
Journal of Computational and Applied Mathematics 319 (2017) 87–96

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Computing humps of the matrix exponential
Yu.M. Nechepurenko a, M. Sadkane b,∗

a Institute of Numerical Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333, Russia
b Université de Brest, CNRS-UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique, 6 avenue Victor Le Gorgeu, CS 93837,
29285 Brest Cedex 3, France

a r t i c l e i n f o

Article history:
Received 10 April 2016

Keywords:
Matrix exponential norm
Time integration method
Krylov subspace method
Truncated Taylor series method
Lanczos method
Alternating maximization

a b s t r a c t

This work is devoted to finding maxima of the function Γ (t) = ∥ exp(tA)∥2 where t ≥ 0
andA is a large sparsematrixwhose eigenvalues have negative real parts butwhose numer-
ical range includes points with positive real parts. Four methods for computing Γ (t) are
considered which all use a special Lanczos method applied to the matrix exp(tA∗) exp(tA)
and exploit the sparseness of A through matrix–vector products. In any of these methods
the function Γ (t) is computed at points of a given coarse grid to localize its maxima, and
then maximized by a standard maximization procedure or via an alternating maximiza-
tion procedure. Results of such computations with some test matrices are reported and
analyzed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the computation of maxima of the function

Γ (t) = ∥ exp(tA)∥2 (1)

in a given nonnegative interval of time t , where A is an n× nmatrix with negative spectral abscissa, i.e., the largest real part
of eigenvalues of A, denoted by α(A), is negative but whose numerical range includes points with positive real parts, i.e., the
largest eigenvalue of the Hermitian matrix (A + A∗)/2, which will be denoted by µ(A), is positive. Such maxima will be
referred to as humps for the matrix exponential. The humps are needed, for example, for determining the transient growth
in fluid mechanics, see, e.g., [1–5] and [6, chap. 4–5]. They may also be of interest in linear stability analysis of steady states
of ordinary differential equations, see, e.g., [7–10].

It is known [11] that the eigenvalues of a Hermitian matrix whose entries depend analytically on a real parameter admit
an analytic parametrization. Due to this fact and to the nonsingularity and analyticity of exp(tA) with respect to t , the
function (1) can be represented as

Γ (t) = max{Γ1(t), . . . , Γn(t)},

where Γ1(t), . . . , Γn(t) are positive-valued analytic functions which form at each t the set of singular values (counting
multiplicities) of exp(tA) or the set of positive square roots of eigenvalues of the Hermitian positive definite matrix

H(t) = exp(tA∗) exp(tA). (2)

∗ Corresponding author.
E-mail addresses: yumn@inm.ras.ru (Yu.M. Nechepurenko), miloud.sadkane@univ-brest.fr (M. Sadkane).

http://dx.doi.org/10.1016/j.cam.2016.12.031
0377-0427/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2016.12.031
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2016.12.031&domain=pdf
mailto:yumn@inm.ras.ru
mailto:miloud.sadkane@univ-brest.fr
http://dx.doi.org/10.1016/j.cam.2016.12.031

88 Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96

Therefore, the function (1) is continuous and differentiable on the left and on the right at each t . In addition, from formulas
for derivatives of eigenvalues of Hermitian matrices (see, e.g., [12, chap. 2]), we have for any t∗ ≥ 0

2Γ (t∗)
dΓ
dt

(t∗−) = min
v∈V∗

dH
dt

(t∗)v, v

, (3)

2Γ (t∗)
dΓ
dt

(t∗+) = max
v∈V∗

dH
dt

(t∗)v, v

, (4)

where V∗ ⊂ Cn is the set of normalized eigenvectors corresponding to the largest eigenvalue Γ (t∗)2 of H(t∗).
Under the conditions on A stated above and the following widely-used equality (see, e.g., [6, chap. 4])

dΓ
dt

(0+) = µ(A)

which is a direct consequence of (4), we deduce that the global maximum Γopt = Γ (topt) is finite and larger than 1, where

topt ∈ argmax
t≥0

Γ (t). (5)

Moreover, as is noticed in [13], 0 < topt < tmin where

tmin = inf{t > 0 : Γ (t) < 1}. (6)

Indeed, if t > tmin then due to the continuity of Γ (t) there exists t ′ : tmin < t ′ < t such that Γ (t ′) < 1 and therefore

Γ (t) ≤ Γ (t − t ′)Γ (t ′) < Γopt.

As to the local maxima, they can be larger, smaller, or equal to 1 and there is no a priori information about their location.
The algorithm proposed in [13] computes the function Γ (t), and hence its maxima, with a given accuracy. The idea of

the algorithm is to use the reordered Schur triangular form S instead of A andmonitor the decay of the rows at the bottom of
exp(tS) as t increases and to replace exp(tS) by a low-rank approximation obtained by removing those rows whose 2-norm
is smaller than a given threshold. The resulting algorithm is significantly faster than the one using the scaling and squaring
method [14]. However, due to the Schur decomposition this algorithm cannot be used for large sparse matrices. The aim of
the present paper is to propose and compare different algorithms based essentially on the action of the matrix exponential
on a vector which can be done in an economical way using the structure of A.

This paper is organized as follows. In Section 2, we briefly describe three approaches to compute the action of the
matrix exponential which will be used in numerical experiments throughout the paper: the first one, which we refer
to as ‘‘time integration method’’ (though this term would also apply to the two other methods) uses the two-step
backward differentiation scheme [15]; the second one is an iterative method based on Krylov subspace approximation
to the exponential [16–19]; and the third one is a direct method based on truncated Taylor series approximation to the
exponential [20]. In Section 3we discuss the computation ofΓ (t) using a special Lanzcos process applied to thematrixH(t).
In Section 4 we discuss how to find a hump of Γ (t). We consider first the most obvious way which consists in using the
well-known minimization procedure fmin [21] which is implemented in MATLAB’s fminbnd function and can be applied
to the function −Γ (t) to find maxima of Γ (t). Then we consider the auxiliary function

γ (t, v) = ∥ exp(tA)v∥2/∥v∥2, (7)

describe its properties and use it within an alternating maximization procedure. For illustration purposes, we will use the
following four matrices.

Matrix 1: A matrix of order n = 1090 with µ(A) ≈ 9.11 · 105 and α(A) ≈ −0.156 which is obtained from the stability
analysis of an aircraft structure and is taken from the NEP collection.1

Matrix 2: Amatrix of order n = 90 000withµ(A) ≈ 21.4 and α(A) ≈ −7.04 ·10−3 which is taken from [22] and is obtained
from a discretization of the elliptic operator

L = −
∂

∂x
u −

∂

∂y
v + ν∆

in the square (x, y) ∈ (0, 1)× (0, 1) with Dirichlet boundary conditions, using a uniform grid with a number of inner nodes
in each direction equal to 300 and the standard second order approximation. Here ∆ denotes the 2D Laplace operator,
ν = 5 × 10−4 and

u =
∂ϕ

∂y
, v = −

∂ϕ

∂x
, ϕ(x, y) =

1
16π

cos(8πx2) cos(8πy2).

1 See http://math.nist.gov/MatrixMarket/.

http://math.nist.gov/MatrixMarket/

Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96 89

Matrix 3: An airfoil matrix of order n = 23 560 with µ(A) ≈ 246 and α(A) ≈ −0.273 which is also taken from the NEP
collection and is obtained from the transient stability analysis of Navier–Stokes equations.

Matrix 4: An artificial upper bi-diagonal matrix of order n = 1000 with µ(A) ≈ 0.791 and α(A) = −0.01 whose nonzero
entries are given by Akk = −0.01 k2, k = 1, . . . , n and Ak,k+1 = 1, k = 1, . . . , n − 1. This matrix is taken from [13].

All computations are carried out in MATLAB 7.14 on an Intel Core i7 CPU at 2.80 GHz.

2. Computing the action of the matrix exponential

At the heart of the methods considered in this paper is the action of matrix exponentials on vectors (more precisely,
operations of the form exp(tA)v and exp(tA∗)v for given t , A and v). For this, we have chosen four methods which are briefly
described and specified in this section.

2.1. Time integration methods

The action exp(tA)v can be viewed as the solution of the initial value problem

u(0) = v,
du
dt

= Au(t),

which can be computed using any time integration method, for example, the two-step backward differentiation method
(BDF2). It is given by (see, e.g., [15]):

1.5uj − 2uj−1 + 0.5uj−2

τ
= Auj, j ≥ 2, (8)

where the vector uj approximates exp(tA)v at t = jτ , u0 = v and u1 is obtained by one step of the implicit Euler method:

u1 − u0

τ
= Au1. (9)

For such a method we have an a priori error of the form

∥uj − exp(jτA)v∥2 = O(τ 2).

The system of Eqs. (9) and (8) with 2 ≤ j ≤ N can be written in the matrix form

Mu = E1u0, (10)

where u = (uT
0, u

T
1, . . . , u

T
N)T while

M =

I
−I I − τA
1
2
I −2I

3
2
I − τA

. . .
. . .

. . .
1
2
I −2I

3
2
I − τA

and Ej =

0
...
0
I
0
...
0

are respectively square block lower tridiagonal matrix of order (N + 1)n and the rectangular matrix of size (N + 1)n × n
formed by the columns (j− 1)n+ 1, . . . , jn of the identity matrix of order (N + 1)n, where I denotes the identity matrix of
order n.

From (10) we obtain

uN = ET
NM

−1E1u0, (11)

and therefore thematrix ET
NM

−1E1 is an approximation of thematrix exponential exp(NτA). The conjugate transposematrix
ET
1M

−∗EN gives the corresponding approximation of exp(NτA∗). The matricesM−1 andM−∗ are not computed. Instead, we
solve linear systemswith block-triangularmatricesM andM∗. The systemswith the diagonal blocks, i.e. I−τA and 1.5I−τA
and their conjugate transpose matrices, are solved either directly or iteratively.

90 Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96

2.2. Krylov subspace method

Starting with an arbitrary normalized vector v, the Arnoldi process [23] applied to A with initial vector v1 = v yields,
afterm steps, an n × m matrix Vm = [v1, v2, . . . , vm] whose columns span an orthonormal basis of the Krylov subspace

Km(A, v) = span{v, Av, . . . , Am−1v}

and a Hessenbergm × m matrix Hm = (hi,j)1≤i,j≤m = V ∗
mAVm with positive subdiagonal elements such that

AVm = VmHm + hm+1,mvm+1e∗

m,

where ek denotes the kth column of the identity matrix of orderm. Then for any polynomial pj of degree j ≤ m− 1 we have
pj(A)v = Vmpj(Hm)e1 which, for a given t , motivates the approximation (see [16])

exp(tA)v ≈ Vm exp(tHm)e1.

TheMATLAB functionexpv (see [17]) implements this procedurewhichwe use in our numerical tests. The same function
is applied to the matrix A∗ instead of A for computing exp(tA∗)v.

2.3. Truncated Taylor series method

The method proposed in [20] uses a truncated Taylor series approximation to the exponential and a scaling analogous to
the one of the scaling and squaringmethod [14]. Themethod exploits the structure of A throughmatrix–vector products and
its cost is dominated by these products. It is shown in [20] that the computed value of exp(tA)v is given by exp(t(A+ ∆))v,
where ∆ satisfies ∥∆∥2 ≤ ∥A∥2δ where δ is the required accuracy. This method is implemented by the author of [20] in
MATLAB function expmv.

2.4. Specification of the methods

In all computations discussed in the next sections, the functions expv and expmv are used with their default setting,
both invoked with three parameters: t , A and v. For time integration methods, the time integration step τ is chosen equal to
2 ·10−5, 1.5 ·10−3, 10−2 and 10−1 for Matrices 1–4, respectively. The linear systems with matrices I − τA and 1.5I − τA and
their conjugate transposematrices are solved either by a direct solver using LU decompositions of I −τA and 1.5I −τAwith
pivoting or by GMRES [23] using right ILU preconditioning with pivoting. In the latter case the drop tolerance is fixed at
10−4 and a default value of 30 is used for the dimension of the Krylov basis. Since in our computations the time integration
step τ is fixed, the LU or ILU decompositions need only be performed once. Note that the dimension of the Krylov basis in
the default setting of expv is also equal to 30. In the sequel, these methods for computing the matrix exponential action on
a vector will be referred to as expv, expmv, TI-LU and TI-GMRES. Since Matrix 4 is upper triangular, its LU decomposition
is not computed and TI-GMRES is not used.

3. Computing Γ (t)

For a fixed t one can apply the Lanczos algorithm [24] to the matrix H(t) given in (2), and compute its largest eigenvalue
whose square root gives an approximate value of Γ (t). Starting with a normalized vector q1, this algorithm constructs at
step l a matrix Ql = [q1, q2, . . . , ql] whose columns form an orthonormal basis of the Krylov subspace Kl(H(t), q1).

Let Tl = tridiag (βi−1, αi, βi) be the real symmetric tridiagonal matrix whose diagonal and sub-(upper) diagonal entries
are given respectively by αi = q∗

i H(t)qi, 1 ≤ i ≤ l, and βi = q∗

i H(t)qi+1, 1 ≤ i ≤ l − 1. Then the interlacing
properties of Hermitian matrices (see [24]) ensure that the sequence λmax (Tl), where λmax denotes the largest eigenvalue,
is nondecreasing. As l increases, this value tends to the largest eigenvalue of H(t). However, increasing l leads to an increase
of storage and computational requirements. To avoid this drawback, we stop the algorithm when the increase of λmax (Tl)
becomes too sloworwhen l reaches amaximumallowable number of iterations. As our experiments have shown, in practice,
only a few iterations are generally required to obtain a reasonable estimate of the largest singular value. Then the Ritz vector
v = Qlyl, where yl is the eigenvector associated with λmax (Tl), constitutes an approximate eigenvector associated with the
largest eigenvalue of H(t).

The main steps are sketched in Algorithm 1. Each iteration of this algorithm requires a matrix–vector multiplication of
the form v = H(t)q for a given vector q, performed as the actions w = exp(tA)q and v = exp(tA∗)w by one of the methods
described in Section 2. Since the Lanczos orthogonalization is not carried out exactly, errors may arise in the Lanczos vectors
and hence in the approximate eigenvalue and eigenvector. For this reason the Lanczos algorithm is followed by one iteration
of the power method. In all computations with Algorithm 1, the initial vector is taken at random, the maximum number of
iterations lmax and the parameter tol in the while loop are respectively equal to 40 and 10−6. These parameters were fixed
after several trials. No significant improvement was made by increasing lmax or decreasing tol.

Note that more sophisticated methods such as Lanczos bidiagonalization [25] applied to exp(tA) could be used but our
practice has shown that Algorithm 1 is quite efficient for our aim.

Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96 91

Algorithm 1 Lanczos method for computing Γ (t).
Input: t , A, initial vector v, tolerance parameter tol, maximum number of Lanczos vectors lmax.
Output: approximation of the largest singular value s and corresponding right singular vector v.

if lmax > 1 then
s−1 = s0 = 0, q0 = 0, β0 = ∥v∥2, l = 0
while l < lmax − 1 and βl > 0 and sl ≥ (1 + tol)sl−1 do

l := l + 1, ql = v/βl−1
w = H(t)ql, αl = q∗

l w
v = w − βl−1ql−1, βl = ∥v∥2
Form the l × l tridiagonal matrix Tl = tridiag (βi−1, αi, βi)
sl =

√
λmax (Tl)

end while
Compute the eigenvector y associated with the largest eigenvalue of Tl
v = [q1, . . . , ql]y

end if
Add one step of the power method:
w = exp(tA)v, v = w/∥w∥2
w = exp(tA∗)v, s = ∥w∥2, v = w/s

Table 1
Run time (sec) and number of calls to Algorithm 1.

A Action ComputingΓ (t) Maximizing Γ (t) Maximizing γ (t, v)

Run time Run time k Run time k

1 expv 34.56 4.47 8 0.26 2
expmv 30.14 4.45 8 0.27 2
TI-LU 59.70 2.22 10 0.08 1
TI-GMRES 625.80 23.37 9 0.50 1

2 expv 297.88 192.54 7 116.66 7
expmv 93.77 58.60 7 35.28 7
TI-LU 1201.63 640.20 6 176.92 4
TI-GMRES 1349.60 679.02 6 215.06 4

3 expv 2364.63 329.12 7 249.14 4
expmv 2923.35 406.26 7 311.29 4
TI-LU 21619.34 3397.31 7 1028.50 3
TI-GMRES 18558.76 2079.06 7 720.28 3

4 expv 730.26 676.71 8 461.48 3
expmv 6323.60 3670.83 8 2913.26 3
TI-LU 2.90 3.24 8 1.23 2

UsingAlgorithm1wecomputeΓ (t)on a coarse grid in an interval of the form0 ≤ t ≤ tmax. This preliminary computation
helps understand the behavior of Γ (t) and provides rough locations of humps to be refined later. There are several ways of
choosing tmax. For example, it can be chosen a priori as an upper bound of tmin in (6) which can be obtained numerically or
theoretically using any known upper bound ofΓ (t) of the form c exp(−κt), where c and κ are positive constants depending
on A (see, e.g., [8,26,27,6] and references therein), or a posteriori by carrying out computations of Γ (t) until Γ (t) < 1. In
our experiments we compute Γ (t) at a few points t andmonitor the variation of Γ (t). The computation is stopped when an
increase of Γ (t) followed by a marked decrease is observed. Typical results for the test matrices are shown in Fig. 1 and the
third column of Table 1. These results depend a little on the initial random vectors used in Algorithm 1. The figures display
the function Γ (t) computed at equidistant points t = 0, h, . . . ,Mh = tmax. For each matrix the value of h was chosen so
that h/τ is integer, where τ is the time integration step defined in Section 2.4. To keep the computational cost low, we used
some relatively large values of h leading toM = 50 for Matrices 1 and 3, andM = 10 for Matrices 2 and 4.

There are four indistinguishable curves in each subfigure (a), (b) and (c) corresponding to the use of expv, expmv, TI-LU
and TI-GMRES and three indistinguishable curves in subfigure (d) corresponding to the use of expv, expmv and TI-LU.
Additional computations have shown that the curves obtained by TI-LU and TI-GMRESwith larger τ may differ from the
ones obtained by expv or expmv. This, combined with the third column of Table 1 shows, with the exception of Matrix 4,
the advantage in using expv and expmv. The advantage in using TI-LU for Matrix 4 is explained by the ability to solve
systems with this matrix very cheaply.

Table 2 presents the number of nonzero entries of I − τA, 1.5I − τA and their LU and ILU decompositions. This table
shows that the numbers of nonzero entries in the LU and ILU decompositions of Matrix 1 are almost the same while in the
case of Matrix 2 or 3 the ILU decomposition has significantly smaller number of nonzero entries. This explains a significant
advantage of TI-LU in run time in comparison with TI-GMRES for Matrix 1.

92 Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96

(a) Γ (t), 0 ≤ t ≤ 0.01, for Matrix 1. (b) Γ (t), 0 ≤ t ≤ 0.15, for Matrix 2.

(c) Γ (t), 0 ≤ t ≤ 5, for Matrix 3. (d) Γ (t), 0 ≤ t ≤ 120, for Matrix 4.

Fig. 1. Test matrices.

Table 2
Number of nonzero elements.

LU ILU

1 I − τA 3764 2433 2829 1492 1923
1.5I − τA 3764 2433 2829 1492 1923

2 I − τA 448800 2814460 2812491 362191 360425
1.5I − τA 448800 2788784 2785953 338908 337971

3 I − τA 460598 4170211 4171263 443466 454635
1.5I − τA 460598 4170211 4171263 392348 399180

4. Computing humps with maximization procedures

From Fig. 1 we choose for each matrix A an interval of t which contains topt. For example, we take the intervals
0 ≤ t ≤ 3.8 · 10−3, 0 ≤ t ≤ 0.15, 3 ≤ t ≤ 4.6 and 0 ≤ t ≤ 120 for Matrices 1–4, respectively. Then a further localization
of topt is carried out using the function fminbnd and computing values of Γ (t) by Algorithm 1 to find a local minimum of
the function −Γ (t) in the chosen interval. When the time integration method is used with time step τ , fminbnd is applied
to the function −Γ (τ [t/τ]) instead of −Γ (t), where [ξ] denotes the integer part of ξ . Doing this we avoid the computation
of complete or incomplete LU decomposition at each new value of t .

The main results are given in the fourth and fifth columns of Table 1, where in the fifth column, k denotes the number
of evaluations of −Γ (t) required for the minimization of this function by fminbnd, and the third and fourth columns of
Table 3, where t̂opt and Γ̂opt denote the computed approximate values of topt and Γopt respectively. For Matrices 2 and 3
these results are consistent with those of Section 3 on the comparative efficiency of expv, expmv, TI-LU and TI-GMRES. In
particular, we see a clear advantage in using expmv for Matrix 2 and an advantage in using expv for Matrix 3. On the other

Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96 93

Table 3
Results of maximization procedures.

A Action Maximizing Γ (t) Maximizing γ (t, v)

t̂opt Γ̂opt t̂opt Γ̂opt

1 expv 9.8247 · 10−4 9.0811 · 102 9.8252 · 10−4 9.0812 · 102

expmv 9.8199 · 10−4 9.0811 · 102 9.8252 · 10−4 9.0812 · 102

TI-LU 9.8443 · 10−4 9.0777 · 102 9.8000 · 10−4 9.0778 · 102

TI-GMRES 9.8450 · 10−4 9.0777 · 102 9.8000 · 10−4 9.0778 · 102

2 expv 8.6069 · 10−2 3.1832 8.6059 · 10−2 3.1832
expmv 8.6069 · 10−2 3.1832 8.6059 · 10−2 3.1832
TI-LU 8.8151 · 10−2 3.1819 8.5500 · 10−2 3.1818
TI-GMRES 8.7029 · 10−2 3.1819 8.5500 · 10−2 3.1818

3 expv 3.3120 8.5810 3.3100 8.5810
expmv 3.3158 8.5811 3.3100 8.5810
TI-LU 3.3108 8.5811 3.3100 8.5811
TI-GMRES 3.3158 8.5811 3.3100 8.5811

4 expv 8.0395 · 101 9.2992 · 104 8.0395 · 101 9.2992 · 104

expmv 8.0395 · 101 9.2992 · 104 8.0395 · 101 9.2992 · 104

TI-LU 8.0439 · 101 9.2992 · 104 8.0400 · 101 9.2992 · 104

Table 4
Ratios of run time for computing Γ (t) to that of maximizing Γ (t) and their estimates.

A Action Run time ratio Its estimate

1 expv 7.73 6.25
expmv 6.77 6.25
TI-LU 26.89 25.40
TI-GMRES 26.77 28.21

2 expv 1.54 1.43
expmv 1.60 1.43
TI-LU 1.87 1.42
TI-GMRES 1.98 1.44

3 expv 7.18 7.14
expmv 7.19 7.14
TI-LU 6.36 5.39
TI-GMRES 8.92 5.38

4 expv 1.07 1.25
expmv 1.72 1.25
TI-LU 0.89 0.93

hand, the comparative efficiency for Matrix 1 has changed. The advantage in run time of the first two methods is now not
so clear as for computing Γ (t). Furthermore, the smallest run time is achieved with TI-LU. Since this method yields a bit
lower accuracy than expv or expmv (Γ̂opt computed with TI-LU is smaller) we can conclude that the first three methods
have almost equal efficiency for computations with Matrix 1.

The difference between the results forMatrix 1 andMatrices 2 and 3 is explained by a difference in location of the hump in
the search interval and a difference in the ratioM/k. Indeed, the run time of a time integrationmethodwhen computing the
action H(t)v is proportional to t . Therefore, the run times of computing Γ (t) at points h, 2 h, . . . ,Mh and maximizing Γ (t)
with TI-LU or TI-GMRES can be estimated respectively as c (tmax/M)(M2/2) = c tmaxM/2 and c t̂optk with some constant
c that depends on the used method. Assuming the run time of computing the action H(t)v using expv or expmv weakly
depends on t , we see that the run times of computing Γ (t) and maximizing Γ (t) with expv or expmv can be estimated
respectively as cM and ckwith some constant c that also depends on the usedmethod. So, the run time of computing Γ (t) is
larger than that of maximizing Γ (t) in aboutM/k times when expv or expmv is used, and in about (M/k)tmax/(2t̂opt) times
when TI-LU or TI-GMRES is used. This is confirmed by Table 4 which shows the ratios of the run time for computing Γ (t)
to that of maximizing Γ (t) and the estimate M/k when expv or expmv is used and the estimate (M/k)tmax/(2t̂opt) when
TI-LU or TI-GMRES is used.

Note that fminbnd has an optional termination tolerance parameter TolX. We have chosen TolX = 1.5τ where τ is
defined in Section 2.4 for all computations with this function. This choice gives a local minimumwith the absolute accuracy
τ if we compute the function under minimization accurately enough.

In the following subsections we consider the auxiliary function γ (t, v) defined in (7), where v is a nonzero vector. We
will study some of its properties and propose an alternating maximization method for computing humps.

94 Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96

4.1. Properties of γ (t, v)

The function γ (t, v) is positive-valued and analytic with respect to t . A direct calculation of its partial derivative yields

∂γ

∂t
(t, v) =

1
γ (t, v)

Re(Av,H(t)v)

(v, v)
. (12)

In particular, if t = 0 and v is an eigenvector corresponding to the largest eigenvalue µ(A) of (A + A∗)/2, then (12) gives

∂γ

∂t
(0, v) =

Re (Av, v)

(v, v)
= µ(A). (13)

As it follows immediately from (1), γ (t, v) ≤ Γ (t) for all t ≥ 0, and γ (t, v) = Γ (t) if and only if v is a right singular
vector of the matrix exp(tA) corresponding to its largest singular value Γ (t) or, equivalently, an eigenvector of the matrix
H(t) corresponding to its largest eigenvalue Γ (t)2.

If γ (t∗, v∗) = Γ (t∗) then from (2)–(4) we have

dΓ
dt

(t∗−) ≤
∂γ

∂t
(t∗, v∗) ≤

dΓ
dt

(t∗+). (14)

The function γ (t, v) can be used to compute the maxima of Γ (t) but for this purpose we need an additional criterion.
Indeed, ifΓ (t) has a localmaximum at t∗ and γ (t∗, v∗) = Γ (t∗), then γ (t, v∗) clearly has a localmaximum at t∗. Conversely,
if γ (t, v∗) has a local maximum at t∗ and γ (t∗, v∗) = Γ (t∗), we cannot conclude that Γ (t) has a local maximum at t∗. We
only have

dΓ
dt

(t∗−) ≤ 0 ≤
dΓ
dt

(t∗+).

Thus, the equality γ (t∗, v∗) = Γ (t∗) and the existence of a local maximum of γ (t, v∗) at t∗ is only a necessary condition for
Γ (t) to have a local maximum at t∗. To see if it is a true local maximum, we can choose a sufficiently small positive δ and
check if

Γ (t∗ ± δ) < Γ (t∗). (15)

4.2. Alternating maximization

Algorithm 2 maximizes the function γ (t, v) alternatively with respect to t ≥ 0 and v.

Algorithm 2 Alternating maximization applied to γ (t, v).
Input: A
Output: sequences {tk} and {vk}.
1: Compute a normalized eigenvector v0 corresponding to the largest eigenvalue µ(A) of (A + A∗)/2 and set k = 1.
2: Find tk = min argmax γ (t, vk−1) with respect to t where t ≥ 0.
3: Find vk by maximizing γ (tk, v) with respect to v ∈ Cn, ∥v∥2 = 1.
4: Set k := k + 1 and go to 2.

We discuss some important properties of the sequences {tk} and {vk} generated by this algorithm. Note first that due to
(13) and our assumption on the numerical range of A,

∂γ

∂t
(0, v0) = µ(A) > 0,

and, since γ (0, v) = 1 for all v, we have t1 > 0 and γ (t1, v0) > 1. Moreover, since

γ (tk, vk−1) ≤ γ (tk, vk) ≤ γ (tk+1, vk), (16)

we have tk > 0 and γ (tk, vk−1) > 1 for all k > 1 as well. On the other hand tk < tmin, where tmin is defined in (6), since
γ (t, v) ≤ Γ (t).

Theorem 4.1. If tk → t∗ as k → ∞ then there exists v∗ ∈ Cn, ∥v∗∥2 = 1 such that

γ (t∗, v∗) = Γ (t∗) = max
t≥0

γ (t, v∗). (17)

Proof. The vector vk which is found in the third step is a singular vector of exp(tkA) corresponding to the largest sin-
gular value Γ (tk). Therefore γ (tk, vk) = Γ (tk). From (16) we see that the sequences {γ (tk, vk)} and {γ (tk+1, vk)} are

Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96 95

nondecreasing and since they are bounded they converge and we have

lim
k→∞

γ (tk, vk) = lim
k→∞

γ (tk+1, vk) = lim
k→∞

Γ (tk) = Γ∗ (18)

with some Γ∗: 1 < Γ∗ ≤ Γopt.
Since the sequence {vk} is bounded, it has at least one accumulation point v∗ and there exists a subsequence {vkl} which

converges to v∗ as l → ∞. Letting l → ∞ in

γ (tkl , vkl) = Γ (tkl), γ (tkl+1, vkl) = max
t≥0

γ (t, vkl)

and using (18) we obtain (17). �

Thus, if tk → t∗ as k → ∞ and the criterion (15) is satisfied then Γ (t) has a local maximum at t∗.
To be of practical use, the operations in Algorithm 2 should be done inexactly using iterative methods. The initial vector

can be obtained with a few iterations of the Lanczos algorithm applied to (A + A∗)/2. When the time integration method is
used, step 2 has to be carried out at the time integration nodes. Otherwise we use the function fminbnd to find a local
minimum of −γ (t, vk−1) in the chosen interval of t . Algorithm 1 applied to H(tk) can be used to find the vector vk at
step 3. These modifications are reflected in Algorithm 3 which ensures that the inequalities (16) are satisfied even under
approximate computations (they are consequences of the maximization over v of γ (tk, v) and over t of γ (t, vk−1)). The
algorithm is stopped if tk = tk−1, which means that the sequence {tk} has converged, or when the increase of γ (tk, vk) is too
slow (this is similar to the third condition used in the while loop of Algorithm 1).

Algorithm 3 Practical alternating maximization applied to γ (t, v).
Input: A, tmax, tol and τ such that J = tmax/τ is integer if TI is used.
Output: an approximate local maximum.

• Compute an approximate normalized eigenvector v0 corresponding to the largest eigenvalue µ(A) of (A+ A∗)/2 with a
few iterations of the Lanczos algorithm starting with a random vector.
• t−1 = −1, s−1 = t0 = 0, s0 = 1, k = 0
while tk ≠ tk−1 and sk ≥ (1 + tol)sk−1 do

• k = k + 1
• Find tk = min argmax γ (t, vk−1) for 0 ≤ t ≤ tmax using fminbnd
or, if TI is used, for t = 0, τ , . . . , tmax, computing γ (t, vk−1) at each of these points.
• Compute an approximate normalized eigenvector vk corresponding to the largest eigenvalue of H(tk) by Algorithm 1
starting with vk−1.
• sk = γ (tk, vk)

end while

Note that, from the inequality (see, e.g., [6])
Γ (ξ) ≤ exp(ξµ(A)), ξ ≥ 0,

we deduce that
γ (t, v) ≤ max

t≤s≤t+τ
γ (s, v) ≤ max

t≤s≤t+τ
Γ (s − t)γ (t, v) ≤ exp(τµ(A))γ (t, v).

Thus, using the fact that µ(A) ≈ Re(Av0, v0), we can find a local maximum of γ (t, vk−1) with a given accuracy by choosing
τ = ε/Re(Av0, v0) with a sufficiently small ε > 0.

Algorithm3 finds a humpwhich is close to 0 but it can easily bemodified to find a hump right to a given point. Particularly,
if the time integration is used, then to find a hump right to a given point to = Joτ , where Jo is a positive integer smaller than
J , one needs to set t0 = to instead of 0 and find each tk bymaximizing γ (t, vk−1) for t = to, to+τ , . . . , tmax. The initial vector
v0 can be chosen as an approximate normalized eigenvector corresponding to the largest eigenvalue ofH(to) computedwith
Algorithm 1. In this case the value of s0 must be set equal to γ (t0, v0).

The results of Algorithm 3 for Matrices 1, 2 and 4 and with the above modification for Matrix 3 are given in the last two
columns of Tables 1 and 3. These results are consistent with those obtained by the maximization of Γ (t).

5. Conclusions

Taking into account the accuracy and execution time, the tests clearly show that the alternatingmaximization procedure
(Algorithm 3) exhibits superior performance. Further work is, however, needed to better understand its convergence. The
execution times for this algorithm with expv and expmv are comparable for Matrix 1 but are in favor of expmv for Matrix
2 and of expv for Matrix 3. Thus, in the context of this algorithm, there is no a priori reason to favor one computation
of the action of the matrix exponential over the other. They can both be used efficiently with their defaults parameters
and generally perform much better than TI-LU and TI-GMRES. The methods TI-LU and TI-GMRES can be very useful in
situations where a good preconditioner for GMRES can be found or when the LU decompositions of I − τA and 1.5I − τA
can be computed with small fill-in.

96 Yu.M. Nechepurenko, M. Sadkane / Journal of Computational and Applied Mathematics 319 (2017) 87–96

Acknowledgments

We thank Roger Sidje for a fruitful discussion on an earlier version of the paper. The development of numerical algorithms
was supported by the Russian Science Foundation (Project No. 14-21-00025) and the analysis of numerical experiments was
supported by the Russian Foundation for Basic Research (Project No. 16-01-00572).

References

[1] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll, Hydrodynamic stability without eigenvalues, Science 261 (1993) 578–584.
[2] P. Schmid, D.S. Henningson, Stability and Transition in Shear Flows, Springer–Verlag, Berlin, 2000.
[3] P. Yecko, S. Zaleski, Transient growth in two-phase mixing layers, J. Fluid Mech. 528 (2005) 43–52.
[4] X. Mao, S.J. Sherwin, Transient growth associated with continuous spectra of the Batchelor vortex, J. Fluid Mech. 697 (2012) 35–59.
[5] A. Monokrousos, E. åkervik, L. Brandt, S. Henningson, Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-

steppers, J. Fluid Mech. 650 (2010) 181–214.
[6] L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton,

2005.
[7] J.L.M. van Dorsselaer, J.F.B.M. Kraaijevanger, M.N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta Numer. 2

(1993) 199–237.
[8] S.K. Godunov, Ordinanry Differential Equations with Constant Coefficients, in: Translations of Mathematical Monographs, vol. 169, Amer. Math. Soc.,

Providence, RI, 1997.
[9] C. Moler, C. van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003) 3–49.

[10] C. Moler, C. van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (1978) 801–836.
[11] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polinomials, Academic Press, N.-Y, 1982.
[12] T. Kato, Perturbation Theory for Linear Operators, second ed., Springer-Verlag, Berlin, 1976.
[13] Yu.M. Nechepurenko, M. Sadkane, A low-rank approximation for computing the matrix exponential norm, SIAM J. Matrix Anal. Appl. 32 (2011)

349–363.
[14] N.J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl. 26 (2005) 1179–1193.
[15] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, second ed., Springer-Verlag, Berlin, 1993.
[16] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209–228.
[17] R.B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Software 24 (1998) 130–156.
[18] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34 (1997) 1911–1925.
[19] A. Frommer, V. Simoncini, Matrix functions, in: W. Schilders, H. Van der Vorst, J. Rommes (Eds.), Model Order Reduction: Theory, Research Aspects

and Applications, Mathematics in Industry, Springer-Verlag, Berlin, 2008, pp. 275–304.
[20] A.H. Al-Mohy, N.J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput. 33

(2011) 488–511.
[21] G.E. Forsythe, M.A. Malcolm, M.A. Moler, Computer Methods for Mathematical Computations, Prentice Hall, N.-Y, 1976.
[22] G. El Khoury, Yu.N. Nechepurenko, M. Sadkane, Acceleration of inverse subspace iteration with Newtons method, J. Comput. Appl. Math. 259 (2014)

205–215.
[23] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.
[24] B.N. Parlett, The Symmetric Eigenvalue Problem, SIAM, 1998.
[25] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., The John Hopkins University Press, Baltimore, 1996.
[26] K. Veselic, Bounds for exponentially stable semigroups, Linear Algebra Appl. 358 (2003) 309–333.
[27] Yu.M. Nechepurenko, Bounds for the matrix exponential based on the Lyapunov equation and limits of the Hausdorff set, Comput. Math. Math. Phys.

42 (2002) 125–134.

http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref1
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref2
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref3
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref4
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref5
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref6
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref7
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref8
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref9
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref10
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref11
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref12
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref13
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref14
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref15
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref16
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref17
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref18
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref19
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref20
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref21
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref22
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref23
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref24
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref25
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref26
http://refhub.elsevier.com/S0377-0427(16)30642-2/sbref27

	Computing humps of the matrix exponential
	Introduction
	Computing the action of the matrix exponential
	Time integration methods
	Krylov subspace method
	Truncated Taylor series method
	Specification of the methods

	Computing Γ (t)
	Computing humps with maximization procedures
	Properties of γ (t, v)
	Alternating maximization

	Conclusions
	Acknowledgments
	References

