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1. Introduction

We propose a new low-dimensional subset of orthogonal matrices and a way to

efficiently parametrize it. In particular, our contributions are:

A new class of GS-matrices that generalizes multiple previous structures.
An optimal way to form a dense matrix in the GS-class.
Efficient structured orthogonal parametrization of GS-matrices.
Comparison of our class and existing methods in orthogonal fine-tuning (LMs and

diffusion models) and orthogonal convolutional architectures.

2. Orthogonal Fine-Tuning

Orthogonal Fine-Tuning framework modifies forward pass of pre-trained linear layers:

y = (W 0)>x → y = (QW 0)>x; Q – orthogonal matrix.

OFT method [Qiu et al., 2023] uses block-diagonal structure forQ, parametrizing it
as

Q = diag(Q1, Q2, . . . , Qr),

where Qi ∈ Rb×b are small orthogonal matrices.

Problem: restrictive structure.

BOFT method [Liu et al., 2024] parametrizes Q as a product of several orthogonal

sparse matrices, aiming to form a dense orthogonal matrix:

Q = BmBm−1 . . . B1.

Bi is (up to permutations) a block-diagonal matrix with r orthogonal b × b blocks.

Problem: requires computing a product of multiple matrices. For example, forQ of

the size 1024 × 1024 and for r = 32, we have m = 6.

4. Orthogonal GS-matrices

We can achieve orthogonality through enforcing it for every block of block-diagonal

matrix Bi. This is theoretically justified, as shown by Theorem 2.

Theorem 2
If each block of every Bi in GS(Pm+1, . . . , P1) is orthogonal then

GS(Pm+1, . . . , P1) is orthogonal matrix. In case m = 2, any orthogonal ma-
trix from GS(P3, P2, P1) admits P3(B2P2B1)P1 representation with the matrices

B1, B2 consisting of orthogonal blocks.

Remark: This theorem allows us to maintain orthogonality of smaller blocks instead of

preserving orthogonality of whole matrix.

Parametrizing blocks: We mostly use Cayley transform to maintain orthogonality of

each smaller block in Bi: for any skew-symmetric matrix K> = −K , we know that
Q, given by

Q = (I + K)(I − K)−1

is orthogonal matrix. Alternatively, one can enforce orthogonality with the help of

matrix exponent: for any skew-symmetric K> = −K , we have

Q = exp(K), exp(K) =
∞∑

n=0

Kn

n!
,

where Q is orthogonal.

3. GS-matrices

Definition 1
A is said to be in GS(Pm+1, . . . , P1) if

A = Pm+1BmPm . . . B1P1,

where eachmatrixBi is a block-diagonal matrix with ki blocks of size b1
i ×b2

i , matrices

Pi are permutation matrices and b1
i · ki = b2

i+1 · ki+1.

Remark: GS-class contains OFT, BOFT, order-p Monarch matrices and more.

Crucial question
How to choose Pi to minimize m and ensure that A is dense?

Answer
Make Pi a perfect shuffle matrix P(r,br)! To visualize y = P(r,br)x imagine splitting
a deck (vector x) into b piles and taking sequentially upper card from each pile to
form y.

The answer in a more formal way:

Theorem 1
Let ki = r, b1

i = b2
i = b. Then using m = 1 + dlogb(r)e is sufficient for the class

GS(PL, P(r,br), . . . , P(r,br), PR) to form a dense matrix for any PL, PR. Moreover,

the choice of P2 = · · · = Pm = P(r,br) is optimal in the sense that all matrices from

GS(Pm+1, . . . , P1) contain zero blocks for any integerm < 1 + dlogb(r)e and any
permutations P1, . . . , Pm+1.

We also find that class GS(I, P, I) consists of block matrices with low-rank blocks,
whose ranks are defined by permutation matrix P .
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Figure 1. Illustration of block low-rank interpretation of GS(I, P, I) matrices.

Applications

NLP Learnable orthogonal matrices for PEFT methods prevents training instabilities

and overfitting that alternative methods like LoRA suffer from.

Diffusion models Orthogonal fine-tuning of diffusion models helps to impose

specific properties to a model without losing quality of generation.

Convolutional architectures Equipping convolution operator with particular

properties allows to obtain convolution with Lipschitz constant equal to 1.
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Application 1: NLP

We utilize the pipeline of orthogonal fine-tuning parametrizing multiplicative matrix Q
with GS(P >

(r,br), P(r,br), I)-matrices:

Q = P >
(r,br)B2P(r,br)B1.

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B ALL

FT 125M 87.62 94.38 61.97 91.5 93.06 80.14 88.97 90.91 86.07

LoRAr=8 1.33M 87.82 95.07 64.02 90.97 92.81 81.95 88.73 90.84 86.53

OFTb=16 1.41M 87.21 95.07 64.37 90.6 92.48 79.78 89.95 90.71 86.27

BOFTm=2
b=8 1.42M 87.14 94.38 62.57 90.48 92.39 80.14 88.97 90.67 85.84

GSOFTb=8 1.42M 87.16 95.06 65.3 90.46 92.46 81.95 90.2 90.76 86.67

Table 1. Results on GLUE benchmark with RoBERTa-base model. We report Pearson correlation for

STS-B, Matthew’s correlation for CoLA and accuracy for other tasks.

Application 2: Subject-driven generation

For pre-trained diffusion models we investigate an approach that multiplies weight

matrices from both sides with QU , QV parametrized as orthogonal GS-matrices:

y = (W 0)>x → y = (QUW 0QV )>x

Compared to one-sided adaptation, this modification allows to adapt both left and

right singular vectors ofW 0, improving method’s flexibility.
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Figure 2. Image and text similarity visualization for different methods on subject-driven generation.

Application 3: Orthogonal Convolutions

We can also impose orthogonality to the convolution layer using skew-symmetric

filters. Such constraint helps maintaining Lipschitz constant equal to 1 during training.

Y = ChShuffle2(L
(2)
grouped ?e (ChShuffle1(L

(1)
grouped ?e X)))

L ?e X = X +
L ? X

1!
+ · · · +

L ?n X

n!
+ . . . , ?i − convolution applied i times

Table 2. Results of LipConvnet-15 on CIFAR-100. (a, b) in “Groups” denotes that we have two grouped
exponential convolutions (first with kernel_size = 3, second with kernel_size = 1). If b = “-”, we

only use one GS orthogonal convolution. We use ChShuffle before each grouped convolution.

Conv. Layer # Params Groups Speedup Accuracy Robust Accuracy

SOC [Singla and Feizi, 2021] 24.1M - 1 43.15% 29.18%

GS-SOC (Ours) 6.81M (4, -) 1.64 43.48% 29.26%

GS-SOC (Ours) 8.91M (4, 1) 1.21 43.42% 29.56%

GS-SOC (Ours) 7.86M (4, 2) 1.22 42.86% 28.98%

GS-SOC (Ours) 7.3M (4, 4) 1.23 42.75% 28.7%
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