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1. INTRODUCTION

The central problem of the modern theory of cli-
mate is the prediction of its changes caused by anthro-
pogenic activities. In view of specific peculiarities of
the climate system, which are discussed below, this
problem cannot be solved with the use of the conven-
tional methods repeatedly tested in natural sciences. It
can be stated that, at present, the principal method-
ological basis for solving this problem is numerical
simulation of the climate system with the aid of climate
models based on global atmosphere–ocean general cir-
culation models. It is clear that the formulation of the
climate models requires a comparison with real data
and special-purpose field experiments in addition to
observations carried out on a continuous basis. Analy-
sis of the results of these experiments must enable the
construction of increasingly more accurate models of
specific physical processes determining the dynamics
of the climate system. However, this approach is insuf-
ficient for solving the principal problem, namely, the
problem of determining the sensitivity of the actual cli-
mate system to small external forcings.

In this study, an effort is made to consider major
problems arising during solution of this principal
problem. While dividing the paper into sections, we
suggested that these sections could be read generally
independently. For example, the sections on climate
models and experiments with these models can be
examined independently of the sections in which the
mathematical theory of climate is described. It should
be emphasized that most of the scientific community
concerned with climate models are generally not
interested in mathematical problems and treat a model
as a specific finite-dimensional construction with a
specific description of physical processes, thus reduc-
ing the study of the model’s quality to a numerical
experiment alone. However, as will be shown below,
fundamental problems of the predictability of climate

changes are completely or partially disregarded in this
case.

1. CLIMATE SYSTEM AND CLIMATE

In the beginning of this section, it is appropriate to
define two concepts:

(i) The climate system is the system combining the
atmosphere, ocean, cryosphere, land, and biota.

(ii) Climate is an ensemble of states passed by the
climate system during a sufficiently long time inter-
val.

Several questions arise in the context of these def-
initions. First, what is the state of the climate system?
A strict formulation of this term will be given below
when the concept of an ideal model of the system will
be defined. Here, we only note that the climate system
is characterized by a finite set of parameters whose
values at a fixed time determine its state. The set of
parameters is finite because the number of molecules
forming the system is finite. However, when describ-
ing the evolution of the climate system, researchers
use differential equations with partial derivatives,
whose solutions belong to an infinite-dimensional
space, so that, in a general sense, it is necessary to
prove the existence of a finite number of parameters
controlling the state of the system.

In additional, the problem consists in the fact that,
if the parameters are considered to mean, for example,
temperature, pressure, velocity components, etc., on a
certain sufficiently dense set of points, there has been
no measured state of the climate system up to date.
However, from some a priori considerations, it is pos-
sible to specify a certain number of parameters char-
acterizing the climate system and to treat these param-
eters precisely as the desired set. For example, one can
define that it is sufficient to characterize the climate
system by one parameter—the global average surface
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temperature. Clearly, there are researchers that are
interested only in this parameter and their ranks are
sufficiently large that one-parameter models of the cli-
mate system should exist. However, in this case, a
more important question arises on the ability of such
models to predict anything, because it should be
remembered that a necessary condition for the quality
of any theory is its prediction possibilities.

Next, what does an ensemble represent? If the
ensemble is considered to mean a set of states and a
certain probability measure given on this set, it is nec-
essary to have some quantitative characteristic deter-
mining the probability that the climate system may be
located on a certain subset of the given set. In this
case, no information is required on the probability of
transition from one to another subset.

Finally, a more complicated question is associated
with a quantitative definition of the concept of a suffi-
ciently long time interval. Mathematically, it is conve-
nient to take this interval as very long (infinite in the
limit); however, in this case, no proper (internal) vari-
ability of climate can occur, and only climate changes
under the effect of external forcings on the climate
system can be considered. It is also possible to
advance arguments in favor of other time intervals;
however, it should be emphasized that, in any case, the
concept of climate must be defined. Very frequently,
climate is considered to mean some characteristics of
a certain portion of the trajectory of the climate sys-
tem—for a one-parameter climate model this charac-
teristic will be, for example, the surface air tempera-
ture averaged over a definite time interval (say,
30 years).

The main problems of climate theory can be for-
mulated as follows:

(i) reproduction of present-day climate (under-
standing of physical mechanisms of its formation),

(ii) assessment of possible climate changes under
the impact of small external forcings (the problem of
sensitivity of the climate system), and

(iii) prediction of climate changes.
It is assumed that the components of the climate

system are continuous media, which are to be
described with a definite accuracy. Specific postulates
used to describe these media will be discussed below.
The problems are discussed in order of increasing
complexity because any prediction of the state of the
system is directly related to the assessment of the
degree of its stability in a certain sense. It is precisely
this problem that is the central problem of mathemat-
ical theory of climate.

2. PECULIARITIES OF THE CLIMATE SYSTEM 
AS A PHYSICAL OBJECT

The climate system as a physical object possesses
a number of specific properties.

(i) The principal components of the system—the
atmosphere and the ocean—can be treated geometri-
cally as thin films because the ratio of the horizontal
to the vertical scale amounts to about 0.01–0.001.
Thus, the system is quasi-two-dimensional; however,
the vertical stratification in density is of great impor-
tance and large-scale vertical motions are responsible
for baroclinic transformations of energy. The charac-
teristic time scales of energy-significant physical pro-
cesses lie in a range between 1 h and tens and hun-
dreds of years. As a consequence, laboratory model-
ing of such a system presents a severe problem.

(ii) No purposeful physical experiment can be car-
ried out with the climate system. Indeed, it is impos-
sible to pump up the system with, for example, carbon
dioxide and measure the resulting effect, all other con-
ditions being the same.

(iii) Researchers have only short series of observa-
tional data on individual components of the system
under study at their disposal.

Clearly, there are many other important properties
of the climate system that should be considered; how-
ever, even the aforementioned properties allow the
conclusion that the principal means for studying the
climate system (more exactly, the problem of predict-
ability and prediction of climate) is mathematical
(numerical) modeling. Experience in recent years
shows that the main results of climate theory have
been obtained on the basis of constructing and using
global climate models.

3. MATHEMATICAL THEORY OF CLIMATE

The first question to be answered relates to the
goals and methods of the mathematical theory of cli-
mate. The methods of the mathematical theory of cli-
mate are methods of the theory of dynamical systems.
To apply the methods of this theory to studies of the
actual climate system, it should be assigned a certain
mathematical object that represents an idealization of
the system of interest and can be referred to as its
“ideal” model. It is suggested that such an ideal model
exists and the observed dynamics of the climate sys-
tem is a realization of the trajectory generated by this
model. It is also assumed that this model belongs to
the class of dynamical dissipative systems that is
described formally by the following system of equa-
tions:

 

(1)

 

In system (1), 
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the dissipation of the system; and 

 

f

 

 is an external forc-
ing. We will assume that the system is reduced to the
form in which its energy can be expressed as the qua-
dratic form 

 

E 

 

≡

 

 

 

(
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; i.e., we will also assume that

 

ϕ

 

 

 

∈ Φ

 

, where 

 

Φ

 

 is the Hilbert space with the scalar
product (·,·). By definition, the space 

 

Φ

 

 is the phase
space of system (1). The system under study is consid-
ered to be open, and its effect on the external energy flux
is negligibly small. We will assume that the solution to
the system 

 

ϕ

 

 is deterministic; i.e., 

 

ϕ

 

 exists and is unique
at a given 

 

ϕ

 

0

 

 on an arbitrarily long time interval 

 

T

 

.

Here, a remark should be made. The formulation of
the problem given in (1) with the external forcing 

 

f

 

 is
valid to a certain accuracy only on a finite interval 

 

T

 

because the Sun loses energy. Consequently, the solv-
ability of (1) on an infinite time interval is generally
not required, altthough it is useful (see below).

Further, as was already noted, 

 

ϕ

 

 

 

∈ Φ

 

, where 

 

Φ

 

 is
the infinite-dimensional Hilbert space. We will
assume that it is separable; i.e., a countable basis {

 

ϕ

 

i

 

}
can be introduced in this space, so that the function 

 

ϕ

 

can be expanded in this basis:

The Fourier coefficients 
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 can be regarded as the
coordinates of 
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 in the space 
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 similarly to the con-
ventional geometric coordinates. If 
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s a function of
spatial coordinates alone, 
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is a function of time.
Then, the function 
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 at any time 
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 can be treated as a
point in the space 
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 with the coordinates {
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} and
the solution 

 

ϕ

 

(

 

t

 

)

 

 will represent a curve in this space
with varying 

 

t

 

. This curve will be referred to as a tra-
jectory.

The meaning of the qualitative theory of differen-
tial equations lies in an attempt to predict the qualita-
tive behavior of the trajectory generated by this sys-
tem without knowledge of the trajectory itself on the
basis of the form of system (1). More strictly, the the-
ory is bound to predict the behavior of the trajectory
on sufficiently long (infinite in the limit) time inter-
vals. The corresponding results are usually formulated
in terms of a global attractor. We will assume that sys-
tem (1) possesses a global attractor, which represents
a certain set in the phase space such that all trajecto-
ries emerging from any point of the space 

 

Φ

 

 are
attracted to this set as time passes. We will also
assume that the global attractor is a compact set. As a
rule, this is the case even if 

 

Φ

 

 is infinite-dimensional.
Finally, the global attractor is minimum in a certain
sense; i.e., there is no another set within the global
attractor that would possess all the properties of the
global attractor.

Mathematically rigorously, these conditions are
formulated in the following form [1, 2]. The set 
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; and
(iii) 
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 attracts each bounded set 
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.
The above definition does not contradict the fact

that the global attractor can contain local attractors,
which attract trajectories not from the entire space 

 

Φ

 

but from its subset.
Thus, the entire dynamics of system (1) can con-

ventionally be divided into two stages: motion toward
the attractor and motion on the attractor and in its
vicinity. During motion toward the attractor, contrac-
tion of the phase volume generally occurs: a volume
of an arbitrary dimension contracts to the volume of
the attractor, which has a finite dimension. (The
attractor’s volume is equal to 0 in the sense of the vol-
ume in the space 

 

Φ

 

.) During motions on the attractor,
when trajectories emerge from the vicinity of its arbi-
trary point, the volume cannot contract systematically,
because a global attractor involved in the initial attrac-
tor would exist otherwise. This is a key point in eval-
uating the dimension of attractors.

Since the attractor is finite-dimensional in a certain
sense, it seems logical to write down a finite-dimen-
sional system of equations that would be dynamically
equivalent on the attractor to the initial infinite-dimen-
sional system given in (1). However, this process is
virtually impossible because of a very complicated,
often fractal, structure of the attractor. This can be
done if the system possesses the so-called inertial
manifold—a smooth finite-dimensional attracting set
containing the attractor. In this case, from the proof of
the existence of the inertial manifold, it follows that,
in a general sense, the problem of closure of some
scales of motion through other scales can be solved.
However, it should be remembered here that of funda-
mental importance are the answers to the questions as
to what scales can be parameterized and to what extent
these scales are comparable to molecular scales,
because the transition from finite-dimensional to infi-
nite-dimensional systems occurs precisely at the
molecular level. The reverse transition has meaning
only if the resulting scale is much greater than the
molecular scale.

The next assumption lies in the fact that the
dynamics of the climate system occurs on its attractor;
i.e., the climate system has enough time to be attracted
to its attractor. For qualitative analysis of the dynam-
ics, it is most simple to turn to state-of-the-art models
of the climate system, which adequately describe the
present-day climate. For simplicity, we will consider
atmospheric models alone.

Experience in short- and long-range weather fore-
casting indicates that the trajectory of the atmosphere
is unstable in the Lyapunov sense: whatever the small
error contained in the initial data, there is always the
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time 

 

T

 

 at which the error reaches a significant value. If
we assume that the trajectory lies on the system’s
attractor, the “energy” of the error will be limited by
the “size” of the attractor. The rate of divergence of
trajectories was also evaluated from observational
data. It should be noted that, from the practical stand-
point, this problem is very complicated because it is
very difficult to find two closely located points in the
phase space owing to the fact that the time of trajec-
tory return into the vicinity of the initial point is very
large. The existence of this time follows from the
Poincaré theorem [1, 2].

Unstable trajectories enclosed in a bounded vol-
ume (attractor) generate dynamical chaos. Dynamical
chaos implies that if a bundle of trajectories is allowed
to escape from a small vicinity of a point 

 

ϕ

 

0

 

, these tra-
jectories will run away; however, the closed volume
will not allow them to go away at infinity and they will
be mixed in a complicated way. The characteristic
time of running away will be determined by positive
Lyapunov exponents: their number yields the number
of directions along which the trajectory is unstable.
Since the phase volume on the attractor does not reg-
ularly contract but there are directions of expanding
this volume, there must be contracting directions
along which the volume must on average contract to
the extent that it extends along unstable directions.
The term “on average” here means that the Lyapunov
exponents are asymptotic characteristics. Following
the above considerations, one can infer that the num-
ber of positive Lyapunov exponents characterizes the
attractor’s dimension: if this number is large, the
attractor’s dimension is also large.

Let us turn to the goals of the mathematical theory
of climate. What problem is to be solved on the basis
of this theory? Ideally, it is necessary to construct the
theory of the climate system’s sensitivity to small
external forcings that would yield a constructive
method to calculate climate changes under the influ-
ence of these forcings. Since the basic method of
study of the climate system is mathematical (numeri-
cal) simulation, it is seemingly clear that mathemati-
cal models should be used to solve this problem. How-
ever, a question arises: What and to what accuracy
must the climate model reproduce in order that its sen-
sitivity to various small external forcings would be
close to the climate system’s sensitivity? To answer
this question, it is necessary to find the operator of the
model’s response to small external forcings in an
explicit form. This operator can be constructed in
principle if the model’s attractor (as a set of states) and
the measure on it depend continuously on the external
forcing. However, this statement virtually cannot be
proved in a general case; therefore, we will use the
procedure proposed in [3], which can be called the 

 

ε

 

-
regularization technique.

The essence of this technique lies in that a small δ-
correlated (in time) Gaussian random process is added
to the right-hand side of the model. The inclusion of
this process can be considered quite substantiated
because all physical mechanisms responsible for the
formation of the sources of energy and its dissipation
are never known exactly. Such a simple procedure
results in that the probability measure becomes
smooth and a differential equation for studying its
evolution (the so-called Fokker–Planck equation) can
be written.

Thus, we will assume that the climate system is
governed by the following finite-dimensional system
of equations:

(2)

where 〈·〉 is the sign of averaging over an ensemble ε.
For simplicity, Eqs. (2) can be treated as a finite-dimen-
sional approximation of system (1). The methods of
constructing such approximations will be discussed
below. We will also assume that dij = dδij, where δij is the
Kronecker delta. Then, the following Fokker–Planck
equation can be written for the probability density ρ of
the process u:

(3)

The function ρ must satisfy the nonnegativeness condi-

tion ρ ≥ 0 and the normalization condition du = 1. In

order to construct the response operator correctly, it is
necessary to prove (i) the existence of a steady-state
solution to Eq. (3), (ii) its uniqueness in the class of
probability densities, and (iii) its asymptotic stability.
These properties of the steady-state solution to Eq. (3)
are proved if u ∈ U, where U is a compact manifold
without a boundary [3]. In a general case of the phase
space RN, the problem remains unsolved.

Consider a disturbed equation

 (4)

Let δu = u(1) – u. Now, it is necessary to find the relation
between 〈δu〉 and δf. This relation can be established if
δf is small [4]. Correct to second-order terms, it can be
written that

(5)
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This relation is converted to its simple form if the
dynamics of the system represents a stationary random
process and ρ obeys the Gaussian distribution:

(6)

where C(τ) is the covariance function with shift τ:

Relation (6) is the so-called fluctuation–dissipation
relation that was established earlier for regular systems
[4]. From (6), it follows that, under the assumptions
made above, one can, in principle, calculate the opera-
tor of the response of a real nonlinear system to small
external forcings if the observed trajectory of the sys-
tem has a sufficient length.

The validity of relation (6) has been verified for
different atmospheric models. With a high accuracy, it
is satisfied for a barotropic and a two-layer baroclinic
global atmospheric model if the external forcing is
specified in the subspace stretched over the principal
natural orthogonal vectors—the eigenvectors of the
operator C(0) [5, 6]. With a good accuracy, this rela-
tion also holds for global atmospheric general circula-
tion models [7, 8]. Specifically, in [8], the NCAR
(National Center for Atmospheric Research) atmo-
spheric general circulation model [9] was used. The
response operator was calculated from a trajectory
two-million-days long. Direct numerical experiments
on deriving the response were performed for a time of
about one hundred thousand days. The total results of
analysis of about 300 experiments were published in
[8]. As an illustration, Fig. 1 presents the results of
four numerical experiments on reproducing the linear
part of the model’s response (in the temperature field
at a height of ≈925 hPa) to a vertically extended equa-
torial thermal source with a heating maximum located
at 60° E, 150° W, 105° W, and 15° W, respectively (see
the left-hand column from top to bottom). The right-
hand column shows the responses obtained from the
constructed approximate response. The fields depicted
in Fig. 1 indicate that the results of calculations with
the response operator and of direct modeling are very
close to each other.

To conclude this section, we emphasize that an
important result of the validity of fluctuation–dissipa-
tion relations on the attractors of climate models is the
establishment of the fact that the linear operator of the
response is determined not only by climatic character-
istics of the attractor (see the definition of climate)—
the operator ë(0), − but also by dynamics on the
attractor—the operator ë(τ). This finding implies
that, for a correct reproduction of the response, cli-
mate models should also be identified in terms of the
closeness of the generated dynamics to the actually
observed dynamics of the climate system.

δu t( )〈 〉 C τ( )C–1 0( ) τδf ,d

0

t

∫=

C τ( ) u t τ+( )uT t( )〈 〉 .≡

4. MATHEMATICAL MODELS
OF THE CLIMATE SYSTEM

Let us discuss the main propositions on which the
construction of state-of-the-art climate models is
based. The state-of-the-art climate models are based
on a combined atmosphere–ocean general circulation
model. A central direction of their development is
associated with an increasingly accurate description
of all physical processes participating in climate for-
mation. This direction appears to be reasonable
because, as is shown in the previous section, in order
to correctly describe the climate system’s response
(even its first moment) to small external forcings, it is
necessary to adequately reproduce not only climate
itself but also the dynamics on the attractor of the cli-
mate system (the probability of transition of the cli-
mate system from one state to another).

A number of principles underlie the construction
of state-of-the-art climate models. It is suggested that
the equations of classical equilibrium thermodynam-
ics are locally valid. It is also assumed that the
Navier–Stokes equations for a compressible fluid can
be used to describe the dynamics of the atmosphere
and ocean. Since the Reynolds equations, which rep-
resent the Navier–Stokes equations averaged over
some spatial and temporal scales, are used in such
models in view of primarily computational potentiali-
ties, it is believed that a fundamental feasibility of
their closure exists. The closure procedure suggests
that the effects of processes on subgrid scales (scales
smaller than the scale of averaging) can be expressed
via the characteristics of processes on larger scales.
These processes include (i) the transfer of shortwave
and longwave radiation, (ii) phase transitions of water
and the process of local precipitation formation, (iii)
convection, (iv) boundary and inner turbulent layers
(with some of their characteristics described explic-
itly), (v) small-scale orography, (vi) wave resistance
(interaction of small-scale gravity waves with the
main stream), (vii) small-scale dissipation and diffu-
sion, and (viii) small-scale processes in the active
layer of land. Finally, for the description of large-scale
atmosphere–ocean motions, the hydrostatic approxi-
mation is valid. This approximation implies that the
vertical pressure gradient is balanced by the gravity
force. The use of the hydrostatic approximation
requires additional simplifications, such as a constant
radius of the Earth and the disregard of the compo-
nents of the Coriolis force with a vertical velocity
component, so that the law of energy conservation is
satisfied in the system of equations in the absence of
external sources of energy and dissipation. The equa-
tions of hydrothermodynamics of the atmosphere and
ocean, closures of subgrid-scale processes, and
boundary conditions are discussed thoroughly in [7].

In accordance with the ideas presented in the pre-
vious section, it is necessary to prove some statements
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for the system of partial differential equations describ-
ing the climate system’s model.

I. The global theorem of solvability on an arbi-
trarily large time interval t.

Unfortunately, there is presently no such a theorem
in a spherical coordinate system with “correct”
boundary conditions. This is not a consequence of the
absence of such theorems for three-dimensional
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Fig. 1. (Left) Linear part of the model’s response to a vertically extended anomaly of temperature at the equator and (right) response
obtained via fluctuation–dissipation relations. The responses are shown in the field of temperature (K) at a height of 925 hPa for
heating with maxima at the points (from top to bottom) 60° E, 150° W, 105° W, and 15° W.
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Navier–Stokes equations. The equations of the state-
of-the-art climate models have a dimension of 2.5
because the hydrostatic equation is used instead of the
full third equation of motion.

II. Existence of a global attractor.
This statement is presently proved for the systems

of equations of form (1) from the previous section pro-
vided that S is strictly positive definite operator:

The problem lies in that this cannot be stated in a gen-
eral case because the continuity equation for a com-
pressible fluid is nondissipative.

III. The attractor’s dimension.
Constructive estimates made for the dimension of

the attractors for the models of this class are very
rough. These estimates represent upper bounds, which
are generally unsuitable for the theory discussed in the
previous section.

5. FINITE DIMENSIONAL APPROXIMATIONS

Clearly, it is virtually impossible to obtain analytic
solutions to complicated nonlinear equations of
hydrothermodynamics of the atmosphere and ocean
for arbitrary initial data; therefore, their approximate
solutions are being sought with the aid of various
finite dimensional approximations. Let there be a qua-
dratic law of energy conservation (or a law that can be
made quadratic via some nonlinear transformations of
the desired functions) in system (1) of Section 3 in the
absence of dissipation and of external and internal
sources of energy. From the analysis made Section 3,
it follows that, on average, the cancellation of dissipa-
tion and energy sources must occur on the attractor of
system (1). This result implies that finite dimensional
approximations should be constructed so that a qua-
dratic conservation law—an analogue of the initial
law—is satisfied in the absence of dissipation and
energy sources. In this case, this conservation law
leads automatically to a computational stability of the
solution of the difference problem if the stability is
considered to mean a continuous dependence of the
solution’s norm on both the norm of the right-hand
side and the norm of the initial data.

At the same time, this requirement is insufficient
for construction of difference schemes for climate
models. It is significant that, unlike the problems of
weather forecasting, where it is necessary to repro-
duce the solution of the problem on a finite time inter-
val, the problems of climate require that the attractor
of the initial model be approximated as a set and a
measure on it or a statistical steady-state solution (see
Section 3). The proof of a global solvability for finite
dimensional climate models and the proof of the exist-
ence of a global attractor for them present no special
difficulties [1, 2]. However, the problem lies in the

Sϕ ϕ,( ) µ ϕ ϕ,( ), µ 0.>≥

proof of the convergence of the attractors of finite
dimensional approximations to the attractor of the ini-
tial model as the approximation’s parameters
approach zero. The complexity of the problem lies
also in the selection of the metric in which the conver-
gence is considered. Constructive estimates for the
aforementioned convergence in “useful” (Hausdorff)
metrics are presently absent and represent an impor-
tant and interesting problem for numerical mathemat-
ics. Since there are no convergence theorems, an
approach based on the approximation of most signifi-
cant physical processes participating in climate for-
mation is used in modeling the climate system. Some
examples of such processes are presented below.

Since the atmosphere and the ocean are quasi-two-
dimensional, the transfer of energy across the spec-
trum in these media is governed by the laws of a two-
dimensional fluid. It is well known that there are two
quadratic invariants in an ideal incompressible two-
dimensional fluid: energy and enstrophy (vorticity
squared). Moreover, the distribution of energy in the
inertial range is determined by the transfer of enstro-
phy toward high wave numbers. Recall that the inertial
range is the range of scales where energy dissipation
and generation are virtually absent and the main pro-
cess is the transfer of energy across the spectrum. In
order to satisfy this condition in a numerical model, it
is necessary to construct finite dimensional analogues
so that, in two-dimensional asymptotics, there will
also exist finite dimensional analogues of energy and
enstrophy that are invariants in the absence of dissipa-
tion and energy sources.

However, note that the measurements performed in
the past decades [10, 11] have shown that the atmo-
sphere has fundamental features that differreniate its
evolution from the behavior of a quasi-two-dimen-
sional fluid. The generation of energy in the atmo-
sphere occurs on synoptic scales as a consequence of
the occurrence of baroclinic instability. On scales
greater than the synoptic scales, the inertial range is
absent and the distribution of energy over the spec-
trum on these scales is determined by the ratio
between the characteristic time of energy dissipation
in the boundary layer and the characteristic time of
nonlinear interactions. On scales smaller than the syn-
optic scales, the inertial range exists and, according to
the theory of two-dimensional turbulence, the distri-
bution of energy in this range has the form k–3, where
k is the spatial wave number. However, starting with a
scale of about 800 km, the distribution of energy
obeys the law k–5/3, as in the Kolmogorov three-dimen-
sional turbulence, although the atmosphere is evi-
dently quasi-two-dimensional on these scales. This
paradox is presently explained either by superdissipa-
tion on fronts [12] or by breaking of gravity waves in
the stratosphere [13].
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Further, the law of conservation of angular
momentum about the Earth’s rotation axis actually
determines the distribution of wind velocity near the
Earth’s surface (the presence of trade winds). The law
of conservation of entropy in the adiabatic approxima-
tion is also of importance. Additionally, specific phys-
ical phenomena such as cyclogenesis, 30–60-day
oscillations in the tropics, the propagation of quasi-
stationary waves, and many other processes responsi-
ble for climatic characteristics are noteworthy. A cor-
rect reproduction of cyclogenesis requires a close
spectral approximation of some linear operators (in
eigenvalues and singular values). The solution of the
transport equations for trace gases is of special inter-
est. These gases are characterized by large spatial gra-
dients, which impose a very strong requirement on the
condition of monotonicity of difference schemes.

To conclude this section, we touch on one more
current problem in numerical mathematics—the prob-
lem of mapping computational algorithms onto com-
puter architecture. It is well known that the develop-
ment of computer engineering and computational
algorithms is presently associated with parallel com-
putations. Modern estimates of computational algo-
rithms may differ substantially from the established
estimates associated with estimates of sequential
computations. Frequently, a researcher who works on
massively parallel computing systems has to select an
algorithm that is not the most elegant and the most
efficient for sequential computations but that is easily
subject to multisequencing. Since a tremendous num-
ber of arithmetic operations are used in the course of
solving climatic problems, which are of great impor-
tance, it seems reasonable to design computing sys-
tems oriented immediately toward the solution of
these problems.

6. REPRODUCTION OF THE PRESENT-DAY 
CLIMATE

Constructed in Section 3, the linear operator of
response to a small external forcing δf,

,

does not depend explicitly on the mean of the vector u
on the model’s attractor. An implicit dependence exists
and follows, for example, from the linear theory of low-
frequency variability. In the context of this theory, it is
possible to construct the linear equation

where the operator A can be treated as

the problem’s operator linearized about the mean state
with the use of the corresponding closure procedure for
nonlinear terms and where f is a Gaussian process δ-

δu〈 〉 C τ( )C–1 0( ) τδfd

0

∞

∫=

dϕ '
dt

-------- Aϕ '+ f ',=

correlated in time. The covariance matrix of this equa-
tion will have the form

so that

and, consequently, low-frequency fluctuations in the
field ϕ' are completely determined by the mean state (if
the closure procedure takes place). Thus, even in the
context of the problem of the climate system’s response
to small perturbations, it is necessary to reproduce not
only the internal variability of climate but also its mean
state.

This problem has been considered within the
framework of the Atmospheric Model Intercompari-
son Project (AMIP), which has revealed many key
mechanisms responsible for climate formation
(http://www-pcmdi.llnl.gov/amip). At the same time,
the AMIP can also be viewed as a program of study of
the sensitivity of an “ideal” atmospheric model to the
level of description of different physical processes. In
particular, during modeling of global climate, it is
necessary to reproduce a wide spectrum of its charac-
teristics: seasonal and monthly means, intraseasonal
variability (monsoon cycle, storm-track parameters,
etc.), climatic variability (its predominant modes,
phenomena like El Niño and Arctic Oscillation), and
others. Among the problems of modeling regional cli-
mate are the reproduction of its characteristics with a
high degree of detail, study of hydrologic-cycle fea-
tures, estimation of the possibility of extreme phe-
nomena, and studies of the consequences of regional
climatic changes for the environment and socioeco-
nomic relations. An important output of this program
has been the solution of the following problems: (I)
description of the present-day climate (1979–1999),
(II) study of the nature of monsoon circulation, (III)
study of the response of atmospheric circulation to an
El Niño event, (IV) study of the role of soil processes
in the formation of atmospheric dynamics, and (V)
study of the interaction of radiation with cloudiness
related to superabsorption in clouds. Among other
interesting problems, one can note the modeling of (i)
the stratosphere and mesosphere, (ii) the negative
trend of temperature near the mesopause during the
past three decades, and (iii) the role (in this process)
of increasing carbon dioxide concentration and
decreasing ozone concentration in the stratosphere.
The reproduction of the El Niño statistics with a cou-
pled model of the atmosphere–ocean general circula-
tion seems to be a very important problem. Theoreti-
cally, this system can be treated as a tropical oscillator
with a stochastic external forcing (or with an external
forcing depending on time).

The recent intercomparison of atmospheric general
circulation models made within the framework of

C τ( ) eAτC 0( ), τ 0,>=

C τ( )C–1 0( ) e–Aτ=
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AMIP II has shown that the best of these models are
presently capable of reproducing the main features of
the observed atmospheric circulation with good accu-
racy. Errors in reproducing many climatic quantities
with such models are only slightly greater in value
than the uncertainties with which these quantities are
determined from observations. At the same time, there
are also systematic errors in climate reproduction,

which are inherent in virtually all of these models. The
most complete analysis of climate reproduction with
the models participating in AMIP II can be found at
http://www-pcmdi.llnl.gov/amip.

The quality of state-of-the-art atmospheric general
circulation models can be illustrated through the use
of the results of reproducing some features of atmo-
spheric circulation with the model of the Institute of

Fig. 2. Sea-level pressure (hPa) in winter: (from top to bottom) NCEP data, modeling results, and the difference between them.
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Numerical Mathematics of the Russian Academy of
Sciences (INM RAS) [7]. Figures 2–5 present some
results of a numerical experiment performed with this
model within the framework of the AMIP II scenario.
The model, which is characterized by the resolution
5° × 4° in longitude and latitude and 21 levels in the
vertical, was integrated for 17 years. The time behav-
iors of the sea surface temperature and sea-ice bound-
aries observed during 1979–1995 were specified as
the boundary conditions at the Earth’s surface. The

temperature of land was calculated in accordance with
the equation of its thermal balance.

Figure 2 shows the geographic distributions of sea-
level pressure in the winter season (December–Febru-
ary) that are constructed from the NCEP reanalysis
data and modeling results and their difference. As is
seen from the figure, all major “centers of action” are
well reproduced by the model, including their loca-
tions and pressure values. Nevertheless, the error of

Fig. 3. Rms deviation of winter-mean pressure (hPa) from (top) the NCEP data and (bottom) the model.

666 555
444

333

222

111

101010
888

999777
888

888 999

777
101010

444

222

111
111

222
333

444

444

222
333

111

555
666

777

333

333

111

222

333

333

111

111

333
222

444555666

888

999

777

777

777
888

666
555

444555

333

222
111

555
666

444

111

222
333

444
555

666

222
333

111

444444
555

222

111

333

111

333
333

444

222

555
555

222

444

777

555
666

555

111

888

555555

0 60E 120E 180 120W 60W 0

90N

60N

30N

EQ

30S

60S

90S

0 60E 120E 180 120W 60W 0

90N

60N

30N

EQ

30S

60S

90S

5 8



578

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS      Vol. 42      No. 5      2006

DYMNIKOV et al.

pressure reproduction reaches 4 to 6 hPa in some
regions.

The low-frequency variability of atmospheric cir-
culation in the model is shown in Fig. 3, which depicts
the rms deviation of the monthly mean pressure from
the climatic annual cycle for winter constructed from
the NCEP data over 51 years and from modeling
results over 17 years. The model adequately repro-
duces the maxima of variability in the winter hemi-
sphere in the northern Pacific and Atlantic. The rms
pressure deviation there, as well as over the Northern
Hemisphere on the whole, is about 10% greater for the
model than for the NCEP data. In the summer hemi-
sphere, in contrast, the variability in the model is
underestimated by 10 to 20% because of insufficient
resolution of synoptic vortices.

Analysis of climate reproduction with an atmo-
spheric model of higher horizontal resolution (2.5° ×
2° in longitude and latitude) indicates that, in the sum-
mer hemisphere, the amplitudes of high-frequency
and low-frequency variability become close to the
observed amplitudes. However, systematic errors in
reproducing the mean state of climate and winter-
hemisphere variability do not generally decrease with
increasing spatial resolution. This finding testifies
either to the necessity of a more accurate adjustment

of model parametrizations or to the necessity of intro-
ducing physical mechanisms not taken into account.
Universal experience in modeling also basically con-
firms that systematic errors in reproducing the cli-
matic mean state of the atmosphere depend only
slightly on the spatial resolution of the model used.

Many key mechanisms responsible for climate for-
mation have been revealed as a result of AMIP perfor-
mance. This project has been developed in the Cou-
pled Model Intercomparison Project (CMIP). During
CMIP performance, the emphasis was placed on the
reproduction of the surface temperature and sea-ice
distribution because these characteristics were consid-
ered to be specified external parameters in the AMIP
experiments. Below, the results of an 80-year numeri-
cal experiment on reproducing the present-day cli-
mate with the INM RAS coupled model of the atmo-
sphere–ocean general circulation will be presented.

The annual mean error of reproducing the sea sur-
face temperature is calculated as the difference
between the results of the coupled model and the
observational data from [14] and is presented in
Fig. 4. As is seen in the figure, the temperature is
somewhat underestimated (by 1 to 3°) in the equato-
rial Pacific as a consequence of an overestimated
intensity of upwelling. This result is characteristic of

Fig. 4. Annual mean error of reproduction of sea surface temperature. The isoline interval is 1°C.
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almost all of the state-of-the-art models. Temperature
overestimation by 2 to 6° occurs for the northwestern
Atlantic and for the region near Japan. This result is
associated with errors in reproducing the locations of
the warm Kuroshio and North Atlantic currents. In the
middle latitudes of the Southern Hemisphere, temper-
ature overestimation is due most likely to an insuffi-
ciently accurate reproduction of the components of
the radiation balance on the surface. On the whole, the

integral surface temperature in the model (with con-
sideration for land and sea ice) is 14.7°C, which is
close to a value of 15°C estimated from observational
data.

Figure 5 shows the distributions of sea-ice concen-
tration in the Northern Hemisphere for March, when
the amount of ice is maximum, and for September,
when the amount of ice is minimum. For comparison,
this figure also presents the corresponding data used

Fig. 5. Mean sea-ice concentration in the Northern Hemisphere in (top) March and (bottom) September from (left) modeling results
and (right) observational data. The isoline interval is 0.2. The regions with an ice concentration above 0.5 are shaded.
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in the AMIP II experiments and averaged over
1979−1995. For March, the ice area in the model is
10–15% smaller than the observed ice area because
ice does not form near the eastern coast of Greenland
and between Greenland and Canada. At the same time,
according to the model’s data, the Barents Sea freezes
somewhat more strongly than according to observa-
tional data. These results appear to be associated with
limitations of reproduction of the ocean circulation in
high latitudes. For September, the amount of ice in the
Arctic Ocean from the model is 20–30% smaller than
that from observational data. Extremely intense thaw-
ing of ice occurs near Alaska and East Siberia, a phe-
nomenon that is explained by surface-temperature
overestimation for northern Siberia and Alaska as a
result of an insufficiently accurate description of the
heat balance on the surface.

7. SENSITIVITY OF THE CLIMATE SYSTEM
TO CHANGES IN THE CONTENTS 

OF GREENHOUSE GASES

Diagnostic studies of the surface air temperature
indicate the following: (i) for the past 30 years,
marked changes have occurred in the surface air tem-
perature averaged over decades—it has increased; (ii)
maximum winter temperature changes are observed in
Siberia and northwestern Canada; (iii) summer tem-
perature changes are substantially smaller; and (iv)
the sea surface temperature of the North Atlantic has
not increased but even decreased. The question arises
as to what the cause of these changes is. Do these
changes result from proper oscillations of the climate
system’s parameters or do they result from anthropo-
genic impacts associated, for example, with increas-
ing concentrations of carbon dioxide and sulfate con-
stituents in the atmosphere? During analysis of the
response of the climate system to disturbances of such
a kind, it is expedient to use the notions of “dynamic”
response and “radiation” response.

The authors of [15] studied the response to an
increased carbon dioxide in the atmosphere on the
basis of comparison of two computations performed
for 80 years by the CMIP2 scenario (see http://www-
pcmdi.llnl.gov/projects/cmip/index.php). In the first
(control) experiment, the concentration of atmo-
spheric CO2 was taken to be invariant and equal to the
concentration observed at the end of the 20th century.
In the second experiment, the CO2 concentration was
increased by 1% per year. It has been shown that the
principal role in the total response of the system to an
increased concentration of atmospheric carbon diox-
ide is played by the radiation response. This pheno-
menon is manifested in the fact that the sensitivity of
the climate system to increased CO2 is determined pri-
marily by the amount of heat expended in ocean heat-
ing and by the extent to which the Earth’s radiation
balance changes as a result of changes in the cloud

amount during climate changes. At the same time, as
is shown in Section 3, where the main propositions of
the theory of sensitivity of the climate system to small
external forcings are presented, it is also necessary to
adequately reproduce the dynamic response, whose
principal component is the Arctic Oscillation.

This section presents some results from study [16],
devoted to numerical experiments with the INM RAS
climate model on reproduction of climate changes in
the 20th century and estimation of possible climate
changes in the 21st and 22nd centuries in accordance
with three scenarios of changes in the contents of
greenhouse and other gases [17]. This version of the
model was implemented on a 32-processor cluster
Intel Itanium, and computations for ten model years
on eight processors take 24 h. In Russia, such experi-
ments have been performed for the first time. We will
consider the following experiments out of those dis-
cussed in [16].

(1) Experiment on reproduction of the climate
of the 20th century. In the course of this experiment,
real temporal behaviors of changes in the concentra-
tions of atmospheric carbon dioxide (CO2), methane
(CH4), and nitrous oxide (N2O)—major greenhouse
gases associated with anthropogenic activities—were
specified. It was suggested that these gases were well
mixed and their concentrations were independent of
spatial coordinates. Additionally, the temporal
changes observed in the longitudinal–latitudinal con-
tent of sulfate aerosol, meridional distribution of the
optical thickness of volcanic aerosol, and solar con-
stant were specified. All these data are available at
http://www-pcmdi.llnl.gov/ipcc.climate_forcing.php.
The duration of the given experiment was 130 years
(1871–2000). A control experiment in which the con-
tents of all atmospheric constituents did not vary in
time and corresponded to the conditions of 1871 was
also conducted.

(2) Experiments on modeling the climate of the
21st and 22nd centuries. The contents of carbon
dioxide, methane, nitrous oxide, and sulfate aerosol in
the 21st century corresponded to scenarios A1B, A2,
and B1 proposed in [17]. The solar constant and the
content of volcanic aerosols were specified constant
and equal to their values observed in 2000. During the
22nd century, the contents of all gas constituents cor-
responded to 2100. The duration of each of the exper-
iments was 200 years. The temporal behaviors of all
external forcings used in [16] and of the contents of
carbon dioxide, methane, nitrous oxide, and sulfate
aerosol in the 21st century according to different sce-
narios are shown in Fig. 6. Some of the results of cal-
culations from [16] are presented in Figs. 7–9.

From comparison of the temporal behavior of the
difference between the globally averaged tempera-
tures in the experiment on the reproduction of the cli-
mate of the 20th century and in the control experiment
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with the estimate of temperature variation in 1871–
2000 taken from observational data (Fig. 7), it is easy
to see that the model adequately reproduces such fea-
tures as the warming in 1940–1950 and its slowdown
in 1960–1970. It is possible that the cause of these fea-

tures is due to the presence of a maximum of the solar
constant and a minimum of volcanic aerosols in
1940−1950 and a minimum of solar activity and a
maximum of volcanic aerosols in 1960–1970 (Fig. 6).
At the same time, it must not be ruled out that, as fol-
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Fig. 6. Variations in the contents of (a) carbon dioxide (ppm), (b) methane (ppb), (c) nitrous oxide (ppb), and (d) integral sulfate
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lows from the behavior of temperature in the control
experiment (Fig. 8), these features may be associated
with the natural variability of the climate system.

Figure 8 presents the temporal behaviors of the
globally averaged surface air temperature in the con-
trol experiment and in the experiments modeling the
climate of the 20th–22nd centuries. In the experiment
modeling the climate of the 20th century, a marked
warming relative to the warming in the control exper-
iment is observed as early as by the middle of the cen-
tury. By the end of the century, the temperature
increase reaches 0.7–0.8°, which is close to the
observed warming, about 0.6–0.7°. The data of the
control experiment do not contain a time interval
within which the warming would is so substantial.
This finding implies that the warming observed in the
20th century is most likely due to external forcings
rather than to the internal variability of the atmo-
sphere–ocean system itself. An analogous conclusion
is also made from the results of other models whose
results are used in [17]. According to model results,
during the 21st century, a temperature increase of
about 0.6 K is expected to ocuur ownig to thermal
inertia of the ocean even if all forcings are fixed at the
level of 2000. According to the data of the model, the
increases in temperature in experiments B1, A1B, and
A2 in comparison with 2000 are more clearly defined
and reach 2, 3, and 5 K, respectively, by the end of the
22nd century.

The temperature changes nonuniformly over the
surface during global warming. As is shown in [16],
the warming is maximum in the Arctic and reaches
10 K there. In the territory of Russia, the temperature
increase is 5−7 K. In the remaining part of the conti-

nents, the temperature increases by 3−5 K. The warm-
ing is the least pronounced over the tropical oceans
and the Southern Ocean (2–3 K). Such a distribution
of warming over the globe is characteristic of most
models and is close to the results obtained via averag-
ing the data of all CMIP models. The calculated pre-
cipitation change during warming in the INM RAS
model is also typical of most models. Precipitation
increases by 20 to 40% in the middle and high lati-
tudes of both hemispheres and over the tropical
Pacific. Over the most part of subtropics and the trop-
ical Atlantic, precipitation decreases.

The maximum of warming in the Arctic is due to a
considerable thawing of sea ice at the end of the sum-
mer season. Figure 9 depicts the area of sea ice in the
Northern Hemisphere in March and September for the
control experiment and experiments B1, A1B, and A2
on the reproduction of the climate of the 20th century.
In March, the area of ice in the control experiment
remains almost constant; only high-frequency oscilla-
tions occur and a small negative trend is recorded.

In experiments B1, A1B, and A2, the area of ice
decreases in March and, by the end of the 22nd cen-
tury, the decrease reaches 20, 30, and 50%, respec-
tively. In September, changes in the area of sea ice are
pronounced still more clearly. By the end of the 20th
century, the area of ice decreases by 20 to 25% relative
to the control experiment. In the 22nd century, accord-
ing to the results of experiment A2, there is no ice in
the Arctic; according to the results of experiment
A1B, ice remains by September only in some years;
and according to the results of experiment B1, the area
of ice is as small as 10 to 20% of the area in the control
experiment. It should be noted that, according to
observational data, at the end of the 20th century, the
area of Arctic sea ice in July–September turned out to
be 20 to 25% smaller than in the middle of the century,
whereas, this characteristic in January–March
remained virtually invariant over the past 50 years.
This finding corresponds to the model results pre-
sented in Fig. 9.

CONCLUSIONS

In summary, we emphasize once more that the
strategy of studies (within the framework of the
national climate program) of modeling climate and its
global changes should be based on the following four
main propositions: (i) construction of an original cli-
mate model, (ii) model implementation on parallel-
computing systems, (iii) development of the mathe-
matical theory of climate, and (iv) study of regional
problems of climatic variability that are important in
Russia. The experience accumulated in such studies at
the Institute of Numerical Mathematics of the Russian
Academy of Sciences makes it possible to state that at
present there are theoretical and technological back-
grounds for solving the problems related to the predic-
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tion of climate changes, both natural and caused by
human activities. The atmosphere–ocean general cir-
culation models developed at the institute have
achieved the world level of both complexity in
describing physical processes and adequacy in repro-
ducing present-day climate characteristics. The
results of modeling the combined atmosphere–ocean
circulation testify that further improvement of the
INM RAS climate model aimed at the study of climate
changes on different scales is promising.

The main directions in which the development of
the mathematical theory of climate and the improve-
ment of modeling of climate and climate change will
be possible in the coming years can be formulated as
follows.

(1) Mathematical theory of climate: (a) elabora-
tion of stability theory for the attractors of climate
models, (b) study of the structure of the attractors of
climate models, (c) development of sensitivity theory
for climate models (theorems on the linear approxi-
mation for different moments, numerical study of the
linear theory of response to small perturbations, opti-

mal perturbations, and algorithms for constructing the
response operator), and (d) control theory for dissipa-
tive systems (climate control).

(2) Climate models: (a) development of parame-
trizations for physical processes (stochastic parame-
trizations), (b) improvement of coupled atmosphere–
ocean models, (c) development of regional climate
models and methods to assess the consequences of cli-
mate changes for the natural medium, and (d) elabora-
tion of models of the middle and upper atmosphere for
solving the problems related to “space weather.”

(3) Numerical methods and parallel computa-
tions: (a) development of the theory of approximation
of hydrothermodynamic equations on attractors
(approximation of an attractor as a set and approxima-
tion of the measure on it), (b) approximation of the
dynamics of the climate system on attractors, (c) elab-
oration of schemes with a specified symmetry group,
(d) construction and use of spatiotemporal adaptive
grids, and (e) design of computing technologies ori-
ented toward massively parallel computing systems.
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The aforementioned makes it possible to hope for
the elaboration of a national expert system used to
obtain estimates and substantiated predictions of cli-
mate oscillations and changes on both a regional and
a global scale.
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