1. Introduction

3. GS-matrices

Application 1: NLP

We propose a new low-dimensional subset of orthogonal matrices and a way to
efficiently parametrize it. In particular, our contributions are:

= A new class of GS-matrices that generalizes multiple previous structures.

= An optimal way to form a dense matrix in the GS-class.

= Efficient structured orthogonal parametrization of G&-matrices.

= Comparison of our class and existing methods in orthogonal fine-tuning (LMs and
diffusion models) and orthogonal convolutional architectures.

2. Orthogonal Fine-Tuning

Orthogonal Fine-Tuning framework modifies forward pass of pre-trained linear layers:

y=W%"z2 — y=(QW% a; () - orthogonal matrix.

= OFT method [Qiu et al., 2023] uses block-diagonal structure for ), parametrizing it
as

Q — diag(Qla Q27 c ey Qr)’
where Q; € R?%? are small orthogonal matrices.
Problem: restrictive structure.

= BOFT method [Liu et al., 2024] parametrizes () as a product of several orthogonal
sparse matrices, aiming to form a dense orthogonal matrix:

) = B,,By_1...B.

B; is (up to permutations) a block-diagonal matrix with » orthogonal b x b blocks.

Problem: requires computing a product of multiple matrices. For example, for ) of
the size 1024 x 1024 and for r = 32, we have m = 6.

4. Orthogonal GS-matrices

We can achieve orthogonality through enforcing it for every block of block-diagonal
matrix B;. This is theoretically justified, as shown by Theorem 2.

Theorem 2
If each block of every B; in GS(Pny1y-.-,P1) is orthogonal then
GS(P,yi1y ..., P1) is orthogonal matrix. In case m = 2, any orthogonal ma-

trix from GS(Ps, P2, Py) admits Ps(ByP»B) Py representation with the matrices
B, B> consisting of orthogonal blocks.

Remark: This theorem allows us to maintain orthogonality of smaller blocks instead of
preserving orthogonality of whole matrix.

Parametrizing blocks: We mostly use Cayley transform to maintain orthogonality of
each smaller block in B;: for any skew-symmetric matrix K = — K, we know that

Q, given by
Q=I+K)I—-K)™

Is orthogonal matrix. Alternatively, one can enforce orthogonality with the help of

matrix exponent: for any skew-symmetric KT = — K, we have
O Kn
Q = exp(K), exp(K) =3 =,
=0 n.

where Q is orthogonal.

Definition 1
Aissaid tobe in GS(Ppt1y. .., Py) if
A =Py, 1ByPy, ... B Py,
where each matrix B; is a block-diagonal matrix with k; blocks of size by x b?, matrices
P; are permutation matrices and b} - k; = b7, ; - kiy1.
Remark: GS-class contains OFT, BOFT, order-p Monarch matrices and more.

Crucial question
How to choose P; to minimize m and ensure that A is dense?

Answer
Make P; a perfect shuffle matrix P py! To visualize y = P pyx imagine splitting
a deck (vector x) into b piles and taking sequentially upper card from each pile to
form y.

The answer in a more formal way:
Theorem 1

Let k; = r,b; = b? = b. Then using m = 1 4 [log,(r)] is sufficient for the class
GS(Pr, Py prys - - - s Pirpry, Pr) to form a dense matrix for any P, Pgr. Moreover,
the choice of P, = -+ = Py, = P, 3, is optimal in the sense that all matrices from
GS(P,,11, ..., P1) contain zero blocks for any integer m < 1 + [log, ()] and any
permutations Py, ..., Ppag.

We also find that class GS (I, P, I') consists of block matrices with low-rank blocks,
whose ranks are defined by permutation matrix P.
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Figure 1. lllustration of block low-rank interpretation of GS(I, P, I') matrices.

Applications

= NLP Learnable orthogonal matrices for PEFT methods prevents training instabilities
and overfitting that alternative methods like LoRA suffer from.

= Diffusion models Orthogonal fine-tuning of diffusion models helps to impose
specific properties to a model without losing quality of generation.

= Convolutional architectures Equipping convolution operator with particular
properties allows to obtain convolution with Lipschitz constant equal to 1.
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We utilize the pipeline of orthogonal fine-tuning parametrizing multiplicative matrix @)
with QS(P(I’br), P, by, I)-matrices:

Q = P(I,br)BZP(r,br)Bl-

Method | # Params MNLI SST-2 ColA QQP QNLI RTE MRPC STS-B ALL

FT 125M  8/.62 94.38 61.9/ 915 93.06 80.14 88.9/ 90.91 86.0/
LoRA,=s | 1.33M 87.82 95.07 64.02 90.9/ 92.81 81.95 88./3 20.84 86.53
OFTp=16 | 141IM 87.21 95.07 64.3/ 90.6 9248 /9./8 89.95 90.7/71 86.27
BOFT;)"’Zzg2 1.42M  87.14 9438 62.57 9048 92.39 80.14 88.97 90.67 85.84
GSOFTp=g| 1.42M 87.16 95.06 65.3 90.46 9246 81.95 90.2 90.76 86.67

Table 1. Results on GLUE benchmark with RoBERTa-base model. We report Pearson correlation for
STS-B, Matthew’s correlation for CoLA and accuracy for other tasks.

Application 2: Subject-driven generation

For pre-trained diffusion models we investigate an approach that multiplies weight
matrices from both sides with )/, () parametrized as orthogonal GS-matrices:

y=W%"z — y=(QW°Q))'x

Compared to one-sided adaptation, this modification allows to adapt both left and
right singular vectors of W0, improving method'’s flexibility.

num steps = 1000 num steps = 3000
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Flgure 2. Image and text similarity visualization for different methods on subject-driven generation.

Application 3: Orthogonal Convolutions

We can also impose orthogonality to the convolution layer using skew-symmetric
filters. Such constraint helps maintaining Lipschitz constant equal to 1 during training.

Y = ChShuffley(L\% . e (ChShuffle;(L\y) . xc X)))

grouped
L x X L x" X : . C
Lx., X =X+ T + e+ : + ..., *x*— convolution applied i times
. n.

Table 2. Results of LipConvnet-15 on CIFAR-100. (a, b) in “Groups” denotes that we have two grouped
exponential convolutions (first with kernel size = 3, second with kernel size = 1). If b = “-", we
only use one g8 orthogonal convolution. We use ChShuffle before each grouped convolution.

Conv. Layer # Params Groups Speedup Accuracy Robust Accuracy
SOC [Singla and Feizi, 2021] | 24.1M - 1 43.15% 29.18%
GS-SOC (Ours) 6.81M (4, -) 1.64 43.48% 29.26%
GS-SOC (Ours) 8.91M (4, 1) 1.21 43.42% 29.56%
GS-SOC (Ours) 7.86M (4, 2) 1.22 42.86% 28.98%
GS-SOC (Ours) 7.3M (4, 4) 1.23 42.75% 28.7%
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