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Distributed problem

e Variational Inequality (VI)
Find 2z € Z :Vze Z = (F(2"),z—2")+g(z)—g(z") = 0, (1)

where F' is a monotone operator and ¢ is a proper convex lower
semicontinuous function, which plays the role of regularizer.

e Training data describing F' is distributed across n devices:
F(z) = 237, F;(z), where each F; corresponds to an individual
data point.

Example (Convex optimization)

min | f(z) +g(2)]. (2)

2€RA

In this example, f is a smooth data representative term, and g is
probably a non-smooth regularizer. In this setting, we define

F(z) =V f(z). Then z* € dom g is the solution of (1) if and only
if 2* € dom g is the solution of (2). In this way, the problem (2)
can be considered as a variational inequality.

Example (Convex-concave saddles)

We consider the following convex-concave saddle point problem:

min max | f(z,y) + g1(x) — g2(y)] - (3)

rERycRY
There, f has the same interpretation as in Example 1, and gy, ¢o
can also be perceived as regularizers. In this setting, we define
F(z) = F(z,y) = [Vaf(z,y), =V, f(z,y)]. Then
z* € dom g; X dom gy is the solution of (1) if and only if
z* € dom g; x dom g» is the solution of (3). In this way, the
problem (3) can be considered as a variational inequality.

Variance Reduction methods

We explore stochastic algorithms which are particularly suitable for
practical extensive applications. The stochastic version of the EX-
TRAGRADIENT method select random independent indexes 7;, 5; at
iteration ¢ and performs the following updates:

S WFit(Zt),

o S S Wth(ZH%).
The variance reduction (VR) technique was developed for a
classical finite-sum minimization task. Considering convex optimiza-

tion problem (see Example 1), we can formally write the stochastic
reduced gradient at the point 2t as

Vile) = Vi (27) = Vi) + V()

Setup

Assumption 1: Each operator Fj is L-Lipschitz, i.e., it satisfies
|Fi(21) — Fi(z2)|| < Lij21 — 2

for any z1, 29 € Z.
Assumption 2: Each operator F; is pu-strongly monotone, i.e., it
satisfies

(Fi(21) — Fi(22), 21 — 20) = pllz1 — 2||°

for any z1, 29 € Z.
Assumption 3: Each stochastic operator F; and full operator F'
is bounded at the point of the solution z* € dom g, i.e..

E|Fi(2")]* < ol [|IF(29)])7 < o5
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Proximal Algorithm

We often encounter the need to minimize the tunction decomposed
into two parts: a smooth differentiable function f : R" — R and

a possibly non-smooth function g : R" — R which is proximal
friendly. To solve it, we can utilize the proximal gradient method:

. 1 5
pros,(2) = arg min { 9(9) + 5 ly — 211}

The update step for solving the problem can be written as
2 = prox,,, (zt — othf(zt)) .

Table: Comparison of the convergence results for the methods for solving VI.

Strongly
. . Monotone
Algorithm Sampling | VR? | Monotone
Complexity
Complexity
Extragradient (Korpelevich, 1976; Mokhtari, 2020) D X O (%) O ()
Mirror-prox (Nemirovski, 2004) D X \ O (Z—L)
FBF (Tseng, 2000) D X \ O (%)
FoRB (Malitsky, 2020) D X \ O (%)
Mirror-prox (Juditsky, 2011) I X \ O(L+3)
Extragradient (Beznosikov, 2020) I X O <£ + ﬁ) O(L+1)
REG (Mishchenko, 2020) [ X O (% + ﬁ) O (% + 6%)
Extragradient (Carmon, 2019) I \ O (n + \/f_)
Mirror-prox (Carmon, 2019) I \ O (n + \/i_)
~ - ~ =\ (1)
FBF (Palaniappan, 2016) I O (n + @) O (n + ﬁL)
~ —9 _ —9 (1)
Extragradient (Chavdarova, 2019) [ O (n + %) O (n + g—)
FoRB (Alacaoglu, 2021) I \ O (n + %
Extragradient (Alacaoglu, 2022) [ O <n + @) O (n + ‘/?_)
Mirror-prox (Alacaoglu, 2022) [ \ @ (n + \/f—)
0 . -~ L n2 ~ L nQ (1)
Extragradient (this paper) RR / SO X |O (n + o+ %) O(n+z2+ 5—3)
~( 2 ~/ 2\
Extragradient (this paper) RR / SO O (n%) @ (n%)

Columns: Sampling = D if considered deterministic method, I if method uses independent choice of operator’s
indexes, RR / SO if method uses shuffling heuristic, Assumption = assumption on operator F', VR? = whether
the method uses variance reduction technique.

Notation: | = constant of strong monotonicity, L = Lipschitz constant of F, L = Lipschitz in mean constant,
Le. Un Y " [[Fi(21) — Fi(22)|] < Lllz1 — 22| V21,22 € Z, n = size of the dataset, € = accuracy of the solution.
(1): This result is obtained with regularization trick: p ~ ¢/D2.

e Novel approach to proof. We present a technique that

allows us to 'return' to the starting point of an epoch in which
there is a property of unbiasedness.

e Convergence estimates. We provide the first theoretical
convergence rates for shuffling methods applied to the finite-sum
variational inequality problem considering both EXTRAGRADI-
ENT (our linear term coincides with that for the method without
shuffling) and EXTRAGRADIENT with VR (the first to obtain a
linear convergence estimate for methods with shuffling in Vls).

e Experiments. Our experiments emphasize the superiority
of shuffling over the random index selection heuristic. We also
consider two classical practical applications: adversarial training
and image denoising.

Algorithms and convergence analysis

The unbiasedness of stochastic operators complicates the analy-
sis. However, the equality holds at two points: z°, the first point
of the epoch, and z*. Thus, we can leverage the unbiased opera-
tors by "going back" to the start of the epoch. This approach is
also usetul for methods involving Markov chains, where the unbiased
property only holds at the chain’s correlation point.

Extragradient

Algorithm 1. RR EXTRAGRADI- Algorithm 2. SO EXTRA-

ENT GRADIENT

1: Input: Starting point z8 c R?
2: Parameter: Stepsize 7

1: Input: Starting point z) € R?
2: Parameter: Stepsize v

3: 3:

4: for s=0,1,2,...,5 —1do
5: 4: for s=0,1,2,...,5 —1do

b: fort:10,1,2,...,n—1do
6 for ttfl(), 1,2,...,n—1do 6 Z§+§ = prox.,, (ZE _ 'VFW};(ZE))
{: Ze ¥ = prox., (zz — WFﬂg(zz))l 7- z§+1 1 —
8: Z = prox., (zﬁ — fyFﬂg(zeri)) prox. , (zg — vFﬂg(z??))
0: end for 8: end for
10: 2 =20 9: 2y = 2341
11: end for 10: end for

12: Output: z¢ 11: Output: 2§

Theorem 1

Suppose Assumptions 1, 2, 3 hold. Then for Algorithms 1, 2 with
v < min {2%”, 6%} after S epochs,

n * Y Sn * 256’}/7120'3
|25 — 2*[|* < ( = 2o — 27|I° + L

Remark 1

To transform the obtained estimation for the case of monotone

stochastic operators, we use a regularization trick with p ~ 5.

Thus, we obtain O (n + % 4 Z’—;) iteration and oracle complexity.
This is convergence in argument, it differs from the classical form.

Our result is a great achievement in the shuffling theory, since despite
the deterioration on n in the sublinear term, the estimation on the
linear term coincides with that in the classical setting with
independent choice of stochastic operators.

Extragradient with Variance Reduction

Previously, authors used a more classical version and compute F'(w!)
at the beginning of each epoch. We consider another option and
compute this full operator randomly with probability p. We put
p = % not to increase the oracle complexity and obtain that on

average we also update the full operator once per epoch.

Theorem 2

Suppose that Assumptions 1, 2 hold. Then for Algorithm 3 with
v < <1g;>“,p = < and V! = E||2 — 2*||> + E|jw! — 2*||? after T

1terations,
T
Ve < ( ——Zf‘) Vy.

Remark 2

Similarly to Remark 1, we can use our result in the monotone
< 2
case by the regularization trick and obtain O(n%)

We remove the variance that arose in Theorem 1 and obtain lin-
ear convergence. However, according to current theory, methods
with the shuffling heuristic are inferior to those with independent
sampling for variance reduction methods.

Experiments (Adversarial Training)

We address an adversarial training problem. Let us formulate it in
the following way:

] \ 3
min max ﬁ;<wT(5L’z‘+Tz‘>—y¢)2+§||w||2—§

weR? ||r;||<D

2] (4)

where the samples corresponds to features x; and targets ;. The
results are presented in Figure 1.

Algorithm 3. RR/SO EXTRAGRADIENT with variance reduction

1: Input: Parameters: z{,w;

2: Parameter: Stepsize v, a € (0,1)
3: // SO heuristic
: fors=0,1,... do

4
5. // RR heuristic
0: fort=0,1,....n—1do
7: Zh =zl + (1 — a)ut
8: PR prox., (Z, — vF (w)))
9: P2 = Fou(207) = Fu(w!) + F(w!)
10: 2t = prox., (Ei, — [ (z§+1/2>)
1. L 2t with probability p
’ w'  with probability 1—p
12: end for
13: 20 =20
14: ng = wy
15: end for

16: Output: 2§
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Figure: EXTRAGRADIENT with and without VR compared using various shuffling
heuristics on mushrooms, a9a and w8a datasets on the problem (4).

Experiments (Image Denoising)

We consider the classic saddle point problem as in Example 2:

mip max (Kz,y) + Gi(x) — Gay)],

where (G; and Gy are proper convex lower semicontinuous regular-
izers, and K is a continuous linear operator. Let g be a given noisy
image and u — a solution we seek. Thus, for the image denoising,

. \ J— iz —
i [ (V) + /2 — g~ (0]

is the considered problem with p being a dual variable and dp(p) —
the indicator function of the set P ={p € Y : ||[p(x)|| < 1}. Using
duality, we can write the final formulation of considering problem as

. : 2
min max | —(u, div p)a +2llu = gll3 = p(p)] . (5)
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Figure: EXTRAGRADIENT on image with ¢ = 0.05 on the problem (5).

Figure: EXTRAGRADIENT with VR on image with ¢ = 0.05 on the problem (5).



