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Abstract:Anewmethod for constructing themulti-modal impacts on the immune system in the chronic phase
of viral infection, based on mathematical models formulated with delay-differential equations is proposed.
The so called, optimal disturbances, widely used in the aerodynamic stability theory for mathematical mod-
els without delays are constructed for perturbing the steady states of the dynamical system for maximiz-
ing the perturbation-induced response. The concept of optimal disturbances is generalized on the systems
with delayed argument. An algorithm for computing the optimal disturbances is developed for such systems.
The elaborated computational technology is tested on a system of four nonlinear delay-differential equations
which represents themodel of experimental infection inmice caused by lymphocytic choriomeningitis virus.
The steady-state perturbations resulting in amaximum responsewere computedwith the proposed algorithm
for two types of steady states characterized by a low and a high levels of viral load. The possibility of correc-
tion of the infection dynamics and the restoration of virus-specific lymphocyte functioning of the immune
system by perturbing the steady states is demonstrated.

Keywords: Virus infection, mathematical model, delay-differential equations, steady state, perturbation,
multi-modal perturbations, persistence, optimal disturbances.
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Thedynamics of humanvirus diseases is characterized by a variety of courses and outcomes including acute-,
chronic-, and lethal infections. The establishment of chronic infection significantly increases the risk of de-
velopment of other pathological states such as cancer, autoimmune diseases, concomitant infections and
damage of cardiovascular or nervous systems. The problem of studying the mechanisms of the chronic virus
infections development and approaches to their treatmentwas postulated as one of the central task ofmathe-
maticalmodelling in immunology in fundamentalworks ofG.I.Marchuk [18, 19].Heproposedanewapproach
to cure the chronic infections using the results of stability analysis of the steady-states of the basicmathemat-
ical model of infectious disease. The approach is based on perturbing the chronic infection via exacerbation,
leading to transition of the infection state from the chronic one to an acute with recovery. This paradigm of
the system performance analysis by means of the perturbation of its dynamics was later extensively utilized
in mathematical analysis of immune processes in various virus diseases, e.g., the human immunodeficiency
virus (HIV) infection which is characterized by chronic dynamics and lethal outcome [23, 25].

Nowadays, the ideas of systems analysis postulated in biomedicine as ‘system biology’ [14] are widely
used in mathematical immunology. The research focus of systems immunology is on the dynamics, structure
and regulation mechanisms of immune processes. The property of robustness, i.e., the functional resistance
of the immune system to external perturbations, is considered to be themajor principle of its organization and
functioning. In general, the robustness is a key feature of any self-regulating biological system organization
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[9, 16]. For example, HIV infection can be considered as a robust ‘virus—host’ system [15]. The robustness of
self-regulating system implies the fragility of the system to certain combination of disturbances [9, 26]. The
search for proper disturbances of system parameters or system states to develop effective treatment of the
robust disease state can be performed via the sensitivity analysis of the underlying mathematical model of
disease.

This study is aimed to investigate the possibility for constructing the compensatory impacts on the im-
mune system during a chronic phase of virus infection by mathematical modelling methods. To this end,
we consider previously developed mathematical model of experimental murine infection with lymphocytic
choriomeningitis virus (LCMV) [1]. This model, formulated as a system of four non-linear delay-differential
equations (DDEs), is briefly described in Section 1 of the paper.

To perturb stable steady states of the system, we propose to use optimal disturbances which are widely
used in the aerodynamic stability theory for the mathematical models without delays. In aerodynamics, the
following two scenarios of the laminar-turbulent transition (LTT) are considered: natural (at high Reynolds
numbers) and bypass (at low Reynolds numbers) ones [5]. As the Reynolds number of a nearwall shear flow
increases, it usually reaches a critical value, above which the flow loses its stability to infinitesimal distur-
bances that leads to its turbulization (natural scenario). However, in practice LTT often occurs at subcritical
Reynolds numbers (bypass scenario) due to transient disturbances which consist of a large number of es-
sentially mutually non-orthogonal stable modes and whose development is accompanied by a significant
increase of their kinetic energy in finite time intervals. Among them, the maximum energy increase is at-
tributed to so-called optimal disturbances. They develop to quasi-stationary streaks which modify the basic
flow to a quasi-stationary linearly unstable state prone to LTT. Up to now, the analysis of bypass scenarios for
systems with delays have not been carried out. For such systems one needs to introduce physically justified
analogues of optimal disturbances. This new concept is described in Section 2 of the paper.

In Section 3 a direct algorithm for computing the optimal disturbances is proposed for delay systems. This
algorithm is not optimal. Previously developedmethods [3, 4, 22] allow one to compute optimal disturbances
with a given accuracy for non-delay systems of ordinary differential equations using the Schur decomposi-
tion and a low-rank approximation. In future, it is advisable to generalize these significantly more efficient
approaches, as well as the methods proposed in recent paper [21] for systems with large sparse matrices, on
the delay-systems.

Section 4 presents computational results obtained with the developed technology for themodel of LCMV
infection. The disturbances providing the maximum response of the system were found for steady states of
this model using proposed direct algorithm.We considered two types of steady states characterized by a low-
and a high viral load, respectively [17]. The first type is relevant to the treatment of persistent virus infections
characterized by the number of viruses in the organism below the conventional detection limit. Note that
infections characterized by low level viral persistence present difficulties for organ transplantations which
are often accompanied by exacerbation of latent infection due to immunosuppression. The high viral load
persistence is typically observed in infectionswithHIV, viral hepatitis C andB. Their treatment is a problemof
critical importance for public health. Both antiviral and immunomodulatory drugs which are used to control
the infection dynamics, have side effects. Therefore, the issue of minimizing drug dozes while preserving the
system response level is a crucial component of the efficient treatment strategy development. Taking this into
account, we investigated the possibility for correction of LCMV infection dynamics and functional recovery
of T lymphocyte responses by computing small perturbations of the steady states which result in a maximal
response of the model solution.

The overall results of our study are summarized in Section 5.

1 Mathematical model of LCMV infection and its steady states
The basic mathematical model of LCMV infection in mice proposed and analyzed in [1, 17] is formulated as a
system of non-linear delay-differential equations. The system describes the dynamics of the following time-
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Table 1: Biological meaning of the model (1.1) parameters.

Parameter Biological meaning

β Viruses replication rate constant
γVE Rate constant of virus clearance due to effector CTLs
Vmvc Maximum possible virus concentration in spleen
τ Typical duration of CTL division cycle
bp Rate constant of CTL stimulation
bd Rate constant of CTL differentiation
ϑp Cumulative viral load threshold for anergy induction in precursor CTLs
ϑE Cumulative viral load threshold for anergy induction in effector CTLs
αEp Precursor CTL natural death rate constant
αEe Effector CTL natural death rate constant
E0p Concentration of precursor CTLs in spleen of unprimed mouse
τA Typical duration of CTL commitment for apoptosis
αAP Precursor CTL apoptosis rate constant
αAE Effector CTL apoptosis rate constant
bW Rate constant of cumulative viral load increase
αW Rate constant of restoration from the inhibitory effect of cumulative viral load

dependent variables: concentration of viruses V(t), population densities of two LCMV-specific cytotoxic lym-
phocytes (CTLs) — precursors Ep(t) and effectors Ee(t), and the cumulative viral loadW(t),

d
dt V(t) = βV(t)(1 −

V(t)
Vmvc
) − γVEEe(t)V(t)

d
dt Ep(t) = αEp (E

0
p − Ep(t)) + βpgp(W)V(t − τ)Ep(t − τ) − αAPV(t − τA)V(t)Ep(t)

d
dt Ee(t) = bdge(W)V(t − τ)Ep(t − τ) − αAEV(t − τA)V(t)Ee(t) − αEeEe(t)

d
dt W(t) = bWV(t) − αWW(t)

(1.1)

where gp(W) = 1/(1+W/ϑp)2, ge(W) = 1/(1+W/ϑE)2. The biological meaning of parameters is explained in
Table 1.

To determine the solution of system (1.1) for t > 0, it is necessary and sufficient to define the following
initial functions: V(t) for −τA ⩽ t ⩽ 0, Ep(t) for −τ ⩽ t ⩽ 0, and the values Ee(0) andW(0). However, we will
assume for the sake of generality that the initial conditions for all variables are specified on τA ⩽ t ⩽ 0.

The initial value problem for system (1.1) with non-negative initial conditions and non-negative parame-
ters has a unique non-negative solution in any finite time interval [0, T]. This can be proved using the tech-
nique described in [19], which is based on the Bellman’s method of steps and makes use of a linear ordinary
differential equations system majorizing the right-hand side of the DDEs system.

Let us denote the vector of system (1.1) state space variables as

U(t) = (V(t), Ep(t), Ee(t),W(t))T (1.2)

to express this system in the following compact form:

d
dt U(t) = F(U(t), U(t − τ), U(t − τA)). (1.3)

As mentioned above, we assume that the vector of variables U(t) is defined for −τA ⩽ t ⩽ 0.
Model (1.3) has different steady states for different sets of parameters. In this studyweused twoparameter

sets for which the stable steady states were found. The steady states were computed using Newton’s method
applied to non-linear equation Φ(U) = 0, where Φ(U) = F(U, U, U). The numerical search of parameter
sets which provide steady states of (1.3) with required properties, as well as the corresponding initial values
for Newton’s method, was based on results of numerical bifurcation analysis from [17]. The steady states
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Table 2: The parameter values corresponding to stable steady states UI and UII.

Parameter Units UI UII

β 1/day 1.2 0.08
E0p cell/ml 106 103

bp ml/(particle⋅day) 7.73 ⋅ 10−5 1 ⋅ 10−5

bd ml/(particle⋅day) 7.73 ⋅ 10−4 5 ⋅ 10−4

ϑp particle/ml 3 ⋅ 106 10
ϑE particle/ml 1 ⋅ 105 1.8 ⋅ 106

γVE ml/(cell⋅day) 1.34 ⋅ 10−6

Vmvc particle/ml 4.82 ⋅ 107

αEp 1/day 0.5
αEe 1/day 0.1
τ day 0.4
τA day 5.6
αAP (ml/particle)2/day 7.5 ⋅ 10−16

αAE (ml/particle)2/day 4.36 ⋅ 10−14

bW 1/day 1
αW 1/day 0.11

representing two types of chronic LCMV infection differing in the viral loadwere found by varying parameters
in the admissible region specified in [17] and are described below.

The first steady state represents the latent form of infection with a low viral load and a high level of mem-
ory T cells [7]. The second one represents a symptomatic chronic infection with a high viral load and partial
exhaustion/depletion of virus-specific T lymphocytes [8, 20]. In the first case, the perturbation of the system
can be intended for the activation of infectious process with subsequent clearance of virus reservoir by im-
mune response or for a direct infection elimination. In the second case, the perturbation-based treatment
can be intended for the restoration of responsiveness of exhausted components of the immune system fol-
lowed by decreasing the viral load. Both of these scenarios are relevant for HIV infection. They correspond
to different infection phenotypes observed in ‘elite-controllers’ and ‘progressors’, respectively (see [11, 13]).

The parameter values, corresponding to the stable steady states U I and U II , are given in Table 2. The
values of the model variables of these steady states are given in Table 3.

2 Optimal disturbances of steady states
We are interested in the behaviour of system (1.3) near a stable steady state U. Writing an arbitrary solution
near the steady state as U(t) = U + εU(t) + O(ε2), where ε is a real parameter with small magnitude, substi-
tuting this solution into (1.3) and requiring that the obtained equation holds for all ε in the neighbourhood
of zero, we obtain the following system of linear differential equations for U(t):

d
dt U
(t) = L0U(t) + LτU(t − τ) + LτAU(t − τA) (2.1)

where

L0 =(

(

β − 2βV
Vvmc
− γVEEe 0 −γVEV 0

−αAPV Ep −αEp − αAPV
2 0 −2bpV Epgp(W)

ϑp+W

−αAEV Ee 0 −αEe − αAEV
2 −2bdV Epge(W)

ϑE+W
bW 0 0 −αW

)

)
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Table 3: The values of steady state components and the maximum and minimum values of disturbed ones corresponding to
Figs. 1–6 (up to three decimal digits).

V Ep Ee W

Steady state UI 11.5 1.01 ⋅ 106 8.96 ⋅ 105 104
min 2.75 ⋅ 10−10 974 3.98 ⋅ 105 5.49 ⋅ 10−3

Fig.1 tmin 69.6 −0.92 −10−3 123
max 330 1.08 ⋅ 106 1.58 ⋅ 106 1.12 ⋅ 103

tmax 6.63 10.3 11.9 9.13
min 1.64 ⋅ 10−23 9.6 ⋅ 105 1.94 ⋅ 105 8.02 ⋅ 10−6

Fig.2 tmin 92 −0.46 −0.46 184
max 700 1.13 ⋅ 106 2.03 ⋅ 106 1.82 ⋅ 103

tmax 5.55 8.45 9.58 7.46
min 5.38 ⋅ 10−6 106 5.37 ⋅ 105 2.59 ⋅ 10−2

Fig.3 tmin 45.6 88.2 98.9 79.8
max 174 1.06 ⋅ 106 1.39 ⋅ 106 703
tmax 107 111 −10−3 110
min 9.44 ⋅ 10−11 106 4.4 ⋅ 105 7.48 ⋅ 10−4

Fig.4 tmin 58.9 119 132 111
max 272 1.08 ⋅ 106 1.6 ⋅ 106 947
tmax 139 143 −0.46 142

Steady state UII 1.35 ⋅ 105 103 5.95 ⋅ 104 1.23 ⋅ 106

min 6.4 ⋅ 103 103 9.45 ⋅ 103 1.8 ⋅ 105

Fig.5 tmin 8.92 −5.6 17.9 28.4
max 1.35 ⋅ 105 3.14 ⋅ 104 6.5 ⋅ 105 1.23 ⋅ 106

tmax −5.6 −10−3 1.57 −5.6
min 3.96 103 25.4 2.34 ⋅ 103

Fig.6 tmin 10.7 −5.6 34.4 65.4
max 1.35 ⋅ 105 1.53 ⋅ 105 2.45 ⋅ 106 1.23 ⋅ 106

tmax −5.6 −10−3 1.08 −5.6

Lτ =(

0 0 0 0
bpEpgp(W) bpVgp(W) 0 0
bdEpge(W) bdVge(W) 0 0

0 0 0 0

) , LτA =(

0 0 0 0
−αAPV Ep 0 0 0
−αAEV Ee 0 0 0

0 0 0 0

) .

System (2.1) is referred to as the linearized evolution equations for disturbances. The initial functions of
this system are specified, as well as initial functions of system (1.3), for −τA ⩽ t ⩽ 0.

For solutions of (2.1) we introduce the following family of local norms at time t:

‖U‖D,t = (
t

∫
t−τA

‖DU(ξ)‖22 dξ)

1/2

(2.2)

where D is a given positive-definite diagonal matrix and ‖ ⋅ ‖2 is the second (Euclidean) vector norm.
A solution U(t) = Uopt(t) of system (2.1) providing the maximum amplification of (2.2) (in comparison

with its value at t = 0) will be referred to as the optimal disturbance. According to this definition the optimal
disturbance gives the value of

max
t⩾0

‖U‖D,t
‖U‖D,0

.

Since by definition the optimal disturbance is a solution of linear system (2.1) and, hence, it is completely
determined by its values for −τA ⩽ t ⩽ 0, in construction of optimal disturbances along with the choice of
norm, inwhich the optimization is carried out, it is important to choose an appropriate subspace of functions
[−τA , 0]→ ℝ4 from which we take initial functions. This subspace will be denoted by Q. For the correctness
of considered optimization problems the subspace Q has to be complete with respect to ‖ ⋅ ‖D,0. In practice it
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is sufficient to choose Q as the linear span of some finite set of basic functions. This particularly ensures its
completeness.

It is convenient to find optimal disturbances in two steps. First we compute the maximum amplification

Γ(t) = max
U

‖U‖D,t
‖U‖D,0

(2.3)

over all solutions of (2.1) with initial functions being non-zero and belonging to Q. Then we find t = topt at
which the function Γ(t) reaches its maximum value. If there are more than one such t, then for definiteness
we choose the smallest of them. Thus,

topt = min argmax
t⩾0

Γ(t).

Then we find

Uopt ∈ argmax
U

‖U‖D,topt
‖U‖D,0

.

IfD andQ are fixed, then any optimal disturbance provides the samemaximumvalue of the local solution
norm. Usually the maximum amplification has only one global maximum while the solution of the second
optimization problem is unique up to a non-zero multiplicative constant.

We will use optimal disturbances for perturbing the stable steady states of the original non-linear model
(1.3). To do that, we will take

U(t) = U + εŨopt(t) (2.4)

for −τA ⩽ t ⩽ 0 as an initial function where Ũopt(t) means the normalized optimal disturbance and ε is a
real parameter. By varying this parameter, it is possible to increase or decrease the initial perturbation of
steady state. If absolute value of ε is small, then it should be expected, that obtained solution U(t) of system
(1.3) will be close to (2.4) for t > 0. When absolute value of ε is large, due to influence of non-linearity the
solution of (1.3) will be significantly different from (2.4) for t > 0. The sign of ε plays an important role as well.
Depending on it density of the virus population increases or decreases at t = 0. If the optimal disturbance in
(2.4) is normalized such that the first component of the vector

L0Ũopt(0) + LτŨopt(−τ) + LτA Ũopt(−τA)

is positive, then density of the virus population increases at t = 0 when ε > 0.

3 Computation of optimal disturbances
Optimal disturbances can be computed on the basis of any difference scheme suitable for solving initial value
problems for systems of linear ordinary differential equations with delayed argument. In the present work we
use implicit scheme of the second order BDF2 [12] on the uniform grid

{tk = δk : k = −mA + 1, −mA + 2, . . . }

built in (−τA ,∞) with step δ > 0. Values m = [τ/δ] and mA = [τA/δ] are the discrete analogues of delays τ
and τA, respectively, where [⋅] denotes the integer part. After discretization described above system (2.1) takes
the following form

1.5Uk − 2Uk−1 + 0.5Uk−2
δ = L0Uk + LτUk−m + LτAUk−mA , k = 1, 2, . . . (3.1)

where Uk is a grid function which approximates U(tk). It is necessary to set U−mA+1, . . . , U0 as initial values
for solving the initial value problem.

Let us write equation (3.1) in the form

Uk = C1Uk−1 + C2Uk−2 + CmUk−m + CmAUk−mA (3.2)
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where
C1 = 2(1.5I − δL0)−1, C2 = −0.5(1.5I − δL0)−1

Cm = (1.5I − δL0)−1δLτ , CmA = (1.5I − δL0)−1δLτA

and I means the identity matrix of order 4, and add to (3.2) the identities Uj = Uj, j = k − 1, . . . , k − mA + 1.
The obtained system of mA equations can be written in the form

Xk = MXk−1, k = 1, 2, . . . (3.3)

where

Xk =(

Uk
...

Uk−mA+1

) , M =(
M11 ⋅ ⋅ ⋅ M1mA

...
...

MmA1 ⋅ ⋅ ⋅ MmAmA

) . (3.4)

Block matrix M in (3.4) is of block order mA with blocks of order 4. All blocks of this matrix are zero except
the subdiagonal blocks Mj+1,j = I, j = 1, . . . ,mA − 1, and the following four blocks M11 = C1, M12 = C2,
M1m = Cm, and M1mA = CmA of the first block row.

Due to (3.3) and (3.4), the grid analogue Γk of the maximum amplification (2.3) of solution norm can be
written as follows:

Γk = max
X0∈spanQ\{0}

‖HMkX0‖2
‖HX0‖2

where Q is a matrix of size 4mA × p ( p ⩽ 4mA) whose columns form basis in a grid analogue of subspace Q,
span(Q) means the linear span of matrix Q columns, H = ImA ⊗ D, D is a diagonal matrix defining the local
norm in which optimal disturbances are computed and ⊗means the Kronecker product.

Taking into account that HX0 = HQξ = Q̃ξ̃ , where Q̃ is a matrix obtained by the orthonormalization of
columns of HQ, ξ = Q∗X0 and ξ̃ = Q̃∗HX0, we have:

‖HMkX0‖2
‖HX0‖2

=
‖HMkH−1HX0‖2
‖HX0‖2

=
‖HMkH−1Q̃ξ̃‖2
‖Q̃ξ̃‖2

=
‖HMkH−1Q̃ξ̃‖2
‖ξ̃‖2

and, hence,

Γk = max
ξ̃ ̸=0

‖HMkH−1Q̃ξ̃‖2
‖ξ̃‖2

= ‖HMkH−1Q̃‖2.

Thus, the computation of Γk reduces to computations of Y0 = H−1Q̃ and Yk with recurrent formula Yk =
MYk−1 and ‖HYk‖2.

Let kopt be the value of k at which maximum of Γk is reached. Computing the normalized right singular
vector η of

HMkoptH−1Q̃ (3.5)

corresponding to its largest singular value [10], the initial value Xopt0 of the grid analogue Xoptk of optimal
disturbance can be found by formula Xopt0 = H−1Q̃η.

It should be noted that to increase the effectiveness of the above algorithmmatrixM has to be saved and
multiplied by vectors in sparse format.

4 Results of numerical experiments
We found optimal disturbances in subspace Q of piece-wise constant functions. To this end we split [−τA , 0]
into l equal subintervals on which the functions take constant values. The uniform grid with step δ = 10−2

was used for computing the optimal disturbances. We computed two optimal disturbances corresponding to
l = 6 and 12 for the first steady state U I , and one optimal disturbance with l = 6 for the second steady state
U II . The local norm weights (diagonal entries of matrix D) for the first two disturbances were taken equal to
the inverse values of corresponding components of U I . For the second steady state, the optimal disturbance
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Table 4: The results of computing the maximum amplification.

Steady state l topt Γ(topt) Γ̃ (topt)

UI 6 17.0 2.98 ⋅ 102 2.72
UI 12 17.0 4.19 ⋅ 102 3.83
UII 6 23.5 3.16 ⋅ 102 5.57 ⋅ 10−2

was found in the subspace Q of functions with zero components V(t) andW(t). As D it was taken the identity
matrix of order 4. In all three cases themaximum amplification defined as the largest singular value Γ(topt) of
matrix (3.5) and the second largest singular value Γ̃(topt) of this matrix were well separated (see Table 4) that
ensures the uniqueness of the computed optimal disturbance up to some non-zero multiplicative constant.

For integrating system (1.3) with initial functions (2.4) we use the same BDF2 scheme as for computing
optimal disturbances with the grid step equal 10−3. Optimal disturbances were interpolated on a finer grid
using the shape-preserving piece-wise cubic interpolation. The absolute value of parameter εwas selected in
order to generate a strong response for a small initial disturbance. Note that the authors of model (1.1) have
used the codeDIFSUB-DDE [2]. It was designed for solving the stiff systems of nonlinear differential equations
with constant delays. The code implements a modification of the linear multistep Gear’s method based on
BDF schemes of variable order p ⩽ 6. The derivative discontinuities up to order p + 1 are followed and the
Nordsieck interpolation vector is used for approximating the delayed components of the state vector.We used
this code as well to verify our computations based on BDF2, and the results were in a good agreement.

For steady state U I initial functions and the results of numerical integration of the corresponding initial
value problem are presented in Figs. 1–4. The red lines correspond to the steady states, and the blue ones
to the perturbed steady states. In Table 3, the maximum and minimum values of the solution components
shown in Figs. 1–4 are displayed rounded to three decimal digits.

Figure 1 demonstrates the evolution of infectious process as a result of steady state perturbation by in-
creasing the viral load, the cumulative viral load and simultaneously decreasing the T cell population. The
steady state with a low level viral load is considered. The perturbation is intended for activation of the infec-
tious process via exacerbation with its subsequent elimination. As illustrated in the figure, the considered
optimal disturbance provides the means to reach this goal. It results in a significant increase (by several or-
ders of magnitude) of the viral load followed by clearance of viruses due to strong immune response (see
Table 3). This scenario of steady state perturbation corresponds to treatment regimen which temporarily, i.e.
for about one day, suppress the immunity and activate the virus growth.

Figure 2 demonstrates the effect of decreasing the duration of perturbation from 1 to 0.5 days and con-
sisting of (i) a more complicated pattern of viral load disturbance consisting of the combination of decline
and successive rise of the viral load, (ii) an increase of the cumulative viral load and (iii) a decrease of T lym-
phocytes population. This type of optimal disturbance also reaches the goal, i.e., it results in a significant
increase (by several orders of magnitude) of the viral load with a minor influence on the population of spe-
cific T lymphocytes, followed by the decrease of viral population to the level corresponding to a complete
clearance. This scenario of perturbation can be viewed as a hypothetical regime of structured treatment of
persistent infection, consisting of initially decreasing the virus population and followed by increasing the
viral load and by suppressing the specific T cell reactions.

Figure 3 demonstrates thedevelopment of infectious process as a result of initial steady state perturbation
by decreasing both the viral load and the cumulative viral load and in parallel by increasing the T lympho-
cyte population. The perturbation of the steady state characterized by a low level viral load is intended for
infection elimination without exacerbation. The perturbation duration is 1 day. As the figure shows, this type
of optimal disturbance allows one to reach the goal of a significant decrease of viral load to the level of a com-
plete infection elimination. This scenario of perturbation corresponds to the treatment regimen temporarily
(for about 1 day) reducing the virus population and in parallel increasing the level of specific T cells (e.g., via
to adoptive transfer).
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Figure 1: The initial values (A) and the result of integration of perturbed steady state UI (B) for l = 6 and ε = 0.15.
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Figure 2: The initial values (A) and the result of integration of perturbed steady state UI (B) for l = 12 and ε = 0.15.
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Figure 3: The initial values (A) and the result of integration of perturbed steady state UI (B) for l = 6 and ε = −0.15.
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Figure 4: The initial values (A) and the result of integration of perturbed steady state UI (B) for l = 12 and ε = −0.15.
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Figure 5: The initial values (A) and the result of integration of perturbed steady state UII (B) for l = 6 and ε = −0.01.
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Figure 6: The initial values (A) and the result of integration of perturbed steady state UII (B) for l = 6 and ε = −0.05.
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Figure 4 illustrates the analysis of the influence of structured treatment regimen on the infectious process
development as a result of initial steady state perturbation by combination of increasing and subsequent
decreasing of viral load, reduction of cumulative viral load and increase of T lymphocytes population level.
The steady state perturbation is intended for elimination of viruses. The duration of initial perturbation is
two times shorter than in previous case (see Fig. 3). The figure shows that this type of optimal disturbance
permits of a significant decrease (by several orders of magnitude) of the viral load having a minor impact
on the level of specific T cells (see Table 3). This perturbation scenario corresponds to the treatment regimen
eliminating viruses which persist below the detection limit without activating the infectious process.

The steady stateU II is characterized by a high viral load. The results of numerical integration correspond-
ing to the perturbed steady state are shown in Figs. 5–6. In the lower part of Table 3 the values of the steady
state components along with the maximum and minimum values of the perturbed solution are presented
rounded to three decimal digits. Both figures illustrate the development of infectious process caused by the
perturbation of the high viral load steady state. The analysis was intended for searching the optimal distur-
bances which result in activation of the specific immunity and the decrease of viral load. The disturbance
duration is set to 1 day.

The structure of perturbed steady state presented in Fig. 5 is characterized by 10-fold increase of the pre-
cursor CTLs number, aminor increase ( 1%) of effector CTLs, and no perturbation of the viral- and cumulative
viral loads results in the development of strong immune response, i.e., the effector CTLs increase by 10-fold,
and 20-fold decrease of the viral load, which however is not enough for eradication of infection. Figure 6
demonstrates the development of infectious process characterized by 5-fold increase of the perturbation pa-
rameter ε. The corresponding perturbation results in the development of immune response which is strong
enough for 4000-fold reduction of viral load. This solution can be interpreted as complete elimination of
viruses from the organism. Relevant quantitative details of the respective solution are given in Table 3. Thus,
we demonstrated the existence of optimal disturbances of the high viral load steady state which lead to tran-
sient dynamics with a high-amplitude variation of solution components (primarily, the virus concentration
component). This was exactly the main objective of applying external forcing to the system steady state.

5 Conclusion
In this study we examined the response of the mathematical model of experimental infection with LCMV to
multimodal perturbation-based control. The primary aim was to develop a computational algorithm for the
initial perturbations of the steady states of the system of delay-differential equations, which would result in
the system reaction dynamics characterized by a maximal deviation from the respective steady state. This
problem is considered to be of crucial relevance for systems immunology as its solution will allow one to de-
signmore effectivemulticomponent treatment regimens of virus diseases, in particular, the HIV infection [6].

To the best of our knowledge, it is the first study in mathematical immunology focusing on implementa-
tion of the algorithm for constructing the initial perturbation of the system steady state based on themethod-
ology of ‘optimal disturbances’ developed in aerodynamics, which are characterized bymaximum amplifica-
tion of the perturbation norm, as the system evolves in time. For two types of stable steady states of themodel
corresponding to the biologically different phenotypes of virus infections:
(i) low level viral persistence below the detection limit,
(ii) chronic virus infection with a high level viral load and T lymphocyte depletion/exhaustion,
we computed several structurally different types of the initial state perturbations and analyzed their impact
on the infection dynamics.

For the first steady state, the perturbations targeting (1) the infectious process activation bymeans of viral
load increase followed by subsequent clearance of the virus reservoir, and (2) the subclinical elimination of
infection, were considered. For the second steady state, the perturbationswere aimed to reduce the activity of
the infectious process with successive clearance of viruses from the host. It should be noted, that in the cases
presented above, there was a significant amplification of the initial perturbations for the considered variants
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of the system steady state perturbations. Overall, we presented a proof-of-concept concerning the possibility
of identifying specially selected optimal disturbances with a small initial (local) normwhich have amaximal
impact on the system dynamics in terms of some specified criteria.

There remain important issues requiring further study: (1) the significance of the perturbations with
small amplitude in specific components of the steady state of model, which are obtained as solution to the
optimization problem as described in Section 3; (2) the uniqueness of the solution to the problem of con-
structing the optimal disturbances under given restrictions on the duration of the disturbances. The defini-
tion of the subspace in which the disturbances are looked for must be linked to the characteristics of reaction
of infection- and immune processes to the impact of antiviral and immunomodulating drugs and it will be
formalized in our future work.

The proposed methodology opens the possibility of developing novel therapeutic approaches in clini-
cal immunology to treat the persistent and chronic infections with minimal dozes of multicomponent drugs
having amaximal cure effect. The practical complexity of this problem is caused by necessity to considermul-
ticomponent medical drugs, their pharmacodynamics and pharmacokinetics, and the need to parameterize
their effects in models as certain functional relations. In turn, this requires further multidisciplinary studies,
including both the problem of development of (1) biologically relevant mathematical models of ‘virus—host’
interactions taking into account immunopathological processes of infection development, and (2) robust al-
gorithms for computing optimal disturbances of multiparametric mathematical models with a large state
space.

In closing, it is appropriate to quote one of the outstanding immunologists William Paul [24] concerning
the expected role of mathematics in immunology: ‘...the immune system offers challenges sufficient to test
the growing power of mathematical attack on a biological problem. It is to the quantitative prediction of
the outcome of given perturbations in the immune system that we envisage our mathematical/modelling
colleagues will apply themselves’. This statement provides a strong motivation for further studies on the
development of mathematical methods and models for immunology applications targeted to provide more
effective and rational approaches to the treatment of unfavourable courses of infectious diseases.
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