

⎛ ⎞ σ kx( )∆ kx( )N kx( ),

R
–

kx( ) ky
2P– k( ) ky.d∫=

N

P
–

R
–

P
–

P
+

P
0

N

P
–

kx( ) P
+

kx( ), for kx kb.>=

P
0

kx( ) 64c∆π ∂
∂kx

-------- 1
∆ kx( )
------------- ∂

∂kx

--------ln=

---× ∆ kx( )kx
19/2N

3
kx( )ϕ1 kxh( )[ ] 0.=

A direct substitution into Eq. (3.16) shows that, at
kh � 1, this assumption is valid for

(3.17)

where cb is the dimensionless coefficient of proportion-

ality. The spectrum (kx), which satisfies the station-
ary condition (3.16), will be referred to as the blocking
spectrum. It differs from the corresponding Phillips’
saturation spectrum

(3.18)

A more detailed consideration [6] shows that the
spectrum (3.18) can also be considered as a strongly
nonlinear case (for ke1/2 � 1) of the blocking spectra
determined by Eq. (3.15). It should be noted, however,
that Eq. (3.17) and the initial four-wave kinetic inte-
gral (3.1) as well are valid for a weakly nonlinear case
(for ke1/2 � 1), which can be applied to the actual wind
waves only if k < 10km [6].

For the calculations with the proposed narrow direc-
tional model for predicting wind waves, a very impor-
tant problem is to choose the bottom boundary kb of the
blocking interval. This is due to the fact that, for kx = kb,

the unsteady spectrum of wind waves  calculated
with the use of the model should be sewed together with
the stationary blocking spectra (3.17). The unknown

N kx( ) Nb kx( ) cbg 5/6– U*
2/3∆ 1/3– kx( )kx

19/6– ,= =

Nb

N p kx( ) Bg 1/2– kx
7/2– , B 5 10 3– .×≅=

N

250200150100500
t, h

4

3

2

1

h–, m

Fig. 2. Calculated (dashed line) and measured (solid line)

mean wave height ( , m) history during a storm (t, h) from
April 4 to 14 of 1997 in the region of Gelendzhik in the
Black Sea. The moment t = 0 corresponds to 3:00 a.m. on
April 4, 1997.

h
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value of kb can be determined from the integral conser-
vation law of wave forcing

(3.19)

The appropriate numerical calculations show that,
for fully developed wind waves,

(3.20)

The model presented was tested by the data of the
field observations obtained with a WAVERIDER
moored wavegauge in the region of Gelendzhik (the
Caucasian coast of the Black Sea). The calculations
were performed for a series of storm events that
occurred from April 4 to 14, 1997. The results of the
comparison are presented in Fig. 2. As can be seen from
the figure, the model simulates well the qualitative and
quantitative characteristics of the storm events that
occurred in the region of Gelendzhik in the study
period. The error of the simulation of the mean wave
height does not exceed 20 cm (about 10%). The
moments when the maximums come are also well sim-
ulated.

4. SEA DYNAMICS UNIT

The base of the sea dynamics unit can be repre-
sented by any rather complete semiempirical k–ε model
of sea currents that requires the values of the momen-
tum and energy fluxes from the wind and waves to the
drift boundary layer [2, 17]. An innovation in the
method proposed is the use of a special procedure for
coupling the units of atmospheric and sea dynamics by
imposing the boundary conditions on the fluxes of
appropriate quantities.

Let us consider a nonhydrostatic k–ε model for tur-
bulent sea currents used in the numerical calculations.
The model is described by the equation set [2]

(4.1)

P
0

kx( ) kxd

0

kb

∫ 0.=

kb αbkm, αb 4.≅=

du
dt
------ nwu f̂ ν– f̃ w+ +

∂
∂z
-----νu

∂u
∂z
------ F1,+=

∂ν
∂t
------ nwν f̂ u+ +

∂
∂z
-----νu

∂ν
∂z
------ F2,+=

dw
dt
------- n u2 ν2+( )– f̃ u–

∂
∂z
-----νu

∂w
∂z
------- F3,+=

mn
∂

∂λ
------ u

n
---⎝ ⎠

⎛ ⎞ ∂
∂φ
------ ν

m
----⎝ ⎠

⎛ ⎞+ ∂w
∂z
-------+ 0,=

dT
dt
------ FT ,=

dS
dt
------ FS,=

The right-hand sides of set (4.1), denoted as F1,
F2, …, Fε, include all the additional terms for the
appropriate equations. The notation used in equation
set (4.1) can be found in [2]. Below, we present only
those of them that are necessary for the present study:
λ is the longitude, φ is the latitude, z is the vertical coor-

dinate directed downward,  = 2Ωsinφ,  = 2Ωcosφ,
Ω is the angular velocity of the earth’s rotation, k is the
kinetic energy of turbulence, ε is the rate of dissipation
of the turbulent kinetic energy,

σt is the Prandtl–Schmidt number, ν∗ = cµk2ε–1 is the
vertical turbulent diffusivity, and cµ, c1, c2, and c3 are
the constants. The k – ε model equations are presented
according to [17].

It should be noted that σt can be a constant or a func-
tion of the Richardson number Rit and determined, e.g.,
from the Munk–Andersen formula

(4.2)

The standard values of the constants are the fol-
lowing:

(4.3)

At the top boundary of the sea, for z = 0, we impose
the following boundary conditions

dk
dt
------ γ 1

k2

ε
---- ε–

∂
∂z
-----

νu

σk

-----∂k
∂z
------ Fk,+ +=

dε
dt
----- c1kγ 2 c2

ε2

k
----–

∂
∂z
-----

νu

σε
-----∂ε

∂z
----- Fε,+ +=

ρ ρ T S p, ,( ).=

f̂ f̃

γ 1 cµ
∂u
∂z
------⎝ ⎠

⎛ ⎞
2 ∂ν

∂z
------⎝ ⎠

⎛ ⎞
2 1

σT

------∂ρ
∂z
------–+ ,=

γ 2
∂u
∂z
------⎝ ⎠

⎛ ⎞
2 ∂ν

∂z
------⎝ ⎠

⎛ ⎞
2 c3

σT

------∂ρ
∂z
------–+ ,=

σt

1
10Rit

3
-------------+⎝ ⎠

⎛ ⎞
3/2

/ 1 10Rit+( )1/2, for Rit 0≥

1, for Rit 0.<⎩
⎪
⎨
⎪
⎧

=

σk 1, σε 1.3, cµ 0.09, c1 1.44,= = = =

c2 1.92,=

c3

0, ρz 0>
1, ρz 0.≤⎩

⎨
⎧

=

νu
∂u
∂z
------

τd

ρ0
----- α,cos–=
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(4.4)

Here, τd and qd are the fluxes of momentum and
energy to the drift current from the wind and waves, and
α is the angle between the direction of the wind and the
x-axis (directed to the east). At the bottom boundary of
the sea, we assume that all the fluxes vanish.

Let us then consider only the dynamical fluxes τd

and qd and determine the momentum flux τd in
Eq. (4.4). The results obtained in Sections 2 and 3 show
that two effects make a contributions to τd. They are,
first, the presence of viscous friction at the water sur-
face described by the term τt in Eq. (2.3) for τa and, sec-
ond, the fact that the momentum flux τw from the atmo-
sphere to the waves cannot be completely assimilated
by the waves. It can be written as

(4.5)

where

(4.6)

is the long-wave component of τw spent on the wave
growth, and

(4.7)

is the short-wave component, which is supplied to the
waves from the wind in the blocking interval k > kb, but
it is not assimilated by the waves and enters the drift
current causing the breaking down of the wave crests.
Therefore, τd should satisfy the following equation

(4.8)

This equation shows that, as the wind waves
develop, the condition of the constancy of the momen-
tum flux in the vicinity of the air–sea interface is not
satisfied. Therefore, the use of the general drift models,
which use the condition τd = τa, results in an overesti-

νu
∂ν
∂z
------

τd

ρ0
----- α,sin–=

νt

σε
-----∂k

∂z
------

qd

ρ0
-----,–=

νt

σε
-----∂ε

∂z
-----

qε

ρ0
-----.–=

τw τw
+ τw

– ,+=

τw
+ ρwg T+ k( ) kd

0

kb

∫–=

=  ρwg β kx U*t,( )σ kx( )kxN kx( ) kxd

0

kb

∫–

τw
– ρwg T+ k( ) kd

kb

k0

∫–=

=  ρwg β kx U*t,( )σ kx( )kxNb kx( ) kxd

kb

k0

∫–

τd τw τw
+ τw

– τt τw.+<+= =

mation of the value of the momentum flux to the drift
current.

Let us now determine  from Eq. (4.7) ignoring the
relatively small difference between the powers nb =
19/6 and np = 7/2 in the weakly nonlinear blocking
spectrum (3.17) and the strongly nonlinear Phillips
spectrum (3.18) ((np – nb)/np = 2/21 ≈ 0.1) and assuming

(kx) = (kx) in Eq. (4.7). Let us then use the short-
wave parameterization (2.22) for β(kxU∗t) throughout
the blocking interval. (These two simplifications some-

what overestimate the value obtained for .) Within
the limits of the integration k0, kb in Eq. (4.7), we will
use Eqs. (3.20) and (2.23). The first equation is valid
for the case of fully developed waves, and the second
one is valid for the case of moderate wind velocities
with U∗t < 0.3 m/s. Then,

(4.9)

for U∗t = 0.3 m/s,  = km /g = 10–3, a0 = 10–2,
ab = 4, B = 5 × 10–3, as = 30.

As can be seen from this estimation, the wind waves
are good catalysts of the drift currents—they double the
value of the momentum flux to the drift current in com-
parison to the case when the waves are absent, i.e.,

when τd = τt = –ρa . Finally, using (4.8) and (4.9),
we can write the following equation for τd in (4.4)

(4.10)

From Eq. (4.10), it follows that, for U∗t = const, the
momentum flux to the drift current increases as the
waves develop, although the correlation is weak. When
km diminishes by a factor of 10 (which corresponds to

the variability in the field conditions),  grows
approximately twofold and τd increases by a factor of
one and a half.

Now, let us calculate the energy flux qd that is pre-
sented in the boundary condition (4.4) for the equation
of the turbulent energy balance. With regard to the
energy flux from the small-scale wave breaking , we
have

(4.11)

where

(4.12)

(in contrast to , when we determine , there is no
problem with the logarithmic divergence as kx → ∞,

τw
–

Nb N p

τw
–

τw AρaU*t
2 , A– Bas

a0

ab

-----
U*t

kmν
---------⎝ ⎠

⎛ ⎞ln 0.9≈= =

k̃m U*t
2

U*t
2

τd τt τw+ ρaU*t
2 1 Bas

a0

ab
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U*t

kmν
---------⎝ ⎠

⎛ ⎞ln+ .= =

τw
–

qw

qd qt qw,+=

qw ρwg β kx U*t,( )σ2 kx( )N kx( ) kxd

kb

∞
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qw τw



166

OCEANOLOGY      Vol. 46      No. 2      2006

ZASLAVSKII et al.

which we have to solve by cutting the integral (4.7) at
kx = k0).

For the calculation of  from Eq. (4.12), we adopt
the same simplifying assumptions as for the derivation
of Eq. (4.9). Then

(4.13)

As was mentioned above, for fully developed waves
with cm = (g/km)1/2 ≅ Ua, the results of the calculations

qw

qw 2BaSρaU*t
2 g

kb

----⎝ ⎠
⎛ ⎞ 1/2

0.3ρaU*t
2 g

kb

----⎝ ⎠
⎛ ⎞ 1/2

.≈=

show that kb ≅ 4km. Then,  ≅ 0.15ρa Ua. On the

other hand, the velocity of the surface drift is U0 ≅
0.03Ua ≅ U∗ ≈ U∗t, so that

(4.14)

Thus, at least for the case of fully developed waves,
the inequality qw � qt is valid. On the basis of this inequal-
ity, the general equation (4.11) for qd can be written as

(4.15)

qw U*t
2

qt ρaU*
3 0.2qw.≅≅

qd 1 cw+( )U*
3 , cw 5.≅ ≅

2.0 4.5 7.0 9.5 12.0

2.0 4.5 7.0 9.5 12.0

(b)

(a)

Fig. 3. Temperature in the west–east section along the academic basin after the 90-day calculations. (a) With no account for wind
waves, and (b) with account for wind waves.
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The relative value of the fluxes τd and qd can be
determined from the dimensionless equation µ =
(τd/ρa)3/2/(qd/ρa). From Eqs. (4.10) and (4.13), it follows
that

(4.16)

Using in (4.16) the same numerical values of the
constants as in (4.9), we find that µ ≅ 1.2.

5. NUMERICAL EXPERIMENT ILLUSTRATING 
THE ROLE OF WIND WAVES 

IN THE FORMATION 
OF THE DYNAMICS OF THE SEA

The calculations were performed for a rectangular
(academic) basin with a variable bottom relief [2]. The
academic basin simulates the northern Baltic Sea that
lies at the latitude of the Gulf of Finland from the coast
of Sweden to the estuary of the Neva River. The basin
is bounded by a closed coastal surface. The southern
and northern boundaries of the basin are located at 60°
and 61° N, while the western and eastern boundaries
are at 19° and 30°40′ E. The bottom topography is
described by an analytical function that simulates the
characteristic features of the bottom in the Gulf of Fin-

µ
1 Bas

a0

as

-----
U*t

kmν
---------⎝ ⎠

⎛ ⎞ln+
3/2

2Bas
g

abkmU*t
2

--------------------⎝ ⎠
⎛ ⎞ 1/2

-------------------------------------------------------.=

land. The maximum and minimum depths of the basin
are 180 and 1 m, respectively.

The calculations were performed in a prognostic
regime with the use of the nonhydrostatic σ-model of
the sea dynamics [2]. As the boundary conditions at the
surface, we used the mean climatic conditions charac-
teristic of the Baltic Sea: a constant southwesterly wind
with a velocity of 7 m/s and an air temperature of
10°C. The mesh sizes over the longitude and latitude
were 5 miles, and the step of the integration of the
model in time was 0.25 h. At the initial moment,
motion is absent and the temperature field is given
by [21]

We performed two 90-day runs with and without
accounting for the effect of the wind waves. The differ-
ence between the calculations was manifested in the
different values of the coefficient in the boundary con-
dition (4.4) at the surface for the flux of the turbulent

kinetic energy qd = (1 + cw)  [16]. With no regard for
the effect of the wind waves cw = 0, whereas, with
account for it, according to the theoretical estimation
(4.14) presented above, cw = 5.

Figures 3–5 show the characteristics of the temper-
ature and currents for the first and second runs. As can

T T0 Θ σ( ) TH T0–[ ], T0+ 3°C, TH 1°C,= = =

Θ σ( ) 1 4 1 σ–( )3– 3 1 σ–( )4,+=

σ z/H λ φ,( ).=

U*
3

20 cm/s

50 cm/s

(a)

(b)

Fig. 4. Sea surface currents. (a) With no account for wind waves, and (b) with account for wind waves.
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be seen from the figures, the presence of wind waves
clearly affects the dynamics of the currents and temper-
ature field. The contribution of wind waves is particu-
larly pronounced in the eastern shallow-water part of
the academic basin and in the surface layer. In the bot-
tom layer, the patterns of circulation are similar,
although there are some differences near the eastern
and western boundaries. The calculations show that the
effect of wind waves should be taken into account in the
analysis and prediction of the hydrodynamical and
thermodynamical processes in the upper active sea
layer.

6. CONCLUSIONS

In the present study, we considered the general
method for coupling the model units describing the
atmospheric circulation and the dynamics of the ocean
at the sea–air interface with the use of an additional
wave unit. The wave dynamics unit is based on the
transport equation for the spectrum of wind waves in
the strictly directional approximation and on a special
procedure for separation of wave perturbations in the
boundary layer of the air and water. The wave dynamics
unit is used for determining the spectrum of the wind
waves and coupling the models of turbulent boundary
layers in the air and water. Using this unit, we calcu-
lated various characteristics of the appropriate fluxes
required for imposing boundary conditions at the inter-
face. As a result, we obtained a closed self-adjusted
description of the wind, waves, and sea currents with
account for the adjustment of all these processes.

We described the model of wind wave dynamics in
the strictly directional approximation. The model was
tested using the data of field observations of a series of
storm events in the region of Gelendzhik (the Black
Sea).

We presented a theoretical estimation of the contri-
bution of wind waves to the fluxes of momentum and
turbulent kinetic energy at the sea surface.

With the use of a nonhydrostatic numerical model of
the thermohaline dynamics of the sea provided with the
unit of the k – ε parameterization of turbulence, we
assessed the effect of wind waves on the dynamics of
the sea. The experiment was carried out for an idealized
domain that simulated the conditions in the Gulf of Fin-
land. The calculations show a pronounced contribution
of wind waves to the formation of the dynamics of the
upper sea layer.
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