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1. Introduction

Fiber-optic systems form the backbone of modern
telecommunication networks. However, nonlinear
signal distortion in optical fibers can significantly im-
pact transmission quality in fiber optic communica-
tion lines. Therefore, there is a need to develop sig-
nal processing methods that can improve transmission
quality. Nonlinear distortion caused by the medium is
one of the main limiting factors for signal transmission

over fiber-optic networks.
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Figure 1: (left) Input complex amplitudes. (right) Output complex amplitudes.

Compensating for nonlinear distortions in an optical
fiber presents an inverse problem. The goal is to recon-
structthe complex amplitudes that were input intothe
waveguide from the distorted output signal.

2. Perturbation-based model

The propagation of an optical signal in a fiber is math-
ematically described by the nonlinear Schrodinger
equation (NLSE)
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Figure 2: Illustration of a polarized signal
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To study this phenomenon, a quasi-linear model of sig-
nal propagation is considered, which sees nonlineari-
ties as small perturbations to the linear solution. The
analysis of first-order perturbations allows us to tran-
sition from the nonlinear Schrodinger equation (NLSE)
to the following model

y(k)="b-x(k)+ Ax(k) + n,

where x(k) represents the input complex amplitudes
in the k-th time frame, and y(k) represents the out-
put complex amplitudes in the k-th time frame. Ax(k)
represents the estimation of nonlinear distortions ac-
cumulated during signal propagation through a fiber,
caused by the cubic nonlinearity of the medium and

considering the interaction between triplets of neigh-
boring signals over time. This estimation expressed by
the following formula
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here ¢ stands for polarization and -* means complex

conjugation. By employing the least squares method

to determine the perturbation coefficients ¢! | the

m,n?

strategy effectively reduces the computational com-

plexity. This approach is highly efficient, as it simpli-

fies the process compared to calculating coefficients
through multidimensional integrals. Ultimately, by

minimizing the number of various coefficients, the pri-
mary goal is to decrease the overall computational
complexity of the model.

3. Complexity reduction

Considering the coefficient matrices C* € RM+*V*lin

the form of a skeleton decomposition
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This factorized representation allows us to search for

perturbation coefhicients in a low-rank form using the
alternating least squares (ALS) procedure. It alternates
between fixing U and solving for V, then vice versa, us-

ing the least squares criterion until convergence.

To reduce the number of different coefficients, con-
sider the Haar transformation matrix
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The Haar transformation matrix, being an orthogonal
matrix, is particularly effective in transforming data
into a simpler form. It can be used to represent coef-
ficients more compactly, thus reducing the computa-
tional complexity. In our case, we apply the Haar trans-

form to the vectors v’ and v
1 R
Ax(k)=> > (H-u)"HA'(k)H"(H - v}).
1=0 r=1
To reduce the number of different perturbation coef-

ficients, the small magnitude components of the vec-
tors Hu’ and Hv' are discarded, and the inverse Haar
transformis applied. Thistransformation makes it pos-
sible to obtain an adaptive piecewise constant approx-

imation of the vectors v, v..
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Figure 3: The absolute values of the components of the Hu! vector sorted in
descending order for the model M = N =128 and r = 2.
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Figure 4: The reconstructed vector 4! is obtained after discarding small coeffi-
cients in the image of Hu! with 8 and 16 nonzero components for the model
with parameters M = N =128 and r = 2.

Next, we consider the matrices from the reconstructed
vectors C7 = S wi(v7)’ as approximations to the
original matrices C". By applying threshold filtering to
the elements of the " matrices, we obtain the resul-
tant C matrices.
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Figure 5: (left) The coefficient matrix C* was obtained from the vectors @ and
oY using 8 steps. (right) The C° matrix was filtered with a threshold of § = 0.01.

# steps 8 16 32 128  no model
NMSE, dB -13.742 | -13.851 -13.874 -13.877 -11.20

Table 1: The dependence of the normalized mean square error (NMSE) on the
number of steps in @', ¢’ for a model with parameters N = M = 128, R = 2.

(N,M) R Ny [hco ther INMSE, dB NMSE (full)
(128,128) 4| 45 | 0.08 0.09| -13.03

(128,128) 4 60 0.03 | 0.03| -13.87 1414
(128,128) 4 66 0.01 0.01 | -14.09

(128,128) 4 all 0 | 0O | -14.6

Table 2: The dependence of NMSE on the number of different coefficients in

the matrices C° and C'. The thresholds theo and th.1 are chosen so that the
matrices have the same number of coefficients.

4. Conclusions

« The Haar transform reduces the computa-
tional complexity of the model.

« Due to piecewise constant approximation,
it is possible to significantly reduce the
number of different components in the vec-
tors v’ and v’, thereby reducing the number
of multiplications required to calculate the

nonlinear correction.

* Discarding small coefficients leads to minor
losses in the quality of the restored signal.
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