
Shuffling Heuristic in Variational Inequalities: Establishing New Convergence Guarantees
Daniil Medyakov 1, 2 Gleb Molodtsov 1, 2 Grigoriy Evseev 1 Egor Petrov 1 Aleksandr Beznosikov 1, 2, 3

1 Moscow Institute of Physics and Technology 2 Institute for System Programming RAS 3 Innopolis University
The First School-Conference on Tensor Methods in Mathematics and Data Science, 2024, Shenzhen, China

Distributed problem

• Variational Inequality (VI)
Find z∗ ∈ Z : ∀z ∈ Z ↪→ ⟨F (z∗), z −z∗⟩+g(z)−g(z∗) ⩾ 0, (1)

where F is a monotone operator and g is a proper convex lower
semicontinuous function, which plays the role of regularizer.
• Training data describing F is distributed across n devices:
F (z) = 1

n

∑n
i=1 Fi(z), where each Fi corresponds to an individual

data point.
Example (Convex optimization)

min
z∈Rd

[f (z) + g(z)] . (2)

In this example, f is a smooth data representative term, and g is
probably a non-smooth regularizer. In this setting, we define
F (z) = ∇f (z). Then z∗ ∈ dom g is the solution of (1) if and only
if z∗ ∈ dom g is the solution of (2). In this way, the problem (2)
can be considered as a variational inequality.

Example (Convex-concave saddles)
We consider the following convex-concave saddle point problem:

min
x∈Rdx

max
y∈Rdy

[f (x, y) + g1(x) − g2(y)] . (3)

There, f has the same interpretation as in Example 1, and g1, g2
can also be perceived as regularizers. In this setting, we define
F (z) = F (x, y) = [∇xf (x, y), −∇yf (x, y)]. Then
z∗ ∈ dom g1 × dom g2 is the solution of (1) if and only if
z∗ ∈ dom g1 × dom g2 is the solution of (3). In this way, the
problem (3) can be considered as a variational inequality.

Variance Reduction methods
We explore stochastic algorithms which are particularly suitable for
practical extensive applications. The stochastic version of the Ex-
tragradient method select random independent indexes it, jt at
iteration t and performs the following updates:

zt+1
2 = zt − γFit

(zt),
zt+1 = zt − γFjt

(zt+1
2).

The variance reduction (VR) technique was developed for a
classical finite-sum minimization task. Considering convex optimiza-
tion problem (see Example 1), we can formally write the stochastic
reduced gradient at the point zt+1

2 as
∇f̂it

(zt+1
2) = ∇fit

(zt+1
2) − ∇fit

(ωt) + ∇f (ωt).

Setup
Assumption 1: Each operator Fi is L-Lipschitz, i.e., it satisfies

∥Fi(z1) − Fi(z2)∥ ≤ L∥z1 − z2∥
for any z1, z2 ∈ Z.
Assumption 2: Each operator Fi is µ-strongly monotone, i.e., it
satisfies

⟨Fi(z1) − Fi(z2), z1 − z2⟩ ⩾ µ∥z1 − z2∥2

for any z1, z2 ∈ Z.
Assumption 3: Each stochastic operator Fi and full operator F
is bounded at the point of the solution z∗ ∈ dom g, i.e.,

E∥Fi(z∗)∥2 ⩽ σ2
∗, ∥F (z∗)∥2 ⩽ σ2

∗.

Proximal Algorithm

We often encounter the need to minimize the function decomposed
into two parts: a smooth differentiable function f : Rn → R and
a possibly non-smooth function g : Rn → R which is proximal
friendly. To solve it, we can utilize the proximal gradient method:

proxg(z) = arg min
y∈Rn

{
g(y) + 1

2
∥y − z∥2

}
.

The update step for solving the problem can be written as
zt+1 = proxαtg

(
zt − αt∇f (zt)

)
.

Table: Comparison of the convergence results for the methods for solving VI.

Algorithm Sampling VR?

Strongly

Monotone

Complexity

Monotone

Complexity

Extragradient (Korpelevich, 1976; Mokhtari, 2020) D ✗ Õ
(

nL
µ

)
O
(

nL
ε

)
Mirror-prox (Nemirovski, 2004) D ✗ \ O

(
nL
ε

)
FBF (Tseng, 2000) D ✗ \ O

(
nL
ε

)
FoRB (Malitsky, 2020) D ✗ \ O

(
nL
ε

)
Mirror-prox (Juditsky, 2011) I ✗ \ O

(
L
ε + 1

ε2

)
Extragradient (Beznosikov, 2020) I ✗ Õ

(
L
µ + 1

µ2ε

)
O
(

L
ε + 1

ε2

)
REG (Mishchenko, 2020) I ✗ Õ

(
L
µ + 1

µ2ε

)
O
(

L
ε + 1

ε2

)
Extragradient (Carmon, 2019) I ✓ \ Õ

(
n +

√
nL
ε

)
Mirror-prox (Carmon, 2019) I ✓ \ Õ

(
n +

√
nL
ε

)
FBF (Palaniappan, 2016) I ✓ Õ

(
n +

√
nL
µ

)
Õ
(

n +
√

nL
ε

)(1)

Extragradient (Chavdarova, 2019) I ✓ Õ
(

n + L
2

µ2

)
Õ
(

n + L
2

ε2

)(1)

FoRB (Alacaoglu, 2021) I ✓ \ O
(

n + nL
ε

)
Extragradient (Alacaoglu, 2022) I ✓ Õ

(
n +

√
nL
µ

)
O
(

n +
√

nL
ε

)
Mirror-prox (Alacaoglu, 2022) I ✓ \ O

(
n +

√
nL
ε

)
Extragradient (this paper) RR / SO ✗ Õ

(
n + L

µ + n2

µ2ε

)
Õ
(

n + L
ε + n2

ε3

)(1)

Extragradient (this paper) RR / SO ✓ Õ
(

nL2

µ2

)
Õ
(

nL2

ε2

)(1)

Columns: Sampling = D if considered deterministic method, I if method uses independent choice of operator’s
indexes, RR / SO if method uses shuffling heuristic, Assumption = assumption on operator F , VR? = whether
the method uses variance reduction technique.
Notation: µ = constant of strong monotonicity, L = Lipschitz constant of F, L = Lipschitz in mean constant,
i.e. 1/n

∑n
i=1 ∥Fi(z1) − Fi(z2)∥ ⩽ L∥z1 − z2∥ ∀z1, z2 ∈ Z, n = size of the dataset, ε = accuracy of the solution.

(1): This result is obtained with regularization trick: µ ∼ ε/D2.

Main Contributions
• Novel approach to proof. We present a technique that
allows us to "return" to the starting point of an epoch in which
there is a property of unbiasedness.
• Convergence estimates. We provide the first theoretical
convergence rates for shuffling methods applied to the finite-sum
variational inequality problem considering both Extragradi-
ent (our linear term coincides with that for the method without
shuffling) and Extragradient with VR (the first to obtain a
linear convergence estimate for methods with shuffling in VIs).
• Experiments. Our experiments emphasize the superiority
of shuffling over the random index selection heuristic. We also
consider two classical practical applications: adversarial training
and image denoising.

Algorithms and convergence analysis
The unbiasedness of stochastic operators complicates the analy-
sis. However, the equality holds at two points: z0

s, the first point
of the epoch, and z∗. Thus, we can leverage the unbiased opera-
tors by "going back" to the start of the epoch. This approach is
also useful for methods involving Markov chains, where the unbiased
property only holds at the chain’s correlation point.

Extragradient

Algorithm 1. RR Extragradi-
ent
1: Input: Starting point z0

0 ∈ Rd

2: Parameter: Stepsize γ
3:
4: for s = 0, 1, 2, . . . , S − 1 do
5: Generate a permutation π0, π1, . . . , πn−1 of

sequence {1, 2, . . . , n}
6: for t = 0, 1, 2, . . . , n − 1 do
7: z

t+1
2

s = proxγg

(
zt

s − γFπt
s
(zt

s)
)

8: zt+1
s = proxγg

(
zt

s − γFπt
s
(zt+1

2
s )

)
9: end for

10: zn
s = z0

s+1
11: end for
12: Output: zn

S

Algorithm 2. SO Extra-
gradient
1: Input: Starting point z0

0 ∈ Rd

2: Parameter: Stepsize γ
3: Generate a permutation π0, π1, . . . , πn−1

of sequence {1, 2, . . . , n}
4: for s = 0, 1, 2, . . . , S − 1 do
5: for t = 0, 1, 2, . . . , n − 1 do
6: z

t+1
2

s = proxγg

(
zt

s − γFπt
s
(zt

s)
)

7: zt+1
s =

proxγg

(
zt

s − γFπt
s
(zt+1

2
s )

)
8: end for
9: zn

s = z0
s+1

10: end for
11: Output: zn

S

Theorem 1

Suppose Assumptions 1, 2, 3 hold. Then for Algorithms 1, 2 with
γ ⩽ min

{
1

2µn, 1
6L

}
after S epochs,

∥zn
S − z∗∥2 ⩽ (1 − γµ

2
)Sn∥z0

0 − z∗∥2 + 256γn2σ2
∗

µ
.

Remark 1

To transform the obtained estimation for the case of monotone
stochastic operators, we use a regularization trick with µ ∼ ε

D.
Thus, we obtain Õ

(
n + L

ε + n2

ε3

)
iteration and oracle complexity.

This is convergence in argument, it differs from the classical form.

Our result is a great achievement in the shuffling theory, since despite
the deterioration on n in the sublinear term, the estimation on the
linear term coincides with that in the classical setting with
independent choice of stochastic operators.

Extragradient with Variance Reduction
Previously, authors used a more classical version and compute F (ωt

s)
at the beginning of each epoch. We consider another option and
compute this full operator randomly with probability p. We put
p = 1

n not to increase the oracle complexity and obtain that on
average we also update the full operator once per epoch.

Theorem 2

Suppose that Assumptions 1, 2 hold. Then for Algorithm 3 with
γ ⩽ (1−α)µ

6L2 , p = 1
n and V t

s = E∥zt
s − z∗∥2 + E∥ωt

s − z∗∥2 after T
iterations,

V n
S ⩽

(
1 − γµ

4

)T

V 0
0 .

Remark 2

Similarly to Remark 1, we can use our result in the monotone
case by the regularization trick and obtain Õ

(
nL2

ε2

)
.

We remove the variance that arose in Theorem 1 and obtain lin-
ear convergence. However, according to current theory, methods
with the shuffling heuristic are inferior to those with independent
sampling for variance reduction methods.

Experiments (Adversarial Training)

We address an adversarial training problem. Let us formulate it in
the following way:

min
w∈Rd

max
∥ri∥⩽D

[
1

2N

N∑
i=1

(
wT (xi + ri) − yi

)2 + λ

2
∥w∥2 − β

2
∥r∥2

]
, (4)

where the samples corresponds to features xi and targets yi. The
results are presented in Figure 1.

Algorithm 3. RR/SO Extragradient with variance reduction
1: Input: Parameters: z0

0, ω0
0

2: Parameter: Stepsize γ, α ∈ (0, 1)
3: Generate a permutation π0, π1, . . . , πn−1 of sequence {1, 2, . . . , n} // SO heuristic
4: for s = 0, 1, . . . do
5: Generate a permutation π0, π1, . . . , πn−1 of sequence {1, 2, . . . , n} // RR heuristic
6: for t = 0, 1, . . . , n − 1 do
7: zt

s = αzt
s + (1 − α)ωt

s

8: z
t+1/2
s = proxγg (zt

s − γF (ωt
s))

9: F̂ (zt+1/2
s ) = Fπt

s
(zt+1/2

s ) − Fπt
s
(ωt

s) + F (ωt
s)

10: zt+1
s = proxγg

(
zt

s − γF̂
(

z
t+1/2
s

))
11: ωt+1

s =

{
zt

s, with probability p

ωt
s with probability 1 − p

12: end for
13: z0

s+1 = zn
s

14: ω0
s+1 = ωn

s

15: end for
16: Output: zn

S
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Figure: Extragradient with and without VR compared using various shuffling
heuristics on mushrooms, a9a and w8a datasets on the problem (4).

Experiments (Image Denoising)

We consider the classic saddle point problem as in Example 2:
min
x∈X

max
y∈Y

[⟨Kx, y⟩ + G1(x) − G2(y)] ,

where G1 and G2 are proper convex lower semicontinuous regular-
izers, and K is a continuous linear operator. Let g be a given noisy
image and u – a solution we seek. Thus, for the image denoising,

min
u∈X

max
p∈Y

[
⟨∇u, p⟩Y + λ/2∥u − g∥2

2 − δP (p)
]

is the considered problem with p being a dual variable and δP (p) –
the indicator function of the set P = {p ∈ Y : ∥p(x)∥ ≤ 1}. Using
duality, we can write the final formulation of considering problem as

min
u∈X

max
p∈Y

[
−⟨u, div p⟩X + λ/2∥u − g∥2

2 − δP (p)
]

. (5)
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Figure: Extragradient on image with σ = 0.05 on the problem (5).
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Figure: Extragradient with VR on image with σ = 0.05 on the problem (5).


