

Федеральное государственное бюджетное учреждение науки Институт вычислительной математики им. Г.И. Марчка Российской академии наук

Использование данных системы мониторинга «See the Sea» в задачах моделирования термодинамики Черного и Азовского морей

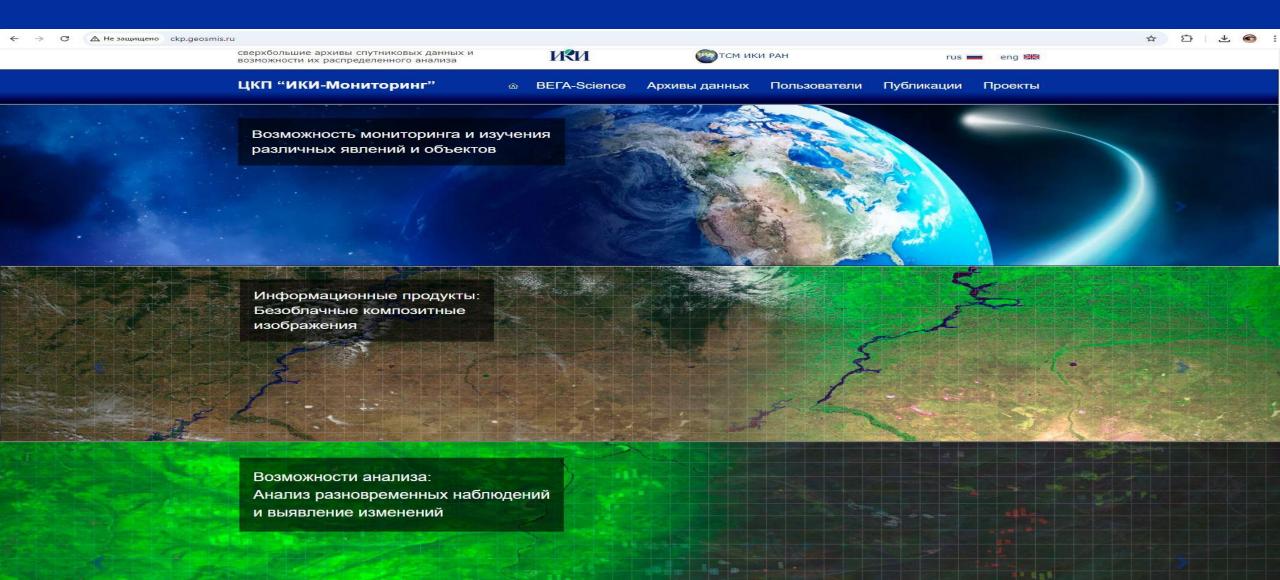
Захарова Н.Б., Агошков В.И., Пармузин Е.И., Шелопут Т.О., Шутяев В.П., Лёзина Н.Р., Фомин В.В., Шевченко Б.С.

ГИС для цифрового развития. Применение ГИС и дистанционного зондирования в науке и управлении

Российский научный фонд

Проведение исследований на базе существующей научной инфраструктуры мирового уровня

При реализации проектов должны использоваться находящиеся в РФ крупные объекты научной инфраструктуры, в том числе:


- центры коллективного пользования данных или ресурсов;
- научное оборудование, измерительные колмпексы;
- уникальные научные установки;
- экспериментальные базы, коллекции;
- информационные системы и пр.

ЦКП «ИКИ-Мониторинг»

Центр коллективного пользования системами архивации, обработки и анализа данных спутниковых наблюдений ИКИ РАН для решения задач изучения и мониторинга окружающей среды

- Лупян Е.А. и др. Центр коллективного пользования системами архивации, обработки и анализа спутниковых данных ИКИ РАН для решения задач изучения и мониторинга окружающей среды. Современные проблемы ДЗЗ из космоса (2015), 12(5) 263–284
- Лаврова О.Ю. и др. Текущие возможности и опыт использования информационной системы See the Sea для изучения и мониторинга явлений и процессов на морской поверхности. Современные проблемы ДЗЗ из космоса (2019), 16(3) 266-287

ЦКП «ИКИ-Мониторинг»

Проект РНФ

ИВС «ИВМ РАН - Черное море» и её интеграция с ЦКП «ИКИ-Мониторинг»

Информационно-вычислительная система (ИВС) вариационной ассимиляции данных «ИВМ РАН - Черное море» [1-2] была создана на основе численной модели INМОМ [3] для моделирования морских акваторий и проведения расчетов с ассимиляцией реальных данных наблюдений [4] в ИВМ РАН.

В работе используются данные со спутников о температуре поверхности моря из программно-аппаратного комплекса ЦКП «ИКИ - Мониторинг»

- [1] Агошков В.И. др. ИВС "ИВМ РАН Черное море". Москва, ИВМ РАН, 2016.
- [2] Агошков В.И., Пармузин Е.И., Захарова Н.Б. и др. Свидетельство о регистрации программы для ЭВМ №2014663103 «Информационно-вычислительная система вариационной ассимиляции данных «ИВМ РАН Черное море»», 2014.
- [3] Zalesny V. B., Diansky N. A., Fomin V. V. Numerical model of the circulation of the Black Sea and the Sea of Azov. Russ. J. Numer. Anal. Math. Modelling, 2012.
- [4] Agoshkov, V.I.; Zalesny, V.B.; Parmuzin, E.I.; Shutyaev, V.P.; Ipatova, V.M. Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution. Izv. Atmos. Ocean. Phys., 2010.

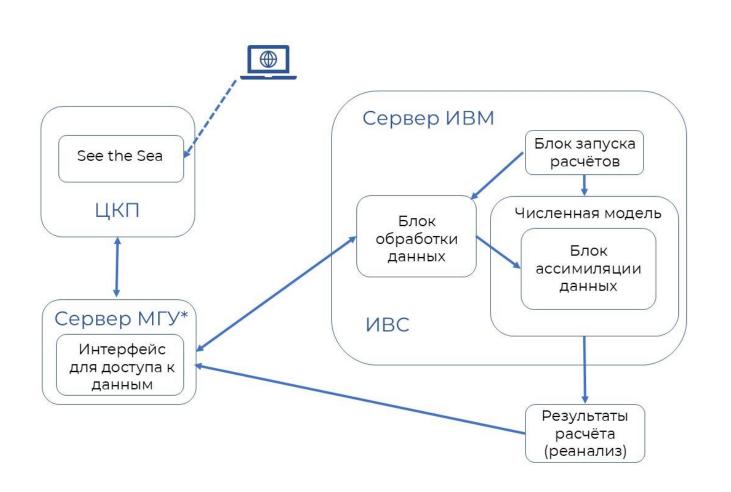
UBC «UBM PAH-Черное море»

Численная модель INMOM +

Процедуры ассимиляции данных

Расчёт

- Морские течения
- Термохалинная структура и плотность воды
- Распределение основных гидрологических и специальных параметров



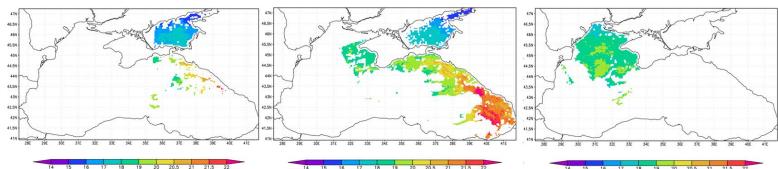
Вывод параметров

- Температура
- Соленость
- Уровень моря
- Поле скоростей

Интеграция ИВС и ЦКП

Схема интеграции

Информационно – вычислительной системы вариационной ассимиляции данных наблюдений «ИВМ РАН – Черное море» с программно-аппаратным комплексом ЦКП «ИКИ-Мониторинг»»


^{*}используется оборудование ЦКП сверхвысокопроизводительными вычислительными ресурсами МГУ

Данные наблюдений

Температура поверхности моря

В процедурах ассимиляции используются данные о температуре поверхности моря (ТПМ) Черного, Азовского и Мраморного морей

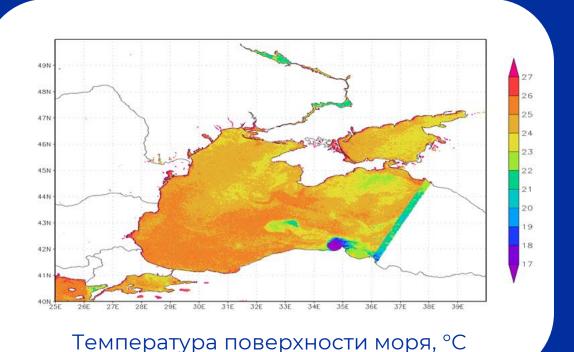
за 2015-2024 гг. морей с различных спутников, которые зачастую покрывают только часть исследуемой акватории в силу погодных условий, особенностей измерительных приборов и траекторий спутников.

Данные наблюдений о ТПМ в акватории Черного и Азовского морей за 17.10.2019, полученные из ЦКП «ИКИ - Мониторинг»

Спутники:

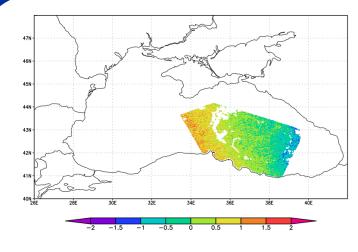
Aqua (MODIS),
Terra (MODIS),
Suomi NPP (VIIRS),
Sentinel (SLSTR)

Обработка, верификация, интерполяция, анализ данных


Обработка Данных

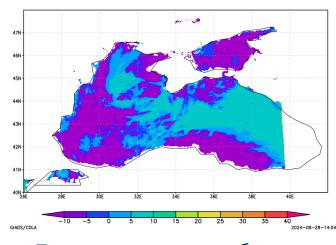
- Обработка и верификация данных наблюдений о состоянии морских акваторий.
- Интерполяция наблюдений на регулярную сетку численной модели.
- Расчет статистических характеристик основных гидрофизических параметров морских сред по наборам данных.
- Построение на основе данных наблюдений ковариационных матриц и весовых коэффициентов в задачах ассимиляции данных.
- Верификация результатов расчетов и используемых методов ассимиляции по натурным данным измерений.

Обработка и верификация данных наблюдений о состоянии морских акваторий


Для использования данных наблюдений в численной модели разрабатываются алгоритмы верификации данных, позволяющие выявлять ошибки, корректировать данные и исключать отдельные поля или выбросы.

Ошибки в данных

Ошибки измерительных приборов


Данные не всегда согласуются между собой

Разница значений с двух спутников. Terra и SNPP

Температура поверхности моря, °С

METEOP-M

Данные не откалиброваны

Интеграция реанализа в систему "See the Sea"

На основе ассимиляции данных о ТПМ в модели INMOM построен реанализ состояния Черного и Азовского морей.

Интерфейс системы мониторинга обеспечивает возможность проведения комплексного анализа результатов моделирования и данных наблюдений со спутников.

Построенные 3D поля основных гидрофизических параметров интегрированы в систему мониторинга «See the Sea» для последующей визуализации.

В системе можно:

- Строить изолинейные карты, вертикальные профили, разрезы;
- Проводить онлайн расчеты выбранного параметра за некоторый период (сутки\неделю\месяц).

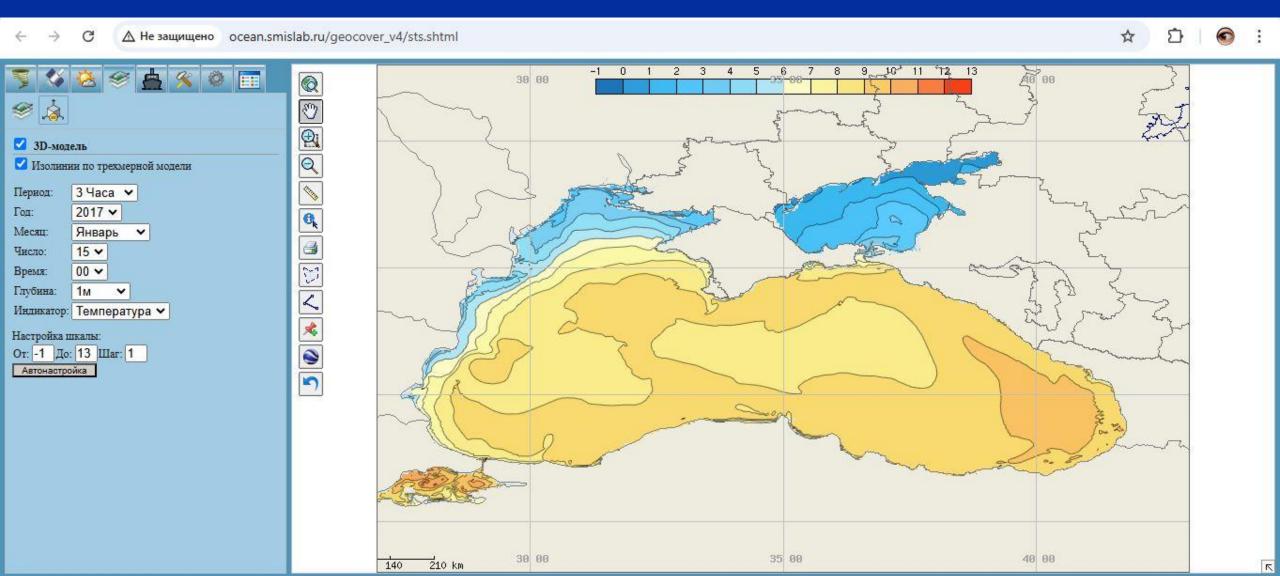
Информационная СИСТЕМА МОНИТОРИНГА

See the Sea

спутниковый сервис мониторинга Мирового океана

Вход в систему

Выйти


Ресурсы системы

- Картографический интерфейс
- Система учета сбоев

Уважаемые пользователи, обращаем Ваше внимание! В связи со сбоем оборудования и проведением технологических работ могут происходить временные перебои в работе сервиса с частью данных.

Спутниковый сервис SEE THE SEA (STS) - это информационная система, ориентированная на работу с данными спутниковых наблюдений для решения междисциплинарных задач исследования Мирового океана. Особое внимание в системе уделяется возможностям работы с данными спутниковой радиолокации (в основном, данными, получаемыми со спутника ENVISAT). В то же время, система позволяет проводить комплексный анализ данных различных спутниковых систем наблюдения Земли. В системе используются данные спутников Terra, Aqua, NOAA, LANDSAT и др. Система обеспечивает возможность работы как с ежедневно получаемыми спутниковыми данными, так и с многолетними архивами данных, накопленных в Институте космических исследований российской академии наук (ИКИ РАН) в ходе выполнения различных научных проектов.

SEE THE SEA

Заключение

Алгоритмы ассимиляции позволяют учитывать данные наблюдений при моделировании термодинамических процессов

Интеграция полей реанализа расширяет возможности системы мониторинга, позволяя проводить исследования процессов, происходящих не только на морской поверхности, но и на различных горизонтах по глубине

Планируется построить и интегрировать в систему мониторинга Цифровые Атласы «ИВМ РАН – Черное море», «ИВМ РАН – Азовское море» - среднегодовые, сезонные и среднесуточные поля основных гидрофизических параметров

Работа поддержана Российским научным фондом (проект №19-71-20035)

Расширяем горизонты!

Захарова Наталья Борисовна