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Abstract
Tensor-Train neural network(TT-NN) i s a class of network where i nputs, weights and biases are i n the form of TT-format. This study employs methods such as functional
analysis and constructive techniques to mathematically analyze the approximation properties of one type of TT-NN. Numerical simulations are conducted to verify the
equivalence between traditional TT-NN and normal neural network.

Introduction
TT-NN has become a substitute of the traditional neural network (such as RNN) in
academic field. As it owns the properties of low-rank representation and approx-
imation to f unctions, TT-NN can significantly enhance computational efficiency.
However, theoretical research on TT-NN remains limited and it still lacks sufficient
interpretability.
This poster provides a mathematical analysis for full TT-NN. I have tried to con-
struct a full TT-NN to approximate a function model and give a qualitative proof
of the universal approximation theory. This work provides some theoretical foun-
dations for future research on TT-NN.

Mathematical Analysis

TT-NN i s a class of network where i nputs, weights and biases are i n the form of
TT-format. I focus on fully connected neural network with Relu activation function
as the basic structure of neural network. The poster provides the exploration on
2 types of TT-NN, which I name as traditional TT-NN and full TT-NN.

Mathematical Representation of Traditional TT-NN
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Mathematical Representation of Full TT-NN
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where xvecTT , W l
MatTT

a    nd blvecTT are the TT-format i nput, weight of the l th l ayer
and bias of the lth l ayer, which are expressed as a vector, matrix and matrix. σ(·)
is the activation function.
where xTT ,  W l

TT a  nd blT              T a   re the TT-format input, weight of the lth layer and bias                                                                                                                                                                                                                                                                                                                    
of the lth l ayer, which are expressed as a TT-format tensor, TT-format tensor and
TT-format tensor. σ(·)TT i s the activation function with TT-format connection. • is
the product of TT-format operation.

Equivalence between Traditional TT-NN and Neural Network
Traditional TT-NN i s equivalent to normal neural network with the same struc-
ture. I designed a special network for denoising task to verify the equivalence
between the traditional TT-NN and normal neural network.

Denoising Results:

The numerical results show that the error of 2 networks i s almost zero, which
proves the equivalence between traditional TT-NN and normal NN.

Approximation Theorem of Full TT-NN
For proving the universal approximation of neural networks, one usually carry out
two steps: descomposition and construction.

Step 1: The first i s to show that function model has a decomposition i n terms of
fundamental building blocks.
Step 2: The second is to show that each of the building blocks can be approximated
by deep networks.

Proof Outline
Theorem: S uppose a f unction f (x1, x2  · · · , x                            n1n2 · ··n    d    

) i s defined on a compact
set and can be approximated by a f ully connected neural network with ReLU
activation: y = W lσ(W l−1σ(· · · σ(W 1x+ b1) + bl−1)  )+ b l        and the function can
also be approximated by a full TT-NN with a single layer.

Proof: With width or depth increasing,
∥f (x)−W lσ(W l−1σ(· · · σ(W 1x + b1) + bl−1) )−b l∥ → 0 (      3)

∥·∥ i s normal of the function. Multi-layer Fully connected ReLU neural network
can be expanded as a single-layer Relu neural network.∑
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w i s width of network. a i
j a nd ki i s c oefficient of expansion.                                                                                                                                                                       bi i s bias.

i ≤ 2wl means the number of hyperplanes i s at most 2wl. x1, · · · , x                            n1· ··n       d
and

ai1, · · · , ain        1· ··nd
can be seen as d dimension tensors.

Through TT-decomposition, function (4) canbe expressed as:∑
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⊗ is Kronecker product. Compared with the TT-format function (2):
σTT (WTT • xTT + bTT ) = σ(
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In fact, (
∑

W  ⊗X, b) = σ(
∑

W  ⊗X +M, b) − (M, 0), which means one can
choose amatrixM of which every entry is bigger than the entry of−∑

W  ⊗X .
Then one construct a single-layered full TT-NN with an outer activation, which
proves the theorem.

Research Direction on Deep TT-NN
In the field of NN applications, deep neural networks offer more advantages
over shallow ones. Consequently, I have delved into the exploration of deep TT-
NN.

1. Direct Construction Direction
From the perspective of module composition
For example, shallow ReLU fully connected neural networks are piecewise linear
continuous functions, and deep networks retain this characteristic.
From the perspective of tensor-train operations,
For example, continuous function can be approximated by l inear composition
of Fourier functions. I s there a TT-operation-composition of specific functions?

2. Spectral Analysis Direction
First, transform the i nput i nto TT-format and the function i s transformed i nto
the following format:

f (x1, x2  · · · , x                            n1n2···nd
) → f (x11, · · · x1rn1 

;x21, · · · x2r      2n2
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) (  7)
Second, take (x11, · · · x1r      n1 

) asX1, take (x21                  , · · · x2r      2n2
) asX2, · · · ,take (xd1              , · · · xdrnd 

)
asXd. Then the function is transformed into:                               

f (x1, x2  · · · , x                            n1n2 · ··n    d
) → f (X1, X2   · · · , Xd        ) (8)

Third,  apply spectral d ecomposition theory and one can transform f unction
f (X1, X2   · · · , Xd        ) into:                                  
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