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We present a new way of solving inverse problems using genera-

tive modeling with flow matching. Flow Matching opens the door to

training generative model with non-diffusion probability paths. These

paths are more efficient than diffusion paths, provide faster training

and sampling, and result in better generalization. Using flowmatching,

we can obtain the distribution of possible solutions when the solution

to the inverse problem is non-unique.

FlowMatching for solving inverse problems

Suppose we have a forward model

d = F(m, e) + η,

Sample m – model parameters.

Sample e – experiment details.

Sample noise η from noise distribution

Compute d = f (m, e) + η – experiment design.

These are samples from the joint distribution ρ(d, m, e). The model
parameterm is not uniquely defined, but has a certain conditional dis-

tribution ρ(m|d, e). Our goal is to estimate this distribution. We will
use conditional flow matching for this procedure.

Then, we create conditional path between (m0, d, e) and (m, d, e),
where (d, m, e) is from our dataset as

mt = (1 − t)m0 + t ∗ m, t ∈ [0, 1].

In conditional flow matching, we need to learn velocity vθ(mt, t, d, e)
that minimizes the following loss function:

Et,m0,(m,d,e)∼p‖vθ(mt, t, d, e) − (m − m0)‖2 → min
θ

dmt

dt
= v(mt, t, d, e), mt(0) = m0.
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Figure 1. Solving the inverse problem using flow-matching

SEIR disease model

SEIR (Susceptible-Exposed-Infected-Recovered) model is a mathemat-

ical model used to mathematically simulate the spread of infectious

diseases. In this case study we simulate a real situation where, during

the spread of a disease, we measure the number of infected and dead

people at random times and use this information to try to recover the

control parameters of the ODE system.

dS

dt
= −β(t)SI,

dE

dt
= β(t)SI − αE

dI

dt
= αE − γ(t)I,

dR

dt
= γ(t)I

where the variables S(t) is susceptible number, E(t) is exposed num-
ber, I(t), R(t) are infected and removed number initialized with S(0) =
99, E(0) = 1, I(0) = R(0) = 0.

β(t) = β1 + tanh(7(t − τ ))
2

(β2 − β1)

γ(t) = γr + γd(t); γd(t) = γd
1 + tanh(7(t − τ ))

2
(γd

2 − γd
1)

i.e., the rates transition smoothly from some initial rate (β1 and γd
1 ) to

some final rate (β2 and γd
2 ) around time τ > 0. We fix τ = 2.1 and an

overall time interval of [0, 4].

e = [a1, a2, a3, a4] ∼ U [1, 3] random times, when measurements are
performed

di = [Iei
, Rei

] for i ∈ [1, 4] (d ∈ R2×4) the number of infected and
deceased individuals

m = [β1, α, γr, γd
1 , β2, γd

2 ] is ODE model parameters.

Assume mtrue = [0.4, 0.3, 0.3, 0.1, 0.15, 0.6]. Then after 1000 calcula-
tions the average error will be 2.05% ± 1.04%.

Figure 2. Probabilistic solutions to the inverse problem

Permeability field inversion

In this example, the inverse problem consists of estimating the

spatially-dependent diffusivity field κ, given measurements of the
pressure u at some pre-determined locations (xi, yi) ∈ Ω. This is a
common problem, for example in the oil industry, when there are a

small number of wells and pressure observations across them, and

from these data one needs to reconstruct the permeability field of

an oil field.

−∇ · (κ∇u) = 0

with boundary conditions

u(x = 0, y) = f (y, e1) = exp
(

− 1
2σw

(y − e1)2
)

u(x = 1, y) = g(y,2 ) = − exp
(

− 1
2σw

(y − e2)2
)

κ is the spatially-dependent diffusivity field given measurements of
the pressure u at some pre-determined locations (xi, yi) ∈ Ω. m =
log(κ) ∼ N(0, Cpr), with covariance operator Cpr

c(x, z) = σ2
v exp

[
−‖x − z‖2

2`2

]
for x, z ∈ Ω,

with σv = 1 and `2 = 0.1. Employing a truncated Karhunen-Loève
expansion of the unknown diffusivity field yields the approximation

m(x, m) ≈
nm∑
i=1

mi

√
λiφi(x),

where λi and φi(x) denote the i-th largest eigenvalue and eigenfunc-
tion of Cpr,mi ∼ N(0, 1). The Karhunen-Loève expansion is truncated
after nm = 16 modes, resulting in an approximation that captures 99
percent of the weight of Cpr.

m is a 16 parameters for Karhunen-Loève expansion of

log-permeability of field

e = [e1, e2] Dirichlet boundary conditions coefficients
d is 3, 4, 5 or more u observations in fixed points.

Figure 3. Probabilistic solutions to the inverse problem

Simple nonlinear model

In our experiments, we used the following forward model from [Koval

et al.]

d(e, m) = e2m3 + m exp(−|0.2 − e|) + η

where the η is a known noise distribution, i.e. N (0, σ2). In the simplest
example in Koval et al., m – model parameter is one dimensional, uni-

formly distributed on [0, 1]. Also, e is one-dimensional from [0, 1] (input
point, ’experiment’), we can also take it uniformly distributed on [0, 1].

m0 ∼ U [0, 1].

Figure 4. Joint probability ofm parameter visualisation for different design d and
experiments e parameters

Conclusions

For different cases of inverse problem solving, the following results are

obtained:

Case Mean d error, % std. d error, %

Simple nonlinear 0.15 0.09

SEIR ODE system 2.04 1.01

Pressure diffusivity PDE? 0.81 0.53

Table 1. Inverse problem solution results.

? - for 5 point case.
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