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Flow Matching for Solving Inverse Problems
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We present a new way of solving inverse problems using genera-
tive modeling with flow matching. Flow Matching opens the door to
training generative model with non-diffusion probability paths. These
paths are more efficient than diffusion paths, provide faster training
and sampling, and result in better generalization. Using flow matching,
we can obtain the distribution of possible solutions when the solution
to the inverse problem is non-unique.

Flow Matching for solving inverse problems

Suppose we have a forward model
d=F(m,e)+n,

= Sample m — model parameters.

= Sample e — experiment details.

= Sample noise n from noise distribution

= Compute d = f(m, e) +n — experiment design.

These are samples from the joint distribution p(d, m,e). The model
parameter m is not uniquely defined, but has a certain conditional dis-
tribution p(m|d,e). Our goal is to estimate this distribution. We will
use conditional flow matching for this procedure.

Then, we create conditional path between (myg,d,e) and (m,d,e),
where (d, m, e) is from our dataset as

my = (1 —t)mg+t Coh, ¢ IO, 1]
In conditional flow matching, we need to learn velocity vg(my,t, d, €)
that minimizes the following loss function:
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Figure 1. Solving the inverse problem using flow-matching
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SEIR disease model

SEIR (Susceptible-Exposed-Infected-Recovered) model is a mathemat-
ical model used to mathematically simulate the spread of infectious
diseases. In this case study we simulate a real situation where, during
the spread of a disease, we measure the number of infected and dead
people at random times and use this information to try to recover the
control parameters of the ODE system.
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where the variables S(t) is susceptible number, E(t) is exposed num-
ber, I(t), R(t) are infected and removed number initialized with S(0) =
99, E£(0) =1, I(0) = R(0) = 0.
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i.e., the rates transition smoothly from some initial rate (3, and ~{) to
some final rate (8, and 44) around time 7 > 0. We fix 7 = 2.1 and an
overall time interval of [0, 4].

= ¢ = |ay, a9, ag, ay) UL, 3] random times, when measurements are
performed

" d; = [I., R, fori [,4] (d CR?*) the number of infected and
deceased individuals

“m = [B1,a,v", 7, B2, 4] is ODE model parameters.

Assume myre = [0.4,0.3,0.3,0.1,0.15,0.6]. Then after 1000 calcula-
tions the average error will be 2.05% =% 1.04%.
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Figure 2. Probabilistic solutions to the inverse problem
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Permealbility field inversion

In this example, the inverse problem consists of estimating the
spatially-dependent diffusivity field &, given measurements of the
pressure u at some pre-determined locations (z;,y;) [X}. This is a
common problem, for example in the oil industry, when there are a
small number of wells and pressure observations across them, and
from these data one needs to reconstruct the permeability field of
an oil field.

— [k [ulE= 0
with boundary conditions

w(z =0,y) = f(y,e1) = exp (—%(y - 61)2)

w

wa=1y)=g(ysz)=—cxp (_%@ - 62)2)

k Is the spatially-dependent diffusivity field given measurements of
the pressure u at some pre-determined locations (z;,y;) . m =
log(k) LNKO, Cyyr), with covariance operator C,

— [z z[2]
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with ¢, = 1 and 2 = 0.1. Employing a truncated Karhunen-Loéve
expansion of the unknown diffusivity field yields the approximation

m(z,m) =Y " miv/Xigi(x),
i=1

where \; and ¢;(x) denote the i-th largest eigenvalue and eigenfunc-
tion of C,,, m; N0, 1). The Karhunen-Loeve expansion is truncated
after n,, = 16 modes, resulting in an approximation that captures 99
percent of the weight of C),.

= m is a 16 parameters for Karhunen-Loeve expansion of
log-permeability of field

= ¢ = [e1, 9] Dirichlet boundary conditions coefficients
= dis 3,4, 5 or more u observations in fixed points.
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Figure 3. Probabilistic solutions to the inverse problem
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Simple nonlinear model

In our experiments, we used the following forward model from [Koval
et al.]

d(e,m) = e*m® + mexp(—]0.2 —¢|) + 17

where the ) is a known noise distribution, i.e. N (0, o?). In the simplest
example in Koval et al., m — model parameter is one dimensional, uni-
formly distributed on [0, 1]. Also, e is one-dimensional from [0, 1] (input
point, ‘experiment’), we can also take it uniformly distributed on [0, 1].
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Figure 4. Joint probability of m parameter visualisation for different design d and
experiments e parameters

Conclusions

For different cases of inverse problem solving, the following results are
obtained:

Case Mean d error, % std. d error, %
Simple nonlinear 0.15 0.09
SEIR ODE system 2.04 1.01
Pressure diffusivity PDE* 0.81 0.53

Table 1. Inverse problem solution results.
* - for 5 point case.
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