
Non-conforming discretizations
for diffusion equations

Yuri Kuznetsov

Dedicated to Prof. Guri Marchuk on the occation of his 90th anniversary
Department of Mathematics

University of Houston

April 2, 2015

Yuri Kuznetsov Non-conforming discr. for diff. eq. 1/43



Outline

differential mixed formulation

variational mixed formulations

mixed hybrid formulations

conforming and non-conforming discretization

numerical example

non-conforming / non-matching meshes

Yuri Kuznetsov Non-conforming discr. for diff. eq. 2/43



Diffusion Equation

−div
(
D grad p

)
+ cp = F in Ω

(D grad p) · n = 0 on ∂Ω

Here,

Ω – polyhedral computational domain

n – unit normals

D – diffusion tensor

c – non-negative coefficient

F – source function
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Mixed Formulation

Diffusion equation

D−1u + ∇ p = 0 in Ω

∇ · u + cp = F in Ω

u · n = 0 on ∂Ω
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Mixed Variational Formulation

Find (u, p) ∈ V ×Q such that∫
Ω
D−1u · v dx−

∫
Ω
p · (∇v) dx = 0∫

Ω
(∇u) · q dx+

∫
Ω
c · p · q dx =

∫
Ω
F · q dx

∀ (v, q) ∈ V ×Q

Here

V = {v : v ∈ Hdiv(Ω), (v · n) = 0 on ∂Ω}

Q = L2(Ω)

Yuri Kuznetsov Non-conforming discr. for diff. eq. 5/43



Constrained Mixed Variational Formulation

Here we assume that c ≡ 0 in Ω
Set of constrains

K = {v : v ∈ V,
∫

Ω
(∇ · v− F ) q dx = 0 ∀q ∈ Q}

Functional for minimization

Φ(v) =

∫
Ω
D−1v · v dx

Constrained mixed Variational Problem: Find u ∈ K such that

Φ(u) = min
v∈K

Φ(v)

This formulation is equivalent to the previous mixed variational
formulation.
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Conforming Discretization

Let Vh and Qh be subspaces V and Q, respectively
Then, the conforming mixed discretization is, as follows: Find
uh ∈ Vh and ph ∈ Qh such that∫

Ω
D−1uh · v dx−

∫
Ω
ph · (∇v) dx = 0∫

Ω
(∇uh) · q dx+

∫
Ω
c · ph · q dx =

∫
Ω
F · q dx

∀ (v, q) ∈ Vh ×Qh
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Nonconforming Discretization

Important property of v ∈ Hdiv(Ω):
Let γ be a curve/surface belonging to Ω and n be a normal to γ.
Then v · n is continuous almost everywhere on γ.

Nonconforming disctretizations:

discontinious Galerkin method

mixed finite element methods with piecewise constant fluxes

MORTAR element methods
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Comforming Meshes

Let Ω be partitioned into m nonoverlapping (macro-)cells Es,
s = 1,m i.e. Es ∩ Et = ∅, s 6= t, and

Ω = ΩH =

m⋃
s=1

Es

We denote by Γst the intefaces between Ωs and Ωt, i.e.

Γst = ∂Es ∩ ∂Et s 6= t

We call such mesh conforming.
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Layered Polyhedral Mesh
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Prismatic Cluster as a Macrocell
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Non-Matching Meshes on Faults

Left subdomain Right subdomain
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Example of a Distorted Hexahedral Mesh Cell on a Fault
Surface: Nonmatching, or Nonconforming Polyhedral
Meshes
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Macro-Hybrid Mixed Formulation

The diffusion problem associated with a cell Ek in ΩH can be
written as follows:

D−1
k uk + grad pk = 0 in Ek ,

−div uk − cpk = −fk in Ek ,

uk · nk = 0 on ∂Ek ∩ ∂Ω ,

uk · nk = −ψk on ∂Ek \ ∂Ω ,

where ∂Ek is the boundary of Ek, and nk is the outward unit
normal to ∂Ek.
The function ψk denotes the incoming normal flux on the
interfaces between Ek and neighboring mesh cells.
We also assume that the global function p (p = pk in Ek) is
continuous in Ω.
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Mixed Macro-Hybrid Formulation

Find (us, ps) ∈ Vs ×Qs, λst ∈ Λst such that:

∫
Es

(D−1us)·vs dx−
∫
Es

ps·(∇·vs) dx +

m∑
t=1
s 6=t

∫
Γst

λst(vs·ns) dl = 0

∫
Es

(Dus) · qs dx+

∫
Es

c · ps · qs dx =

∫
Es

F · qs dx

∀ (vs, qs) ∈ Vs ×Qs∫
Γst

(us,ns) · µst dl +

∫
Γst

(ut,nt) · µst dl = 0

∀µst ∈ Λst ≡ L2(Γs,t), s < t, s, t = 1,m

Here Vs = {v : v ∈ Hdiv(Es), (vs,n) = 0 on ∂Es ∩ ∂Ω}
Qs = L2(Es), s = 1,m
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Algebraic System

Conforming/non-conforming discretization results in an algebraic
system (c ≡ 0) in Ω:

Mu+BT p+ CTλ = 0

Bu = F ,

Cu = 0,

where
M = diag {M1 , M2 , . . . , Mm}

is a block diagonal symmetric positive definite matrix. Here, the
first block equation comes from the discretization of the equation
u = −a∇p, the second represents the discrete conservation law,
and the third one governs the continuity of the normal fluxes, or
global flux on the interfaces between macrocells.
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Constrained Variational Formulation

The variational formulation is as follows: find the vector u ∈Wh

such that

(M u, u) = min
v∈Wh

(M v, v) ,

where
Wh =

{
v : B v = F , C v = 0

}
.
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Coarsening of Normal Fluxes

In non-conforming discretization, we may impose additional
conditions on vectors us, s = 1,m. Namely, we may assume that

us = Rs · us,new

with some matrices Rs, s = 1,m. Then we get
u = Rus, s = 1,m with the block diagonal matrix

R =

R1 0
. . .

0 Rm
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Simplest Example for Flux Coarsening

Let k1 < k2

k=k
1

k=k
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k2
u2 ⇒

[
u1

u2

]
= Runew, R =

(
1
k1
k2

)
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Constrained Variational Formulation

Thus we get the following variational problem: find u ∈ Ŵh such
that

(M̂ u, u) = min
v∈Ŵh

(M̂ v, v) ,

where
M̂ = RTMR .
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Algebraic System for Coarsened Fluxes

The latter variation problem results in the algebraic system

M̂u+ B̂T p+ ĈTλ = 0

B̂u = Fnew ≡ RF

Ĉu = 0

where
B̂ = BR, Ĉ = CR.
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Example: Adjacent Mesh Macrocells
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Figure: An example of two adjacent macrocells in Ωh.
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Example of Interface Meshes
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Figure: The traces of meshes on the interface between macrocells (left in
solid, right in dashed).
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Simplest Discretization

Conforming discretizaions:

us,h · ns ≡ const on Γs,t s, t = 1,m

us,h · ns + ut,h · nt ≡ const on Γs,t, s < t, s, t = 1,m

Nonconforming discretizations:

no special assumption for us,h · ns on Γs,t, s, t = 1,m

Conformity conditions for the total flux on Γs,t∫
Γs,t

us,h · ns +

∫
Γs,t

ut,h · nt = 0, s < t, s, t = 1,m
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Numerical Example

Equations

∂T

∂t
= ∇u in Ω

u = −K · T in Ω

T (x, 0) = 0 in Ω, T (x, t) = g(x) on ∂Ω

(a) Mesh ΩH (b) ”Mixed” cells
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Numerical Example

Parameters

Domain: Ω = (−1, 1)× (0, 2)
Mesh: Ωh 20× 20 cells hx = hy = 0.1
Time Step: δt = 0.005

Subdomains

Ω1 = (−1,−0.25)× (0, 2), k1 = 10−12

Ω2 = (−0.25, 0.25)× (0, 2), k2 = 1
Ω3 = (0.25, 1)× (0, 2), k3 = 10−12

Implicit FD scheme in time variable

Conforming MFE with 4 DOFs for the normal flux on faces;
continuity of the normal fluxes on the interfaces

Nonconformity MFE with 6 DOFs for the normal fluxes in
mixed cells; continuity of the total normal fluxes on interfaces.
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Numerical Test Results 1
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Numerical Test Results 2
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Numerical Test Results 3
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Numerical Test Results 4
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Numerical Test Results 5
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Numerical test 2

Parameters

Domain: Ω = (−1, 1)× (0, 2)
Mesh: Ωh 25× 25 cells hx = hy = 0.8
Time Step: δt = 0.005

Subdomains: interleaving strips with k1 = 10−12 and k2 = 1
Problem:

−∇(K∇T k) +
T k

4t
=
T k−1

4t
T = 1 on ∂Ω ∩ (y = 0)

T = 0 on ∂Ω ∩ (y = 2)

(K∇T ) · n = 1 on ∂Ω ∩ (x = −1), ∂Ω ∩ (x = 1)

T 0 = 0 on Ω

Algorithm 1:B ∈ <7×7, B ∈ <2×7, C ∈ <4×7

Algorithm 2:B ∈ <5×5, B ∈ <2×5, C ∈ <4×5
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Numerical Test Results for Numerical Example 2

(a) Alg.1: T distribution at t =
0.305.

(b) Alg.2: T distribution at t =
0.305.
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Numerical Test Results for Numerical Example 2

Figure: T at t = 0.02 along the second horizontal row of subcells.
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Non-conforming meshes

In theoretical research, a mesh is said to be conforming if any two
adjacent mesh cells satisfy the condition:

”vertex-to-vertex”

”edge-to-edge”

”face-to-face”

Otherwise, the meshes are said to be non-conforming. For instance,
non-matching meshes,generally speaking, are non-conforming ones.
In practice, very often we have to use non-conforming meshes
ΩH = ∪ms=1Es such that either |Es ∩ Et| 6= 0 for some s 6= t or
ΩH 6= Ω, or both.
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An Example of the Initial Conforming Mesh
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Figure: An example of the initial conforming mesh
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An example of the resulting non-conforming mesh
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Figure: An example of the resulting non-conforming mesh
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”Logically” Conforming Meshes

An example

Γ
st

Γ
ts

n
st

n
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E
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Flux matching conditions∫
Γst

(∇us) · nst dl +

∫
Γts

(∇ut) · nts dl = 0
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Relative Errors

Table: Relative error in PWC discrete solution wPWC
h , %, for angle

α = 45◦, conforming mesh

G1 G2 G3

4h 6.47516 5.9941 5.98602

2h 3.23569 2.02823 2.98601

h 1.61761 0.842736 1.49213

Table: Relative error in PWC discrete solution wPWC
h , %, for angle

α = 45◦, non-conforming mesh

G1 G2 G3

4h 6.47512 5.9229 5.98567

2h 3.23567 1.96789 2.98584

h 1.6176 0.812716 1.49205
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Domain G and Mesh Gh for Mesh Step Size 4h,
(xC , yC) = (−1.475, 0.05)
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Figure: Domain G and mesh Gh for mesh step size 4h,
(xC , yC) = (−1.475, 0.05)
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Mesh Cell Inside Gh,2 for Angle α = 85◦ and Mesh Step
Size 2h, Non-Conforming Mesh
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Figure: Mesh cell inside Gh,2 for angle α = 85◦ and mesh step size 2h,
non-conforming mesh
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Relative Errors (2)

Table: Relative error in PWC discrete solution wPWC
h , %, for angle

α = 85◦, conforming mesh

G1 G2 G3

4h 5.11235 9.58808 4.74141

2h 2.54404 2.98806 2.35079

h 1.27059 1.06517 1.17285

Table: Relative error in PWC discrete solution wPWC
h , %, for angle

α = 85◦, non-conforming mesh

G1 G2 G3

4h 5.11111 8.61626 4.73696

2h 2.54334 2.02273 2.34864

h 1.27043 0.905955 1.1724
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