
An investigation of the structure of perturbation coeffi-
cients for compensation of fiber nonlinear distortions
TATIANA SHELOPUT1, NIKOLAY ZAMARASHKIN1,2, DMITRY ZHELTKOV1, ILYA KOSOLAPOV1,3, RO-
MAN DYACHENKO4 � sheloput@phystech.edu
1INSTITUTE OF NUMERICAL MATHEMATICS RAS, RUSSIAN FEDERATION, 2LOMONOSOV MOSCOW STATE UNIVERSITY, RUSSIAN FEDERATION, 3MOSCOW

INSTITUTE OF PHYSICS AND TECHNOLOGY, RUSSIAN FEDERATION, 4SKOLKOVO INSTITUTE OF SCIENCE AND TECHNOLOGY, RUSSIAN FEDERATION

1. Introduction
• Fiber optic nonlinearity is the main limita-

tion for increasing link distance and spec-
trum efficiency.

• There are some approaches for analyzing
the fiber nonlinearity, for example, numer-
ical approach (digital back propagation,
DBP), Volterra analysis, perturbation anal-
ysis [1].

The main goal of this work is to modify meth-
ods for computing coefficients of PBM model
in order to improve the optical fiber transmis-
sion quality. It is shown that computing the
matrix of PBM coefficients in the form of a
low-rank approximation allows to obtain co-
efficients having a certain structure and signif-
icantly reduce the number of multiplications.

2. Signal transmission model
The Manakov equation that governs the prop-
agation of a polarized optical pulse in a dis-
persive fiber medium can be written as [1]
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where u(t, z) = [ux(t, z), uy(t, z)]T is the
slowly varying envelope of the electrical field
in two orthogonal polarizations, α - fiber loss
coefficient, g(z) simulates signal amplifica-
tion, β2 characterizes chromatic dispersion, γ
is supposed to be a small coefficient that char-
acterizes Kerr nonlinearity.

3. PBM model
Let us consider the input signal as

u(t, 0) =

+∞∑
k=−∞

xkb0(t− kT ), xk =

[
xX(k)
xY (k)

]
where b0(t) means an input pulse. nonlinear
interactions yield a perturbation of the sam-
pled at t = kT output signal:

yk ≈ xk + ∆k, ∆k = [δX(k), δY (k)]T ,

δ(k) =
+∞∑

m,n=−∞

(
x(k+n)x∗(k+n+m)x(k+m)+

+xo(k + n)x∗o(k + n+m)x(k +m)
)
am,n, (1)

where δ means δX or δY and the index “o”
means the other polarization.
Problem: find the coefficients am,n so that the
number of multiplications while computing
δX|Y (k) is low and yk −∆k is close to xk.

4. Low-rank approximation
Let us suppose that the coefficients of the PBM
model satisfy the following condition:

am,n = a−m,−n = −a∗m,−n = −a∗−m,n,

Assume that the quadrants of the coef. matrix
are approximated by small rank matrices:

am,n ≈
R∑

r=1

U (1)
m,rV

(1)
n,r .

Let the quadrant of the whole matrix satisfy
the condition A = AT . It is known [2] that for
a matrix A ∈ CN×N satisfying A = AT exists
a unitary matrix Q such that

A = QΣQT ,

where Σ = diag(σ1, . . . , σn) with real non-
negative σi. This special singular value de-
composition is called SSVD.

5. Iterative algorithm
We propose the following projective algo-
rithm SQA-ALS (for simplicity single polar-
ization case described):

1. Let U and V be decomposition factors ob-
tained from the previous iteration, A = UV T .
Fix factor V and perform one ALS step: find
Unew, α, minimizing ‖y − x‖2.

2. A = UnewV
T . Compute SSVD of Ã =(

A+AT
)
/2. Using SSVD, obtain an approxi-

mation to Ã of rank R by setting the singular
numbers σR+1, . . . , σN to zero. This approxi-
mation is denoted by A1/2. From SSVD factor
U1/2 such that A1/2 = U1/2U

T
1/2 is obtained.

3. Perform one ALS step: varying factor V in
A1/2 = U1/2V

T and the linear term, find Vnew,
α, minimizing ‖y − x‖2.

4. A = U1/2V
T
new. Compute SSVD of Ã =(

A+AT
)
/2. Using SSVD, obtain an approxi-

mation to Ã of rank R by setting the singular
numbers σR+1, . . . , σN to zero. This approxi-
mation is denoted by Afin. From SSVD factor
Ufin such that Afin = UfinU

T
fin is obtained.

5. Check if the stopping criterion is satisfied.
If not, repeat steps 1-5.
Note that true inputs are unknown on the out-
put side, so y is used insted of x to compute
triplets in (1).
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7. Results
full PBM SQA-ALS

(N, M) R NMSE BER NMSE BER
before PBM -11.20 1.97e-02
(32, 32) 2

-13.161 5.56e-03
-13.04 6.05e-03

(32, 32) 3 -13.10 5.93e-03
(32, 32) 4 -13.12 5.82e-03
(64, 64) 2

-14.111 2.52e-03
-13.57 3.84e-03

(64, 64) 3 -13.77 3.37e-03
(64, 64) 4 -13.86 3.15e-03

(128, 128) 2
-15.307 0.79e-03

-13.88 2.9e-03
(128, 128) 3 -14.24 2.1e-03
(128, 128) 4 -14.44 1.8e-03
(256, 256) 2 -16.586 0.22e-03 -13.99 2.6e-03
(256, 256) 4 -14.74 1.3e-03

Table 1. The error of the ALS-based corrected solution depending on M , N and
rank (X polarization), compared to the full PBM model (without the assumption
of a small rank) result.

Result 1. Algorithm for
computation coefficient
matrix in a low-rank
form was proposed.
Result 2. Using the
Haar transform, efec-
tive piecewise constant
approximation of co-
efficient matrix was
proposed.
Result 3. Experiments
with the full PBM
model allowed to es-
timate the efficiency
losses arising under the
low rank assumption.
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Figure 1. (a) Matrix Ã obtained after Haar approximation of factors for M = N = 128, R = 4 (absolute values).
(b) Schematic description of the position of the averaging blocks in the case M = N = 8, T = 1. Coefficients marked in

white are not taken into account. (c) full PBM model result (absolute values).
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