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Abstract: The paper is devoted to the construction of optimal stochastic forcings for studying the sensitivity of
linear dynamical systems to external perturbations. The optimal forcings are sought tomaximize the Schatten
norms of the response. As an example,we consider the problemof constructing the optimal stochastic forcing
for the linear dynamical system arising from the analysis of large-scale structures in a stratified turbulent
Couette flow.
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One approach to studying the sensitivity of a dynamical system being in a steady state is to analyze its re-
sponse to stochastic forcing in this state. Stochastic forcing is used to simulate various external influences,
which are not taken into account within the initial system. If small perturbations are of interest, it is suffi-
cient to study the system linearized with respect to the steady state under consideration. In particular, this
approach was used to study laminar [2, 9, 10] and turbulent [14, 15] hydrodynamic flows. For example, the
analysis performed in [14, 15] highlighted the characteristic spatial scales and forms of the large-scale orga-
nized structures observed in turbulent flows against a background of small-scale turbulence (see [8] and its
bibliography).

In the above-mentioned papers, the stochastic forcing was a delta-correlated Gaussian stochastic pro-
cess with zero mean and uniform spectral density. However, the simplifying assumption of uniform spectral
density might not be adequate, for example, when stochastic forcing simulates generation of small-scale tur-
bulence because its intensity might be anisotropic and depend on spatial coordinates. This paper focuses on
the construction of the optimal stochastic forcing, which is a delta-correlated Gaussian stochastic process
with zeromean and, in general, non-uniform spectral density. The optimization problem is posed by analogy
with the linear optimal control problems [23], with the solution of that problem being found in the Schatten
norms.

The structure of the paper is as follows. In Section 1, the problem of constructing the optimal stochastic
forcing is posed and solved. Section 2 demonstrates the results of applying the proposed approach to con-
struction of the optimal stochastic forcing for a linear dynamical systemused in [22] to analyze the large-scale
organized structures in a stratified turbulent Couette flow. Section 3 summarizes this work.

Throughout this paper, ‖⋅‖2 denotes the2-norm for vectors andmatrices, the identitymatrices aredenoted
by I and their size will be clear from the context, T denotes the symbol of transposition, and ‘∗’ denotes the
symbol of conjugate transposition.
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1 Stochastic forcing of the linear dynamical systems
We further refer to the inhomogeneous system of linear ordinary differential equations of the form

du
dt = Au + Vf (1.1)

as the linear dynamical system, where t is a time, u = u(t) is a vector-valued function, A is a given square
complex matrix of order n whose eigenvalues have negative real parts, f is, in general, a time-dependent m-
component column (m ⩽ n), which we further call the forcing function, and V is a matrix of size n × m. Note
that Vf lies in the linear span of the columns of V. In particular, this allows to consider the cases where only
a part of the system variables is forced, choosing a corresponding matrix V. If the forcing of a general form is
of interest, then V should be the identity matrix.

Assume that we are interested in the following response of system (1.1) to the forcing:

g = W∗u (1.2)

whereW is an n × r matrix, n ⩾ r. Further g(t) will be called the response function. If the forcing is intended
to influence all components of the solution u, then W should be the identity matrix. Otherwise, when, for
example, we want to maximize the influence on some solution components, W should be the rectangular
matrix formed of the corresponding columns of the identity matrix of order n.

1.1 Response to stochastic forcing

Let the forcing function f(t) in (1.1), where −∞ < t < ∞, be a delta-correlated Gaussian stochastic process
with zero mean and spectral density C:

⟨f(t)⟩ = 0, ⟨f(t)f(t󸀠)∗⟩ = Cδ(t − t󸀠), C = C∗ ⩾ 0
where δ(τ) is the Dirac delta-function, and ⟨⋅⟩ is the ensemble averaging. Then the response function g de-
fined in (1.2) will be a Gaussian stochastic process with zeromean and a time-independent covariancematrix
(see [20]):

⟨g(t)g(t)∗⟩ =M(C) = W∗XW (1.3)

where X is the solution of the Lyapunov equation

AX + XA∗ = −C̃ (1.4)

with C̃ = VCV∗. Since all eigenvalues of A have negative real parts, equation (1.4) has a unique solution for
any C̃ [12] that can be found using the efficient matrix algorithms (see, e.g., [3, 13]).

The eigenvectors of the covariance matrix X̃ = M(C) form an orthonormal basis, which is referred to as
the basis of empirical orthogonal functions (EOF). Decomposition with respect to this basis is also known as
Principal Component Analysis (PCA, see, e.g., [19]), Proper Orthogonal Decomposition (POD, see, e.g., [21])
and Karhunen–Loève decomposition (see, e.g., [10]). The first EOF, i.e. the eigenvector of X̃ corresponding to
its largest eigenvalue λmax(X̃), contributes most to the variance maintained by the stochastic forcing, being
themain configuration observed in the response time series of the stochastically forced system (1.1). The share
of total variance contributed to the first EOF is s(C) = λmax(X̃)/tr(X̃), where tr(X̃) is the trace of X̃.

Let us notice one important particular case. Let f(t) = cφ(t), where c is a time-independent deterministic
vector and φ(t) is a scalar delta-correlated Gaussian stochastic process with zero mean and unit variance.
Then, similar to (1.3), the following formula for the trace of covariance matrix of response function is valid:

tr⟨g(t)g(t)∗⟩ = ⟨‖g(t)‖22⟩ = c∗Ỹc
where

Ỹ = V∗YV (1.5)
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with Y being the solution of the Lyapunov equation

A∗Y + YA = −WW∗
whose operator is adjoint to that of equation (1.4) in Frobenius inner product (see [5, p. 92]).

If we choose as c the eigenvector of Ỹ corresponding to its largest eigenvalue, then the corresponding
forcing function maximizes the mean square of the 2-norm of the response function on the set of forcings of
the form f(t) = cφ(t), where vector c has the same 2-norm as this eigenvector.

1.2 Optimal spectral density

For an n × n matrix B, the quantity

|||B|||p = (
n∑
j=1 σj(B)p)

1/p
is referred to as the Schatten p-norm [5], where σ1(B) ⩾ . . . ⩾ σn(B) denote algebraically complete set of
singular values of B. Note that |||B|||2 = ‖B‖F is the Frobenius norm, and |||B|||∞ = ‖B‖2 is the spectral norm.
If B is a Hermitian nonnegative definite matrix, then |||B|||1 = tr(B) is the trace of B. In addition, we will use,
without further explanation, the following statement: let B󸀠 and B󸀠󸀠 be Hermitian matrices of the same size,
with B󸀠󸀠 being a nonnegative definite matrix, and −B󸀠󸀠 ⩽ B󸀠 ⩽ B󸀠󸀠. Then |||B󸀠|||p ⩽ |||B󸀠󸀠|||p for p = 1, 2, and∞.

We consider the problem of constructing the stochastic forcing that gives the maximum response in the
Schatten p-norms at p = 1, 2, and∞. This problem is posed as the optimization problem for spectral density
C:

C ̸= 0 :
|||M(C)|||p
|||C|||p → max, C = C∗ ⩾ 0 (1.6)

whereM denotes the mapping defined in (1.3).

Theorem 1.1. Let all eigenvalues of A have negative real parts. Then the solution of problem (1.6) at p = 1 is
the matrix C = cc∗ of rank 1, where c is the eigenvector of matrix (1.5) corresponding to its largest eigenvalue;
at p = 2 solution is the right singular vector of mapping (1.3) corresponding to its largest singular value; and at
p = ∞ solution is the identity matrix of order m.

Proof. Note that, under the hypothesis of Theorem 1.1, mapping (1.3) has the following property: M(C󸀠) ⩽
M(C󸀠󸀠) for anyHermitianmatrices satisfying C󸀠 ⩽ C󸀠󸀠. This inequality clearly follows from the similar property
of the Lyapunov equations [12].

Let us start with the case p = ∞. Let C be a non-zero Hermitian nonnegative definite matrix. Then, first
of all,

|||C|||∞ = λmax(C)|||I|||∞
where λmax(C) is the largest eigenvalue of C. Second,

C ⩽ λmax(C)I 󳨐⇒ M(C) ⩽ λmax(C)M(I)
and therefore,

|||M(C)|||∞ ⩽ λmax(C)|||M(I)|||∞.
Thus, |||M(C)|||∞

|||C|||∞ ⩽ |||M(I)|||∞|||I|||∞ .

Consider now the case p = 1. Let us represent the matrix C as a sum of Hermitian nonnegative definite
matrices of rank 1 (for example, based on the spectral decomposition):

C = ν∑
j=1 Cj
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where ν is the rank of C. Denote by C󸀠 amatrix which solves the optimization problem (1.6) at p = 1 on the set
of Hermitian nonnegative definite matrices of rank 1. Let us introduce the notation α = α1 + . . . + αν where
αj = |||Cj|||1/|||C󸀠|||1.

It is not difficult to see that |||C|||1 = α|||C󸀠|||1 and
|||M(C)|||1 = |||

ν∑
j=1M(Cj)|||1 = ν∑

j=1 |||M(Cj)|||1 ⩽ ν∑
j=1 |||M(αjC󸀠)|||1 = α|||M(C󸀠)|||1.

Thus, |||M(C)|||1
|||C|||1 ⩽

|||M(C󸀠)|||1
|||C󸀠|||1 .

It remains to take into account that, as shown in Section 1.1, the optimal spectral density of rank 1 at p = 1
is the matrix cc∗, where c is the eigenvector of matrix (1.5) corresponding to its largest eigenvalue.

Consider now the case p = 2. Using the Lyapunov equation (1.4), the linear mapping (1.3) can be rep-
resented in a matrix-vector form as x̃ = Mc̃. Here x̃ and c̃ are r2-component and m2-component columns,
respectively, obtained by stacking the columns of X̃ and C, andM is the r2 ×m2 matrix of the linear mapping
(1.3) having the following form:

M = (WT ⊗W∗) (I ⊗ A + Ā ⊗ I)−1 (V̄ ⊗ V) (1.7)

where ⊗ denotes the Kronecker product, and bar denotes the element-wise complex conjugation. Since

|||X̃|||2 = ‖x̃‖2, |||C|||2 = ‖c̃‖2
problem (1.6) at p = 2 is reduced to the following matrix optimization problem

c̃ ̸= 0 : ‖Mc̃‖2
‖c̃‖2 → max (1.8)

on the set of m2-component columns obtained by stacking the columns of non-zero m × m Hermitian non-
negative matrices. If problem (1.8) is considered on the set of all nonzero m2-component columns, then its
solution is the right singular vector of M corresponding to its largest singular value. The corresponding ma-
trix C (obtained by reshaping the column c̃) is the right singular vector of mapping (1.3) corresponding to its
largest singular value. Thus, to complete the proof, it is sufficient to show that the right singular vector of
mapping (1.3) corresponding to its largest singular value can be chosen Hermitian nonnegative definite. This
statement is a consequence of a more general statement that is of interest on its own. We state and prove it
below.

Theorem 1.2. Let all eigenvalues of A have negative real parts. Then, the right singular vector of mapping (1.3)
corresponding to an arbitrary singular value can be chosen Hermitian, and that corresponding to the largest
singular value can be chosen Hermitian nonnegative definite.

Proof. The mapping adjoint to (1.3) can be represented as

M∗(X̃) = V∗ZV (1.9)

with Z being the solution of the Lyapunov equation:

A∗Z + ZA = −WX̃W∗. (1.10)

Formula (1.9) can be derived, based on the conjugate transpose of thematrixM (1.7). The right singular vector
C of mapping (1.3) corresponding to its singular value σ is the eigenvector ofM∗(M(⋅)) corresponding to its
eigenvalue λ = σ2:

M∗(M(C)) = λC. (1.11)

If C is a skew-Hermitian matrix, then the matrix C multiplied by the imaginary unit is the sought Hermitian
singular vector. Otherwise, taking into account the equality:

M∗(M(C∗)) = λC∗
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which is directly obtained from (1.11) by the conjugate transposition, thematrix C+C∗ is the sought Hermitian
singular vector.

Let now C be an arbitrary Hermitian matrix of orderm, with C = QΛQ∗ being its spectral decomposition,
where Q is a unitary matrix of eigenvectors, and Λ is a diagonal matrix of eigenvalues. Having replaced the
diagonal elements of Λ by their absolute values, we denote the result as Λ󸀠 and consider the matrix C󸀠 =
QΛ󸀠Q∗. Note that, first of all, |||C|||2 = |||C󸀠|||2, and second, −C󸀠 ⩽ C ⩽ C󸀠, and therefore,

−M(C󸀠) ⩽M(C) ⩽M(C󸀠) 󳨐⇒ |||M(C)|||2 ⩽ |||M(C󸀠)|||2.
If C is the right singular vector of mapping (1.3) corresponding to its largest singular value, then the latter
inequality becomes an equality. Therefore, it clearly follows that the constructed non-zero Hermitian non-
negative definite matrix C󸀠 is the right singular vector of mapping (1.3) corresponding to its largest singular
value.

Note that in [7] it was proved that the singular vector corresponding to the smallest singular value of the real
Lyapunov operator, whose spectrum lies in the left half-plane, can be chosen symmetric. It is equivalent to
the same statement on the right singular vector corresponding to the largest singular value of the inverse real
Lyapunov operator. Theorem 1.2 considers a much more general complex operator (if V and W are identity
matrices, it is the inverse complex Lyapunov operator) and proves that this singular vector can be chosen
Hermitian nonnegative definite. Thus, this theorem generalizes and extends the results of [7].

The statements similar to Theorem 1.1, when V andW are identity matrices, were proved in [16, 17]. Sub-
sequently it was shown in [4, 6] that these statements follow frommore general theory on the norms of linear
positive operators, to which the mappingM (1.3) belongs in this case. The proposed proof of Theorem 1.1 is
original and based only on well-known results of the matrix analysis.

2 Numerical experiments
In this section, we discuss the results of numerical experiments with a linear dynamical system proposed
in [22] to analyze the large-scale organized structures emerging against a background of small-scale tur-
bulence in a stratified turbulent Couette flow [11]. This system is obtained by parameterizing the turbulent
stresses with the isotropic eddy viscosity and diffusivity operators and subsequent linearization with respect
to themean flow (see [22] formore details). The disturbances harmonic in the horizontal spatial directions are
of interest. Approximating the equations for the amplitudes of such disturbances in the wall-normal direc-
tion and projecting the result onto the subspace of the non-divergent grid functions [18], we obtain a linear
system of the form (1.1) with zero matrix V. The matrix A of this system depends on the Reynolds number
Re, the Richardson number Ri, and the streamwise α and spanwise γ disturbance wavenumbers (see [22] for
details).

We consider matrices A corresponding to Re = 4 ⋅ 104, Ri = 0.03 and two pairs of the wavenumber
values: α = 0.39, γ = 1.16, at which the maximum amplification of the disturbance energy is reached [22],
and α = 0, γ = 0.25, at which the response to the stochastic forcing in all considered Schatten norms is close
to the maximum. Figure 1 shows the leading part of the spectrum of A in these two cases. It can be seen that
in the former case, the leading eigenvalues are much more stretched along the imaginary axis, but they are
much farther away from it.

To study the sensitivity, forcings of the form Vf should be added to the right-hand side of the described
homogeneous system and various observationmatricesW should be used. Since this paper is devoted first to
the computational technology and its justification, we present further numerical experiments only with the
identity matrices V andW.
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Fig. 1: The leading part of the spectrum of A at the wavenumber values α = 0.39, γ = 1.16 (left) and α = 0, γ = 0.25 (right).
p ρ1(Cp) ρ2(Cp) ρ∞(Cp) s(Cp)

1 1366 1012 970 0.71
2 1042 1109 1135 0.67∞ 10 99 1485 0.46

Tab. 1: The response to optimal stochastic forcings in different p-norm and the
share of the total variance corresponding to the first EOF at α = 0.39, γ = 1.16.

p ρ1(Cp) ρ2(Cp) ρ∞(Cp) s(Cp)

1 8082 7886 7885 0.97
2 7296 7936 7984 0.97∞ 35 514 8872 0.84

Tab. 2: The response to optimal stochastic forcings in different p-norm and the
share of the total variance corresponding to the first EOF at α = 0, γ = 0.25.

2.1 Computation of the optimal spectral densities

According to Theorem 1.1, the optimal spectral density of stochastic forcing at the case p = 1 is the matrix
C = cc∗ of rank 1, where c is the eigenvector of (1.5) corresponding to its largest eigenvalue, that at the case
p = ∞ is the identity matrix of order m, and that at the case p = 2 is the right singular vector of the mapping
(1.3) corresponding to its largest singular value.

Using Theorem 1.2, the computation of the optimal spectral density for the case p = 2 can be done as
follows. First we compute the eigenvector of M∗M corresponding to its largest eigenvalue, where M is the
matrix (1.7) of the linear mapping (1.3). To compute this eigenvector, any iterative method for solving the
partial Hermitian eigenvalue problem, that does not require to form matrix explicitly but uses only a matrix-
vector multiplication procedure can be used (e.g., the Lanczos method, the simultaneous iteration, or the
conjugate gradient method, see [1] for details). Note that the multiplication of matricesM andM∗ by a vector
is equivalent to the solution of the corresponding Lyapunov equations (1.4) and (1.10), respectively. After
the desired eigenvector is found, we reshape it to a matrix and then convert this matrix to a Hermitian non-
negative definite matrix by the algorithm described in the proof of Theorem 1.2.

Let us denote by Cp the optimal spectral density in the Schatten p-norm, and introduce the relative value
of the Schatten q-norm of the covariance matrixM(C) of response function for a given matrix C:

ρq(C) = |||M(C)|||q|||C|||q .

For brevity, this quantity is further referred to as the response.
For two considered matrices A, Tables 1 and 2 provide the values of responses to the stochastic forcings

having the spectral densities optimal in different Schatten p-norms. In the last columns, the values of the
share of total response function variance corresponding to the first EOF are given. Since Cp is the optimal
spectral density in the p-norm, maximum values across the columns are in the first, second, and third posi-
tions, respectively. The optimal spectral densities C1 and C2 result in a small value of response in∞-norm
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(1—2 orders of magnitude smaller than the response to C∞), and the optimal spectral density C∞ leads to a
significantly smaller response in the 1-norm than C1.

Tables 1 and 2 show that the optimal spectral densities C1, C2, and C∞ lead to significantly different co-
variancematrices of the response function. For example, the values of the share of the total response function
variance corresponding to the first EOF are noticeably larger at spectral densities C1, C2 than at C∞.
3 Conclusions
In the present paper, to study the sensitivity of linear dynamical systems to external forcings, the computa-
tional technology is proposed and justified for constructing the optimal spectral density of stochastic forcing,
which is a delta-correlated Gaussian stochastic process with zero mean. The optimization problem is posed
by analogy to the linear optimal control problems and solved in the Schatten p-norms at p = 1, 2, and∞.
As an example of two linear dynamical systems arising in studying of the large-scale organized structures in
a stratified Couette turbulent flow, it is shown that the optimal spectral densities in different norms can dif-
fer significantly from each other. This leads to the significantly different covariance matrices of the response
function. The proposed formulation of the problem and the method for computing the optimal stochastic
forcing can be used in the study of the sensitivity of any nonlinear dynamical system being in a steady state.
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